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Advances in imaging technology and computer science have allowed the development of newer assessment of the anterior
segment, including Corvis ST, Brillouin microscopy, ultrahigh-resolution optical coherence tomography, and artificial intelli-
gence. They enable accurate and precise assessment of structural and biomechanical alterations associated with anterior segment
disorders. This review will focus on these 4 new techniques, and a brief overview of these modalities will be introduced. The
authors will also discuss the recent advances in research regarding these techniques and potential application of these techniques
in clinical practice. Many studies on these modalities have reported promising results, indicating the potential for more detailed
comprehensive understanding of the anterior segment tissues.

1. Introduction

Direct visualization of ocular surface tissue using conven-
tional techniques, e.g., slit-lamp biomicroscopy, still remains
the primary examination tool for anterior segment diseases
[1]. Development of devices for anterior segment imaging,
such as anterior segment optical coherence tomography
(OCT), corneal topography, specular microscopy, confocal
microscopy, ultrasound biomicroscopy, and ocular response
analyzer, has enabled detailed objective observations of
anterior segment structures that can contribute to improved
anatomical and visual outcome after cornea, cataract, and
refractive surgeries [2].

Development of newer technologies, such as corneal
visualization Scheimpflug Technology (Corvis ST), Brillouin
microscopy, and ultrahigh-resolution OCT (UHR-OCT), is
expected to allow even more detailed visualization of an-
terior segment structures, which would allow even more
understanding of anterior segment pathology. Artificial

intelligence may also be useful for providing optimal di-
agnostic and treatment protocols by integrating findings
obtained using various imaging modalities.

In this review, we aim to provide an overview of these 4
newer techniques and discuss the research advances and
potential clinical application of these modalities.

1.1. Corneal Biomechanical Assessment Using Ultrahigh-Speed
Imaging and Special Analytical Methods. The Corvis ST
(OCULUS Optikgerite GmbH, Wetzlar, Germany) is the
integration of two measurements modalities, i.e., a non-
contact tonometer with a collimated high-intensity air pulse
and an ultrafast Scheimpflug camera, that is used for the
assessment of biomechanical properties of the cornea [3-9].

In the device, a fixed pressure air pulse causes corneal
deformation, while passing through two applanation mo-
ments; the corneal movement during the deformation
process is recorded using an ultrafast Scheimpflug camera at
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a speed of 4330 frames/s [10]. In each examination, a series
of 140 images with width of 8.5mm is obtained in 33 ms
[3, 10]. As the Corvis ST is capable of analyzing the whole
process of dynamic corneal deformation, it enables calcu-
lation of various dynamic corneal response (DCR) param-
eters [3, 11, 12]. Parameters including “deformation” are
calculated without compensating for whole eye movement
(WEM), while the parameters including “deflection” com-
pensate for the WEM [13].

As the air pulse is triggered, the cornea deforms inward
through the moment of first corneal applanation (A1), [3] at
which the length of the applanated cornea (A1 length), the
velocity of the corneal apex (Al velocity), time from the
measurement beginning (Al time), and corneal deflection
amplitude (A1 DeflAmp), defined as the displacement of the
corneal apex without the WEM, are measured [3].

Just prior to Al, deformation amplitude ratio (DA ratio)
at 1 or 2mm, i.e., central deformation divided by an average
of the deformation 1 or 2mm from center with maximum
value, is measured, and deflection amplitude ratio (DefA
ratio) at 1 or 2 mm can be calculated after compensation for
WEM [3].

Initially, the moment during the cornea highest con-
cavity (HC), parameters including radius of corneal cur-
vature (HC radius), time from beginning to the moment of
HC (HC time), maximum deformation amplitude (DA),
corneal deflection area (HCDeflArea), corneal deflection
amplitude (HCDeflAmp), delta arc length of the outer
corneal edge between initial state and HC (HCdArclength),
and distance between two corneal peaks at HC (peak dis-
tance) are measured [3, 9, 13]. The radius of corneal cur-
vature at HC (curvature radius HC) and the maximum value
of the integrated inverse of the corneal radius HC
(InvRadMax) are also determined [3, 9, 13].

