
Research Article
Deep Residual Network in Network

Hmidi Alaeddine 1 and Malek Jihene 1,2

1Faculty of Sciences of Monastir, Electronics and Microelectronics Laboratory, Monastir University, Monastir 5000, Tunisia
2Higher Institute of Applied Sciences and Technology of Sousse, Sousse University, Sousse 4000, Tunisia

Correspondence should be addressed to Hmidi Alaeddine; alaeddine.hmidi@fsm.rnu.tn

Received 7 December 2020; Revised 20 January 2021; Accepted 26 January 2021; Published 23 February 2021

Academic Editor: Mario Versaci

Copyright © 2021 Hmidi Alaeddine and Malek Jihene.)is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Deep network in network (DNIN) model is an efficient instance and an important extension of the convolutional neural network
(CNN) consisting of alternating convolutional layers and pooling layers. In this model, a multilayer perceptron (MLP), a
nonlinear function, is exploited to replace the linear filter for convolution. Increasing the depth of DNIN can also help improve
classification accuracy while its formation becomes more difficult, learning time gets slower, and accuracy becomes saturated and
then degrades.)is paper presents a new deep residual network in network (DrNIN) model that represents a deeper model of
DNIN.)is model represents an interesting architecture for on-chip implementations on FPGAs. In fact, it can be applied to a
variety of image recognition applications.)is model has a homogeneous and multilength architecture with the hyperparameter
“L” (“L” defines the model length). In this paper, we will apply the residual learning framework to DNIN and we will explicitly
reformulate convolutional layers as residual learning functions to solve the vanishing gradient problem and facilitate and speed up
the learning process. We will provide a comprehensive study showing that DrNIN models can gain accuracy from a significantly
increased depth. On the CIFAR-10 dataset, we evaluate the proposed models with a depth of up to L� 5 DrMLPconv layers, 1.66x
deeper than DNIN.)e experimental results demonstrate the efficiency of the proposed method and its role in providing the
model with a greater capacity to represent features and thus leading to better recognition performance.

1. Introduction

With the increase in the depth of the DNIN model, a
problem of degrading the training precision has been un-
expectedly exposed; the accuracy is saturated and then
degrades rapidly.)is degradation is not caused by over-
adjustment. It seemed clear that adding more Deep
MLPconv (DMLPconv) layers to the DNINmodels results in
a higher training error, as reported in [1]. Generally, it has
been shown that every fraction of the improved accuracy is
costly in terms of the number of layers; hence, the formation
of very deep networks poses problems such as reduced reuse
of features during forward propagation, exploding/vanish-
ing gradients making these networks very slow to form.
However, several techniques are exploited to solve this
problem. We note among them batch normalization [2],
stochastic depth [3], well-designed initialization strategies
[4, 5], better optimizers [6], skipping connections [7, 8],

knowledge transfer [9, 10], layered training [11], normalized
initialization [5, 12, 13], and residual blocks [14]. Experi-
ments show that residual blocks [14, 15] were comparatively
good or/and better than these various techniques and in-
dicate that a deeper model should not produce higher
training error than its shallower counterpart.)e depth of
the last residual deep networks [14] is evolved up to
thousands of layers while improving their performance.
)ey have had great success and reached the state of the art
in several benchmarks. In this article, we address the deg-
radation problem by introducing an efficient deep neural
network architecture for computer vision, deep residual
network in network, which takes its name from the deep
network in the network article [1] in conjunction with the
famous “deep residual learning for image recognition” [14].
)e advantages of the architecture are experimentally ver-
ified on the CIFAR-10 classification challenges.)e con-
tributions of this work are as follows:

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 6659083, 9 pages
https://doi.org/10.1155/2021/6659083

mailto:alaeddine.hmidi@fsm.rnu.tn
https://orcid.org/0000-0002-2417-3972
https://orcid.org/0000-0002-2588-3642
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6659083

