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Abstract

Enolizable cyclic imines, obtained in situ from their corresponding lithium amides by oxidation 

with simple ketone oxidants, are readily alkylated with a range of enolates to provide mono- and 

polycyclic β-aminoketones in a single operation, including the natural product (±)-myrtine. Nitrile 

anions also serve as competent nucleophiles in these transformations which are promoted by BF3 

etherate. β-Aminoesters derived from ester enolates can be converted to the corresponding β-

lactams.

Alicyclic amines are ubiquitous compounds with manifold uses in synthetic and medicinal 

chemistry.1 The synthesis of substituted alicyclic amines by means of C–H bond 

functionalization is an attractive strategy that continues to inspire the development of 

numerous, mechanistically distinct strategies.2,3 While the vast majority of studies in this 

area have focused on 3° or protected 2° amines, few methods have emerged that achieve the 

synthesis of α-functionalized 2° (i.e. unprotected) alicyclic amines directly from their 

corresponding parent azacycles.2,4 This can be attributed largely to the incompatibility of 

most activation modes with basic amine functionalities and/or N–H bonds. We have recently 

developed a strategy for the α-C–H bond functionalization of unprotected alicyclic amines 

that takes advantage of the known propensity of lithium amides to undergo formation of 
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transient imines upon reaction with simple ketone oxidants (Scheme 1).5,6 This method was 

initially applied to organolithium nucleophiles,5a and later extended to Grignard reagents 

and other organometallics with attenuated nucleophilicities.5b Less reactive nucleophiles 

were found to benefit from or require the use of Lewis acids to activate the imine 

electrophiles toward addition. More recent advances utilizing this C–H bond 

functionalization strategy include the functionalization of multiple ring-positions5c and the 

decarboxylative alkylation of transient imines.5d Here we report the alkylation of transient 

imines with a broad range of enolate-type nucleophiles to rapidly convert simple starting 

materials into a diverse portfolio of functionalized amines, including polycyclic amines.

Mannich reactions are well established as useful tools for the synthesis of valuable β-amino 

ketones.7 However, variants utilizing enolates in combination with enolizable imines, in 

particular enolizable cyclic imines, remain rare,8 likely due to the limited electrophilicity of 

imines lacking activating groups and the dearth of methods to generate cyclic imines in their 

active monomeric forms.9 The direct synthesis of methylphenidate10 from piperidine and 

methyl 2-phenylacetate was selected as the model reaction to study the proposed 

transformation. Key findings of this survey are summarized in Table 1. Briefly, the presence 

of a Lewis acid was found to be required to obtain any quantity of methylphenidate, with 

BF3 etherate outperforming trimethylsilyl trifluoromethanesulfonate (TMSOTf). 

Diastereomeric ratios were highly variable depending on conditions. The highest dr favoring 

the pharmaceutically active threo isomer 1a was 3.2:1 (entry 12) while the erythro isomer 1a
′ was obtained in up to 10:1 dr (entry 5).11 The highest overall yield of methylphenidate (1a 
+ 1a′) was obtained in the presence of LiCl additive (entry 20).12

To keep the overall procedure as simple as possible while also accommodating potentially 

less reactive substrates, the conditions of entry 17 (Table 1) were selected for the alkylation 

of various amines with a number of ester enolates (Scheme 2). Amines with variable ring 

sizes participated in the reaction and different substitution patterns on the ester were readily 

accommodated. Product 1d, derived from a bicyclic amine, as well as products 1f and 1g, 

derived from piperidines containing a substituent in the 4-position, were obtained with 

excellent levels of diastereoselectivity.13 The reaction could also be extended to the use of 

nitrile anions (Scheme 3).

The direct synthesis of bi- and tricyclic enaminones was accomplished by employing 

dianions derived from 1,3-diketones (Scheme 4). In these reactions, treatment with aqueous 

base was performed following the addition step to facilitate the intramolecular condensation 

step. 4-Benzylpiperidine provided the annulation product 3e with excellent 

diastereoselectivity.

Bicyclic and tricyclic β-amino ketones were obtained directly from α,β-unsaturated ketone 

enolates upon reaction with in-situ-generated imines (Scheme 5). Here, the initial 

nucleophilic addition is followed by an intramolecular heteroconjugate addition step, 

facilitated by treatment with aqueous base. Product 4a, obtained with a dr of 5:1, is a direct 

precursor of the natural product lasubine I. By changing the temperature and reaction time of 

the last step, the other diastereomer of 4a (a direct precursor of the natural product lasubine 
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II) was obtained as the predominant product with a dr of 1:8.14 The natural product myrtine 

(4d) was obtained in a single operation, albeit in moderate yield.15

β-Aminoesters derived from ester enolates according to Scheme 1 can be converted to the 

corresponding β-lactams in good yields (Scheme 6).16 For instance, treatment of 1f and 1l 
with tert-butyl magnesium chloride provided bicyclic β-lactams 5 and 6 in 72% and 73% 

yield, respectively.

In summary, we have achieved the α-alkylation of unprotected alicyclic amines with a range 

of different enolate-type nucleophiles. This approach provides a convenient platform for the 

diversification of simple amines via C–H bond functionalization.
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Scheme 1. Li-amide based approach to amine α-C–H bond functionalization
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Scheme 2. Scope of the alkylation with ester enolates
a Deprotonation performed at –78 °C for 30 min. b Deprotonation performed at –78 °C for 

15 min and rt for 15 min.
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Scheme 3. Alkylation with nitrile anions
a Deprotonation performed at –78 °C for 30 min. b Deprotonation performed at –78 °C for 

15 min and rt for 15 min.
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Scheme 4. Alkylation with 1,3-diketone dianions
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Scheme 5. Alkylation with α,β-unsaturated ketone enolate
a Result in parentheses: Step 4 was performed for 48 h at 70 °C.
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Scheme 6. Formation of β-lactams
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