At the moment of the second applanation (A2), the time
for the A2 (A2 time), length of the flattened cornea (A2
length), and the velocity of the corneal apex (A2 velocity) are
measured [3]. The value of corneal displacement before and
after deformation (WEMax; maximum WEM) can also be
determined [14, 15]. Corneal thickness over the entire
cornea including central corneal thickness (CCT) and in-
traocular pressure (IOP) data, including uncorrected and
biomechanically corrected IOP (bIOP), were also assessed
[16]. As IOP values have strong association with the age,
CCT, and DCR parameters, [17] bIOP was calculated based
on an algorithm designed to compensate for the effects of
these factors [18]. Stiffness parameters (SP) can be calculated
by dividing the loading (air pressure—bIOP) on the cornea
by the displacement of the corneal apex at A1 (SP-Al) and
HC (SP-HC), respectively [3]. Several studies have dem-
onstrated that Corvis ST had high repeatability and re-
producibility for measurement of CCT, IOP, bIOP, and
DCR parameters [10, 14, 15].

DCR parameters were shown to be helpful for the de-
tection of corneal ectasia (Figure 1) [19, 20]. Keratoconus is
associated with an increase in DA [21, 22]. A larger curvature
radius HC and lower InvRadMax were related to increased
corneal stiffness and higher resistance to deformation. [13].
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For early and accurate diagnosis of corneal ectasia,
several indices have been developed [6, 23]. Vinciguerra
et al. [6] proposed the Corvis Biomechanical Index (CBI) by
combining DCR parameters including the DA ratio at 2 mm,
InvRadMax, and SP-Al and corneal thickness data
expressed as Ambrdsio’s Relational Thickness in the hori-
zontal profile (ARTh) [23]. CBI with a cut-off value of 0.5
successfully detected 98.2% of corneal ectasia with 100%
specificity, suggesting its potential value for early detection
of keratectasia [6]. In a subsequent study, they presented 12
cases with subclinical keratoconus detected using CBI cut-
oft value of 0.5 in which topography and tomography were
all normal [24].

In 2017, Ambrosio et al. [23] introduced the tomo-
graphic biomechanical index (TBI) by integrating
Scheimpflug-based corneal tomographic and biomechanical
data to improve accuracy for detection of corneal ectasia
(Figure 2) [23]. The TBI cut-off value of 0.79 provided 100%
sensitivity and 100% specificity for detecting clinical corneal
ectasia [23]. They also showed that TBI was significantly
more accurate than CBI or Belin-Ambrosio Deviation dis-
play (BAD-D) for detecting corneal ectasia [23]. Steinberg
et al. [25] also demonstrated that TBI was superior to CBI
and BAD-D in keratoconus screening in topographical and
tomographical normal fellow eyes of clinically ectatic eyes,
although all the three indices were excellent for discrimi-
nating advanced keratoconus from normal eyes. Ferreira-
Mendes et al. [26] revealed that the TBI was more accurate
than BAD-D and CBI for detecting subclinical ectasia
amongst topographically normal eyes in patients with
asymmetric ectasia, indicating that the index might identify
an intrinsic susceptibility for ectasia progression [26]. Other
studies have also shown that TBI was the most accurate
amongst the various indices developed so far for discrimi-
nating subclinical keratoconus from normal eyes [20,27].
Kataria et al. [20] reported that, among indices including
CBI, TBI, BAD-D, and SP-A1l, TBI showed the weakest
correlation with biomechanical confounding factors.
However, the cut-off value of TBI for detecting eyes with
ectasia susceptibility varied amongst the studies, and no
consensus regarding the cut-off value has been established
yet [28]. Koh et al. [29] showed that 40% of cases with
clinical ectasia in one eye and a fellow eye with normal
topography were classified as normal by BAD-D, CBI, and
TBI. These findings suggest that further studies are necessary
for further development of indices and guidelines for dis-
criminating eyes with ectasia susceptibility [29].