(i) We propose a new residual architecture for the
DMLPconv layers which allows to have DrNIN
models with considerably improved performance

(ii) We propose a new way to use batch normalization
and dropout in the DrNIN model in order to
regularize and normalize them properly and avoid
overfitting during training

(iii) We present a detailed experimental study of mul-
tilength deep model architectures that examines in
depth several important aspects of DrMLPconv
layers

(iv) Finally, we show that our proposed DrNIN archi-
tectures obtain interesting results on CIFAR-10
considerably improving the precision and training
speed of DrNIN

)e rest of this article is organized as follows: Section 2
presents an overview of related work. Section 3 bears the
strategy. Experimental results are presented and discussed in
Section 4.)e advantages and limitations of DrNIN are
presented in Section 5.)e work is concluded in Section 6.

2. Related Works

Generally, various techniques are used to improve the
performance of CNNs in terms of precision or parameters
and computational complexity such as increasing the depth
[14, 16–20], changing the filter type [1, 21, 22], increasing the
width [19, 23], number of units of each layer and/or the
number of feature maps (channels) [23, 24], modification of
convolution parameters [25–29] or pooling [30–38],
changing the activation function [1, 39, 40], and reducing the
number of parameters and resources [1, 27, 41]. In CNN, the
computation in the convolutional layer is based on the
simple linear filter. However, changing the filter type is an
important step to develop efficient CNNs. Using a nonlinear
and more complex filter, such as an MLP filter, can generate
more interesting results than using a simple linear filter
[1, 21]. Several architectures were based on this principle
such as [1, 21, 42]. NIN [21] adopts a nonlinear filter: the
multilayer perceptron (MLP) with a rectified linear unit
(ReLU) used as an activation function. In [1], DNIN model
directly modifies NIN [21] in the sense of convolutional
layer. It is represented in a three-layer stacking DMLPconv,
which consists of two convolutional layers of size 3× 3 and
an eLU unit, used as an activation function instead of ReLU.
By incorporating micronetwork, DNIN [1] also increases
depth.)e depth of DNIN [1] is the same as that of NIN [21]
and shares the same number of convolutional kernels. DNIN
[1] is illustrated in Figure 1. Our proposed model is closely
related to DNIN [1] and is based on increasing depth. One of
the main differences between CNNs and classical neural
networks is the depth. AlexNet [27] contains eight learned
layers (five convolutional layers and three fully connected
ones) without taking into account the pooling layers.
AlexNet [27] is the first architecture to use the rectified linear
unit (ReLU) for the activation function in order to improve
the rate of convergence by reducing the vanishing gradients

problem. In VggNet [17], the depth ranges from 11 up to 19;
VGG with 16 layers has a homogeneous and regular
structure. GoogLeNet [24] introduced by Christian Szegedy
et al. is a CNN with a depth of 22 layers. In ResNet [14], a
residual block is proposed to facilitate the formation of very
deep networks.)e principle of these blocks rests upon
including a link around each two convolution layers by
adding the diverted original data and their results from the
convolution function.)is architecture is similar to Goo-
gLeNet [24] in terms of the use of a global average pooling
followed by the classification layer. In [39], the Maxout
network delivers a solution to the vanishing gradients
problem. Maxout units have been designed to facilitate and
enhance dropout layers.)ey were originally intended to
replace the ReLU functions. In [40], a Maxout network in
Maxout network (MIM) model incorporating a maximum
number of units that are stacked in aMIM block is proposed.
)e model [40] is more complex than the Maxout network
[39]. In [43], quadratic units were given in order to improve
the robustness. Furthermore, the authors in [44] succeeded
in forming quadratic units. In [45], the authors proposed
logarithmic activation functions. From these literatures, we
considered already accomplished approaches and already
carried out experiments in order to improve the original
architecture of DNIN [1] in order to obtain a better precision
where we can apply the residual learning framework to the
different layers MLPconv, and reformulate convolutional
layers as residual learning functions.