Corvis ST can also be helpful in monitoring changes in
cornea after collagen cross-linking (CXL) treatment [30, 31].
CXL treatment was associated with increase in A2V and DA
as well as decrease in A2L in eyes with keratoconus [31]. The
difference between the A1L and A2L was reliable in dis-
criminating cross-linked keratoconic corneas from un-
treated keratoconic or healthy corneas [31]. Hashemi et al.
[30] showed that Corvis ST showed DCR changes suggesting
corneal strengthening, such as decreased DA 2mm and
increased SP-Al, indicating that the device can provide
biomechanical evidence of the efficacy of corneal CXL [30].
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FIGURE 1: Vinciguerra screening report displays DCR parameters of a patient with keratoconus in comparison with normative values. The
ARTh and SP-Al are lower, and the DA ratio, integrated radius, and CBI are higher in keratoconus compared to normal subjects.
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F1Gure 2: Corvis ST biomechanical/tomographic assessment of a keratoconic eye. Biomechanical assessment shows increase in DA ratio and
integrated radius, and decrease in ARTh and SP-A1 (top left). Tomographic assessment shows central corneal thinning with an asymmetric
bow tie pattern (top right). The percentage of thickness increase (PTI) graph shows an inferior escape from the normal mean. CBI, TBI, and
BAD are all increased (bottom).

Corvis ST is also expected to be useful for evaluation of  indicating that the condition might have reduced corneal
changes in corneal biomechanical properties associated with ~ stiffness and decreased stability. Hashemi et al. [34] showed
refractive errors and keratorefractive surgery [32-34]. that laser-assisted in situ keratomileusis (LASIK) led to more
Tubtimthong et al. [35] demonstrated that high myopia was ~ substantial changes in corneal biomechanical properties
associated with higher DA and smaller curvature radius,  than photorefractive keratectomy (PRK) in high myopia,



although both procedures caused significant biomechanical
changes in the cornea. Corvis ST has shown that both LASIK
and small incision lenticule extraction (SMILE) cause re-
markable changes in corneal biomechanical parameters
[32, 33, 36]. However, SMILE was associated with reduced
change in DA and better recovery of corneal biomechanical
strength [32, 33]. Khamar et al. [36] reported that creation of
a LASIK flap caused greater acute biomechanical weakening
intraoperatively in comparison to a SMILE cap, although
both resulted in similar biomechanical changes after wound
healing.

Cataract surgery was associated with decreased SP-Al
and increased DA even at 3 months postoperatively, sug-
gesting decreased corneal stiffness [37, 38]. As the reduction
in corneal stiffness was associated with falsely low IOP
measurements, care should be taken particularly when
evaluating glaucoma patients after cataract surgery [37].

Corvis ST is also expected to be a potential biomarker in
thyroid orbitopathy [39, 40]. Thyroid orbitopathy was as-
sociated with a decrease in WEM, which had a correlation
with increase in cross-sectional area of the extraocular
muscles [40]. Leszczynska et al. [39] also demonstrated
biomechanical alterations including decreased WEM length
and time, increased bIOP, and higher SP, indicating reduced
orbital compliance in association with thyroid orbitopathy
[39].

With the development of OCT technology, swept source
(SS) OCT combined with air puff applanation is also ex-
pected to enable accurate and precise evaluation of corneal
biomechanical properties [41, 42]. Several studies have
shown the efficacy of SS-OCT with an air puff in assessment
of dynamic response of cornea to air pulse, suggesting it as a
potential option for the in vivo assessment of corneal me-
chanical properties, particularly due to its high resolution
[43, 44].

2. Brillouin Microscopy

Brillouin microscopy is a recently introduced modality to
measure the viscoelastic property of the cornea in vivo [45].
In Brillouin microscopy, a low-power, near-infrared laser
beam is focused into the corneal tissue and it interacts with
intrinsic acoustic waves, which leads to a Brillouin frequency
shift of scattered light reflected from the modulation of the
focus [45, 46]. The Brillouin frequency shift is proportional
to the acoustic propagation speed of tissue at the focus,
which is proportional to the square of the longitudinal
modulus; thus, assessment of the Brillouin frequency shift
provides a determination of longitudinal modulus or me-
chanical compressibility, which is the inverse of the longi-
tudinal modulus, of the target tissue [45].

Brillouin microscopy is advantageous due to its non-
contact nature and ability to generate 3D mapping of the
spatial variation of longitudinal modulus using high-reso-
lution confocal spectrometer and is expected to be widely
used for practice and research on anterior segment disorders
[45, 46].

Clinical studies using Brillouin microscopy have dem-
onstrated significant alteration in corneal elastic properties
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in keratoconus, suggesting the potential applicability of the
device for detection of cornea with ectasia susceptibility
[47, 48]. Brillouin frequency shift in the cone region is
significantly reduced in keratoconic corneas compared to
normal ones [47-49]. In keratoconus, the cone region has
substantially decreased Brillouin frequency shift, compared
to the peripheral regions [47-49]. Shao et al. [47] also
demonstrated that asymmetry of Brillouin frequency shifts
between the right and left cone regions is significantly higher
in eyes with early keratoconus compared with normal eyes,
indicating that bilateral symmetry of Brillouin value might
have a value for detection of early-stage KC.

The modality may also be useful in evaluation of corneal
CXL protocols [50, 51]. Brillouin analyses revealed that
accelerated CXL protocols were especially ineffective in the
deeper portions of the cornea [50], and the stiffening effect of
localized-CXL extended to regions surrounding the localized
irradiated area [51].

Brillouin microscopy can be useful in the management of
corneal endothelial disorders and monitoring the disease
severity [52, 53]. Brillouin frequency shift was shown to have
negative correlation with corneal hydration, [52] which
might be helpful in evaluating abnormal hydration change
associated with endothelial dysfunction. Eltony et al. [53]
revealed that patients with Fuchs’ endothelial dystrophy
showed a centralized reduction in Brillouin shift, which was
consistent with central corneal edema. Brillouin microscopy
also detected substantially reduced corneal hydration after
Descemet membrane endothelial keratoplasty (DMEK) [53].

The technique is also expected to be useful for the
evaluation of corneal biomechanical change associated with
cornea, refractive, and cataract surgery [45, 54]. LASIK flap
creation resulted in significantly reduced Brillouin frequency
shift, due to reduced corneal stiffness [54]. As differences in
biomechanical properties including corneal hydration might
contribute to the variability in refractive outcome after
cataract and refractive surgeries, [55, 56] Brillouin mi-
croscopy is expected to be helpful for establishment of in-
dividually tailored nomograms for optimal visual outcome
[45, 55].

3. Ultrahigh Resolution OCT (UHR-OCT)

Although anterior segment time-domain OCT, which has
been commercially utilized since the early 2000s, is capable
of providing comprehensive images of anterior segment
structure, it lacks the ability to show structural details due to
the lower resolution [57, 58]. Advances in technology have
enabled development of spectral-domain OCT with im-
proved axial resolution of 4-7 ym and, subsequently, ul-
trahigh-resolution (UHR) OCT with axial resolution of
1-4 ym [58].

UHR-OCT uses a light source based on Ti:sapphire laser
with a broad bandwidth of larger than 100 nm as well as an
optical system specifically designed to deliver optimal per-
formance [59], which results in a resolution of less than 5 ym
[58, 59].

Enhanced axial resolution of UHR-OCT enabled precise
delineation of all 5 corneal layers and thickness
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measurement of each layer [59]. The device also allowed
visualization of microstructures, such as limbal palisades of
Vogt, limbal blood vessels, corneal nerve fiber bundles, and
aqueous humor drainage pathway including intrascleral,
episcleral, and conjunctival venous plexuses [59], which may
be helpful for understanding the pathophysiology of various
anterior segment disorders and glaucoma.