3. Proposed Model

3.1. Deep Residual MLPconv. Compared to the original
DNIN architecture [1], a residual function block is applied
inside the Deep MLPconv layers.)e new layer is named
Deep residual MLPconv (DrMLPconv).)e residual block
(Figure 2) with identity mapping is described in subsection
3.2 of [14] and its formula is represented as follows:

xl+1 � xl + F xl, Wl(􏼁, (1)

where xl+1 and xl are the input and output of the lth unit in
the network, F is a residual function, and wl are parameters
of the block.)e residual network consists of the residual
blocks stacked sequentially.

Small filters of 3× 3 size have been shown to be very
effective in several works including [14, 17, 23]; they are
almost exploited in works published after VggNet [17]. In
our work, we do not plan to use filters larger than 3× 3,
compared to the original “Deep MLPconv” architecture [1].
Moreover, for all DrMLPconv layers, the numbers of con-
volutional kernels MLP-2 are the same. MLP-1 is equivalent
to 96. Table 1 describes the number of kernels for
DrMLPconv.

)e new base structure of the DrMLPconv is based on a
residual block [14], a multilayer perception (with a depth of
two layers) which is described as a complex nonlinear filter.
Note that basic DMLPconv, as shown in Figure 3(a), consists
of two convolution layers of size 3× 3, MLP layers.)ese
different layers are followed by an eLU activation. Figure 3

2 Computational Intelligence and Neuroscience

shows, respectively, a schematic example of basic
DrMLPconv and DMLPconv [1].

Let DrMLPconv (X) be the DrMLPconv layer, where X is
a list of the layers used in the structure. For example,
DrMLPconv (3, R) denotes the basic DrMLPconv layers with
a residual block applied to two convolution layers of size 3 ×

3. All the configurations of the DrMLPconv layer are
equipped with the eLU nonlinearity [41]; DrMLPconv (3, R,
BD) denotes the structure DrMLPconv (3, R) with the
normalization and regularization layers (BD).)e different
structure of our DrMLPconv is shown in Table 2.

3.2. *e Structure of DrNIN. We describe our various
configurations of DrNIN models for CIFAR-10. In these
model configurations, the convolutional layers mostly have
3× 3 filters and follow two simple design rules: first, the
layers that participate in the residual block have the same
size of output function feature map and the same number of
filters; second, the exploitation of a pooling layer which is
generally inserted periodically between a stack of L

successive DrMLPconv layers of an architecture in order to
preserve the temporal complexity by layer. In architectural
design, pooling layers are another important concept that
allows great gains in computing power due to the reduction
in the spatial size of an image. We do a subsampling using
the max pooling layers of size 3× 3 which have a stride of 2
(3× 3/ST.2).)e network ends with a global average pooling
layer and a softmax layer.)e global average pooling layer
filter size depends on the hyperparameter “L.” Table 3
summarizes the sizes of these global average pooling layers.

Our configurations are captured in an RGB image of
fixed size equal to 32× 32.)e image is passed through a
layer stack that is built with variable and complex structures.
Figure 4 illustrates an example of the DrNIN model com-
posed of three DrMLPconv (3, R) layers.

)e overall structure of DrNIN generally consists of the
L layer DrMLPconv. Table 4 shows the overall structure of
DrNIN for three different hyperparameters. In addition, it
shows the output sizes after each layer used in the model.