UHR-OCT also allows visualization of precorneal tear
film and tear film lipid layer [60-62] and provides thickness
data of tear film and lipid layer with excellent reproducibility
[61, 62]. These findings suggest that the UHR-OCT can be a
viable option for diagnosis and management of dry eye
disease [59]. It also enabled precise evaluation of re-epi-
thelialization after corneal injury by 3D mapping and ob-
servation of microarchitectural alterations in early phases of
corneal wound healing [63, 64].

UHR-OCT was also shown to be a viable tool for de-
tection, differential diagnosis, and monitoring of treatment
response of ocular surface tumors including ocular surface
squamous neoplasia and melanoma [58, 65, 66]. It can
provide clear demarcation and information regarding depth,
localization, and characteristics of various ocular surface
lesions [67]. UHR-OCT findings of the lesions showed close
correlation with histopathologic features [66, 67]. Shousha
et al. [66] suggested that UHR-OCT can play a critical role in
guiding the diagnosis in some cases, in which the optical
signs obtained using the device indicated that the presumed
clinical diagnosis might be incorrect and favored a diagnosis
later confirmed by histopathologic examination [66]. These
findings indicate that UHR-OCT may have potential for
noninvasive options for confirming diagnosis and moni-
toring treatment response of ocular surface lesions [66, 67].
The modality also enables detection of subclinical ocular
surface neoplasia that cannot be observed by slit-lamp ex-
amination [66, 68], which may be invaluable for surveillance
for recurrent or residual tumors after treatment [58].

UHR-OCT can also be helpful for diagnosis and treat-
ment of ocular surface infection. For instance, the device
allows visualization of characteristic signs of Acanthamoeba
keratitis, such as corneal nerve thickening reflecting radial
keratoneuritis and highly reflective dots indicating the cysts
[59].

The ability of the UHR-OCT to generate vertical
thickness map and indices of the corneal epithelium and
Bowman’s layer can be helpful for discrimination of sub-
clinical corneal ectasia [69, 70]. In 2019, Santos et al. [71]
reported that a UHR-OCT combined with a deep learning
algorithm called CorneaNet was capable of segmentation of
both healthy and keratoconus images with high reliability,
suggesting that the device can be a useful tool for early
detection of keratoconus.

UHR-OCT allows in vivo high-resolution visualization
of corneal endothelial cells and measurement of density of
the cells [72], which can be beneficial for detection and
monitoring of pathologic conditions in endothelium, e.g.,
endothelial guttata in Fuchs’ endothelial dystrophy [68].

The device can also be helpful for management after
corneal surgery, particularly after keratoplasty. UHR-OCT
allows visualization of endothelial graft after DMEK [59],

which enables early detection of graft detachment. It can also
detect a gap in the keratoprosthesis-cornea interface with
absence of epithelial closure after implantation of artificial
cornea [73], which is critical for prevention of complica-
tions, such as leakage, graft extrusion, and endophthalmitis
[73].

As UHR-OCT technology has a potential for visuali-
zation of anterior segment structure at a microscopic level
and assessment of ocular biometry with excellent accuracy, it
is expected to further improve visual outcome after cataract
and refractive surgery [2].

4. Artificial Intelligence

Artificial intelligence (AI) using machine learning and deep
learning is expected to be helpful for diagnosis and treatment
of anterior segment diseases, although the use of Al has
already been extensively established for systemic associa-
tions with retinal findings [74, 75]. Machine learning al-
gorithms including support vector machines or random
forest models are programmed to adapt according to the
input data and produce assumptions, e.g., determinations or
predictions, based on the parameters of its algorithm [76].
Conventional machine learning might be sufficient for de-
signing predictive algorithms using clinical data including
medical records or population-based studies [77]. Deep
learning refers to a subset of machine learning technique
that involves neural networks comprising multiple neuron-
like computational layers of algorithms, i.e., convolutional
neural networks (CNNs) [76]. Deep learning has been
widely used for the analysis of image-based data including
anterior segment photographs, fundus photographs, or OCT
images, due to its improved diagnostic performance [77].

Mahesh Kumar et al. [78] reported that a multiclass
computer-aided system, based on machine learning using
support vector machine by sequential minimal optimization
algorithm, showed accuracy of 97% for diagnosing anterior
segment eye abnormalities such as senile arcus or cataracts,
suggesting the potential of ophthalmic image analysis using
Al for clinical application.