3.2.1. Dropout and Batch Normalization in DrNIN.)e use
of regularization represents a solution to avoid overlearning.
A batch normalization [2] is already applied for DrNIN in
order to provide a regularization effect.)is layer is localized
after the convolutional layers, and before the nonlinearity.
Using this layer makes DrNIN more resistant to bad ini-
tialization. Moreover, it eliminates the need for the use of
dropout layer [46]. Dropout layer [46] is an extremely ef-
ficient regularization technique that complements the L1, L2
regularization methods which are used to monitor the ability
of neural networks to prevent overlearning.)ey are widely
exploited for the purpose of introducing regularization into
deep neural networks and to prevent neural networks from
overadjusting.)e purpose of this technique is to randomly
remove units or connections in order to prevent the units
from adapting to them, which can improve the classification
accuracy in many studies [1, 21, 42].)is technique proves
that during training these layers ultimately improve gen-
eralization by randomly skipping a selectable percentage of
their connections. When training, there are neurons that do
not contribute to the propagation and do not participate in
the backpropagation. At the time of the test, all neurons are
used but their outputs are multiplied by the probability.
Generally, the probability of 0.5 is the most used.)e
downside of this layer is that it roughly doubles the number
of iterations needed to converge. Using this layer with a

In
pu

t

MLPconv1 MLPconv2 MLPconv3 AVG pool So�max

...
......

......
......

Figure 1: Deep network in network.

Weight layer

Weight layer
x

Identity

x

F(x)

F(x) + x +

ReLU

ReLU

Figure 2: Residual learning: a building block.

Table 1:)e numbers of kernels for all DrMLPconv.

Layers Conv 3× 3 MLP-1 MLP-2
Number 192 160 192

Computational Intelligence and Neuroscience 3

probability of 0.5 reduces the error rate to almost 2% for
almost all configurations. Note that the dropout layers [46]
are added between the DrMLPconv layers and after the
pooling layers.

3.2.2. *e Effect of Data Augmentation in DrNIN. Data
augmentation [47] is defined as an augmentation process
that significantly improves the quality of predictions by
artificially increasing the data volume for training the model
without the need to collect new data, that is, creating new
data from existing data. Data augmentation techniques can
consist of rotations, distortions, cropping, color changes,
adding noise, padding, and horizontal flipping commonly
used to train large neural networks. Exploitation of this
confirming layer shows a positive effect in reducing the
classification test error and automatically leads to signifi-
cantly better results than learning without exploiting this
layer. In addition, experimental results show that the DrNIN
model with batch normalization [2] achieves higher preci-
sion than a DrNIN without this normalization layer.

4. Experimental Results

4.1. Overview. For the training of our model, we have
adapted the same training details exploited by [1] to form
our configurations. In addition, we have adapted the same
procedure for initializing neural weights and biases in all
convolutional layers as well as MLP layers. For the learning
rate, it was initialized to 0.01 and divided by 10 three times
before the end of the training at times 35, 55, and 90. We
trained the network for about 195 cycles on the CIFAR-10
dataset in an Intel Xeon Processor E5-2620 v4, 64GBDDR4-
2400, 8 cores, 16 threads.)e design and implementation of
this model is done using the TensorFlow deep learning li-
brary to classify and recognize images.)e CIFAR-10

(Canadian Institute for Advanced Research) dataset consists
of 60,000 images grouped into 10 image classes with 6,000
images in each class.)is collection of images is commonly
used to train machine learning and computer vision algo-
rithms. In this database, all the images are RGB images of
size 32× 32.)e dataset is divided into five training packages
and one test package, each containing 10,000 images.)e
test lot contains exactly 1000 images selected at random
from each class.)e training packages contain exactly 5000
images of each class.)e classes are completely exclusive of
each other.)ere will be no overlap between automobiles
and trucks. Unlike the MNIST dataset, the objects in these
classes are much more complex in nature and extremely
varied. If we look at the CIFAR-10 dataset, we realize that
there is not just one type of bird or cat.)e class of birds and
cats contains many types of birds and cats that vary in size,
color, magnification, different angles, and different poses. In
the following, we evaluate our different configurations
proposed on this benchmark dataset.

4.2. *e Performances of Different Configurations.)e ex-
perimental results shown in Table 5, on the CIFAR-10
datasets, show the test accuracy rates for all of the proposed
DrNIN configurations.)ese experimental results which
were obtained by calculating the average over 5 runs with
mini lot size equivalent to 128 also demonstrate the effec-
tiveness of the proposed idea of reformulating convolutional
layers as residual learning functions.

Moreover, they show that the DrNIN offers better results
than the different DNIN configurations [1], which are, re-
spectively, 88.25%, 90.63%, and 92.54%. Table 6 shows the
difference between the test accuracy of different similar
configurations of DNIN [1] and DrNIN (L� 3).)e test
accuracy of the basic DrNIN configuration exceeds the basic
DNIN configuration with 0.18%, and the DrNIN

eLU eLU eLU

In
pu

t

(a)

In
pu

t

eLU eLU eLU

Addition

(b)

Figure 3: (a) A schematic example of DMLPconv layer, (b) a schematic example of “basic” DrMLPconv.

Table 2:)e configurations of DrMLPconv.

Layer DrMLPconv (X)
(X) DrMLPconv (3, R) DrMLPconv (3, E, BD)
Conv-1 3× 3×192/st. 1/pad 1/eLU 3× 3×192/st. 1/pad 1/eLU/BN
Conv-2 3× 3×192/st. 1/pad 1/eLU 3× 3×192/st. 1/pad 1/eLU/BN
MLP-1 1× 1× 160/st. 1/pad 0/eLU 1× 1× 160/st. 1/pad 0/eLU/BN
MLP-2 1× 1× 192/st. 1/pad 0/eLU 1× 1× 192/st. 1/pad 0/eLU/BN

4 Computational Intelligence and Neuroscience

configuration with the normalization and regularization
layers exceeds the DNIN configuration with the normali-
zation and regularization layers with 0.57%. Finally, DrNIN
with data augmentation exceeds DNIN [1] with the same
layer with 0.32%. It is recalled that the DNIN [1] delivers a
precision equivalent to 90.44% by using 4 DMLPconv layers
with dropout layers [46] without using batch normalization
layers [2].

In terms of parameters, our model consumes 18.54M for
a configuration with a hyperparameter equivalent to 3
(L� 3). For a configuration of 4 DrMLPconv (L� 4), the
model uses 25.79M and 33.04M for a configuration with
L� 5. It offers a number of parameters superior to the WRN
(16–8; 40–4) and ResNet (110, 1202) models despite their
depth and width. For example, the DrNIN model with a
hyperparameter equivalent to 3 (L� 3) consumes 16.85
times more parameters than DNIN [1], 10.90 times more
than ResNet-101, and 0.27 times more than ResNeXt-29
(16× 64d). Figure 5 shows the number of parameters con-
sumed from architectures already completed.

DrNIN provides classification precision that allows it to
have a well-localized location between multiple baselines.
Moreover, the experimental results show that the exploi-
tation of the data augmentation layer [47] or/and the batch

normalization layer [2] produces a useful effect in reducing
the error of the classification test. Table 7 represents a
comparison between the proposed model and the state of the
art on the CIFAR-10 database with/without the use of data
augmentation.)e results of our work are presented with
mini lot size equivalent to 128 and by calculating the average
of 5 runs.

4.3. Visualization of Weights.)e convolution layer always
constitutes at least the first layer and its goal is to identify the
presence of a set of features in the images received as input.
Viewing the weights of the first convolutional layer is most
preferable since it looks directly at the raw pixel data. In the
following, we visualize the weights of 192 convolutional
kernels of size 3× 3 learned by the first convolution layer on
the 32× 32 input images for the first convolution layer of
DrMLPconv (3, R, BD) in Figure 6.

5. Advantage and Limitations

)e proposed DrNIN model provides an interesting and
competitive test precision which exceeds the precision of
other models based on nonlinear filters such as [1, 21, 39, 42]

Table 3:)e filter size of the global average pooling layers.

Hyperparameters 3 4 5
Global average pooling size 8× 8 4× 4 2× 2

In
pu

t

eLU eLU eLU

Addition

eLU eLU eLU

Addition

eLU eLU eLU

Addition

DrMLPconv 1 DrMLPconv 2 DrMLPconv 3 AVG pool Softmax

Figure 4: A DrNIN with 3 DrMLPconv (3, R).