Al has currently been useful for development of indices
for discrimination of keratoconus [23,79]. The TBI devel-
oped using random forest model with leave-one-out cross-
validation was shown to be superior to other indices, such as
CBI and BAD-D, for differentiation between keratoconus
and normal corneas [23, 26]. The Pentacam random forest
index (PRFI), a random forest model generated using
Pentacam HR (Oculus, Wetzlar, Germany) data, was also
demonstrated to improve the accuracy of detection of ectasia
susceptibility compared to BAD-D [79].

AT also allows rapid assessment of the corneal endo-
thelium with good reliability [80-83]. A deep learning
method called U-net was capable of substantially faster and
more accurate segmentation compared to manual seg-
mentation [80, 81]. Heinzelmann et al. [84] revealed that the
endothelial cell counts measured using U-Net showed strong
correlation with those obtained with the gold standard,
suggesting the potential applicability of the AI model in the
long-term assessment of corneal grafts. After DMEK, deep



learning model using CNN can also be useful for automated
quantification of graft dislocation, which may enable early
detection of graft [85].

Al enables rapid and accurate evaluation of corneal
subbasal nerve plexus using in vivo confocal microscopy
(IVCM) [86, 87]. Using neural network and random forest
models, Chen et al. [86] generated an automated method for
detection and quantification of nerve fibers in IVCM mages
with speed and repeatability superior to manual quantifi-
cation. Al-Fahdawi et al. [88] introduced an automatic
system using Al for nerve segmentation and assessment of
parameters including nerve thickness, tortuosity, and length
in IVCM images, which is expected to be useful for early
detection of diabetic peripheral neuropathy. Williams et al.
[87] also introduced a deep learning algorithm for the au-
tomated quantification of the corneal nerves, which showed
rapid and excellent localization performance.

AT can be helpful for the diagnosis and management of
ocular surface infection [89,90]. Xu et al. [89] revealed that
an automatic hyphae detection method based on image
recognition with adaptive robust binary pattern in IVCM
images was more accurate than corneal smear examination,
suggesting the potential applicability of AI for noninvasive
diagnosis of fungal keratitis [89]. A system for automatic
segmentation of corneal ulcer areas using a joint method of
Otsu and Gaussian mixture modeling has also been pro-
posed [90].

In dry eye disease, deep learning can be applied for the
automatic segmentation of the anterior segment OCT image
with a thresholding-based segmentation algorithm for the
evaluation of the tear meniscus [91].

For iris tumor, Ouabida et al. [92] showed that an au-
tomatic method using the Vander Lugt correlator based
active contour method and a K-means clustering model
detected all iris tumors with an accuracy of 100% [92].

Al is also expected to be useful for screening of
cataract [93-95]. Lin et al. [93] introduced an automatic
detection protocol for pediatric cataracts using a deep
learning algorithm using anterior segment photographs.
Yang et al. [94] also developed an ensemble learning
based method using support vector machine and back-
propagation neural network, which showed good per-
formance for detection and grading of cataract [94]. Wu
etal. [95] reported that a universal Al platform integrated
with a Al-based multilevel collaborative pattern showed
excellent reliability for diagnosis of cataract and detection
of referable cases, which might enable effective referral
service for cataracts. Machine learning algorithms have
also shown higher efficacy with comparable safety in
nomogram prediction in SMILE compared with surgeon-
developed normograms [96].

5. Conclusion

Novel techniques including Corvis ST, Brillouin micros-
copy, and UHR-OCT are expected to enable even more
detailed assessment of anterior segment structures with high
accuracy. Al can integrate the findings from these new
modalities as well as from conventional imaging devices and
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generate protocols for optimal diagnosis and treatment of
various anterior segment disorders.

With further developments, these future techniques may
allow comprehensive and precise evaluation of anatomical
and functional alterations associated with various anterior
segment diseases, which would be critical for enhanced
diagnostic performance and treatment outcome.
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