Table 4:)e structure of DrNIN.

Layer name Output size
- L� 3 L� 4 L� 5
DrMLPconv-1 32× 32 32× 32 32× 32
Max-pool 16×16 16×16 16×16
DrMLPconv-2 16×16 16×16 16×16
Max-pool 8× 8 8× 8 8× 8
DrMLPconv-3 8× 8 8× 8 8× 8
Max-pool — 4× 4 4× 4
DrMLPconv-4 — 4× 4 4× 4
Max-pool — — 2× 2
DrMLPconv-5 — — 2× 2
Global average pooling 1× 1 — —

Computational Intelligence and Neuroscience 5

and which allows it to occupy an important place between
the various works reported in the literature. DrNIN
provides interesting test errors against the baseline.)e
importance of DrNIN also stems from its homogeneous
structure which makes it very suitable for implementation
as a hardware accelerator in FPGAs or integration as an

image recognition system in embedded systems applica-
tions. However, DrNIN incorporates drawbacks and
limitations which mainly reside in the number of
DrMLPconv layers “L” and the number of convolution
kernels.)is negatively affects the number of parameters,
computational complexity, and memory.

Table 5: Test error (%) of DrNIN on CIFAR-10.

X #Depth CIFAR-10

(3, R)
3 11.57%
4 11.25%
5 11.11%

(3, R, BD)
3 09,88%
4 09,37%
5 09,03%

(3, R, BD, D)
3 07,34%
4 07,28%
5 07,21%

Table 6: CIFAR-10 test error. A comparison between DNIN [1] and DrNIN for L� 3.

Model — DNIN
DMLPconv

(3, E) (3, R, BD) (3, R, BD, D)

DrNIN

DrMLPconv (3, R)

Configuration

— —
−0.18%

+0.18%

DrMLPconv (3, R, BD) —
−0.57%

—
+0.57%

DrMLPconv (3, R, BD, D) — —
−0.32%

+0.32%

0

10

20

30

40

50

60

70

80

11

36.5

1.7

10.2

34.4

68.1

1.1

18.54

25.79

33.05

40-4 16-8 1202 L = 3 L = 4 L = 5

[21] [15]

11028-10

[40]

8 × 64d 16 × 64d -

[1] Our

Wide ResNet ResNet ResNeXt-29 DNIN DrNIN

Pa
ra

m
 (M

)

8.9

Figure 5:)e parameters of the architectures already completed.)e parameters (M) of our models are in red.

6 Computational Intelligence and Neuroscience

6. Conclusion

In this paper, a new deep residual network in network
(DrNIN) model for image classification is proposed. In this
model, a new nonlinear DrMLPconv filter is used.)is layer
is based on a residual block applied to very small con-
volutional filter sizes (3× 3) to accelerate learning model.
)e use of these layers leads to an improvement in the
classification precision. In addition, a proposed, detailed
study and experimental DrNIN model is presented de-
scribing with details the effect of different layers on im-
proving accuracy.)e results are described as acceptable
compared to other architectures tested on the CIFAR-10
datasets and once again confirm the importance of residual

block on increasing depth and improving classification
accuracy. Future work should focus on designing new
versions of CNN models that can achieve or exceed level
accuracy of this proposed model requiring shorter training
time with less parameter consumption.

Abbreviations

CNN: Convolutional neural network
NIN: Network in network
DNIN: Deep network in network
DrNIN: Deep residual network in network
MLP: Multilayer perceptron
DMLPconv: Deep MLPconv

Table 7: CIFAR-10 test error.

Ref Method Error (%)
Without data augmentation
[30] Stochastic pooling 15.13
[39] Maxout network (k� 2) 11.68
[2] NIN 10.41
[1] DNIN 9.37
Our DrNIN (l� 5) 9,03
[40] MIM (k� 2) 8.52± 0.20
With data augmentation
[39] Maxout network (k� 2) 9.38
[2] NIN 8.81
[1] DNIN 7.46
Our DrNIN (l� 5) 7.21
[14] ResNet 6.43
[23] Wide ResNet (28, 10) 3.89
[48] ResNeXt 3.58

Figure 6: 192 convolution cores of size 3× 3 learned by the first convolution layer of the DrMLP (3, R, BD, D).

Computational Intelligence and Neuroscience 7

DrMLPconv: Deep residual MLPconv
ReLU: Rectified linear unit
eLU: Exponential linear unit.

Data Availability

)e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

)is work was supported by the Electronics and Micro-
electronics Laboratory.

References

[1] H. Alaeddine and M. Jihene, “Deep network in network,”
Neural Computing and Applications, vol. 134, 2020.

[2] S. Ioffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,”
2015, http://arxiv.org/abs/1502.03167.

[3] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger,
“Deep networks with stochastic depth,” Computer Vision-
ECCV 2016, vol. 9908, pp. 646–661, 2016.

[4] Y. Bengio and X. Glorot, “Understanding the difficulty of
training deep feedforward neural networks,” Proceedings of
AISTATS, vol. 9, pp. 249–256, 2010.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into
rectifiers: surpassing human-level performance on imagenet
classification,” 2015, http://arxiv.org/abs/1502.01852.

[6] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the
importance of initialization and momentum in deep learn-
ing,” in Proceedings of the 30th International Conference on
Machine Learning (ICML-13), S. Dasgupta and D. Mcallester,
Eds., vol. 28, pp. 1139–1147, JMLRWorkshop and Conference
Proceedings, New Brunswick, NJ, USA, May 2013.

[7] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-
supervised nets,” 2014, http://arxiv.org/abs/1409.5185.

[8] T. Raiko, H. Valpola, and Y. Lecun, “Deep learning made
easier by linear transformations in perceptrons,” Edited by
N. D. Lawrence and M. A. Girolami, Eds., in Proceedings of
the Fifteenth International Conference on Artificial Intelligence
and Statistics (AISTATS-12), vol. 22, pp. 924–932, La Palma,
Canary Islands, Spain, April 2012.

[9] T. Chen, I. Goodfellow, and J. Shlens, “Net2net: accelerating
learning via knowledge transfer,” 2016, http://arxiv.org/abs/
1511.05641.

[10] A. Romero, N. Ballas, S. E. Kahou, C. Antoine, C. Gatta, and
Y. Bengio, “FitNets: hints for thin deep nets,” 2014, http://
arxiv.org/abs/1412.6550.

[11] J. Schmidhuber, “Learning complex, extended sequences
using the principle of history compression,” Neural Com-
putation, vol. 4, no. 2, pp. 234–242, 1992.

[12] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Muller, “Efficient
backprop,” in Neural Networks: Tricks of the Trade, Springer,
Berlin, Germany, 1998.

[13] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” Journal of Ma-
chine Learning Research, vol. 9, 2010.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” 2015, http://arxiv.org/abs/1512.03385.

[15] Md. Z. Alom, M. Hasan, C. Yakopcic, T. Taha, and V. Asari,
“Recurrent residual convolutional neural network based on
U-Net (R2U-Net) for medical image segmentation,” 2018,
https://arxiv.org/abs/1802.06955.

[16] M. D. Zeiler and R. Fergus, “Visualizing and understanding
convolutional networks,” 2013, http://arxiv.org/abs/1311.
2901.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” 2014, http://
arxiv.org/abs/1409.1556.

[18] G. Huang, Z. Liu, K. Q. Weinberger, and L. Van Der Maaten,
“Densely connected convolutional networks,” 2017, https://
arxiv.org/abs/1608.06993.

[19] F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. Dally, and
K. Keutzer, “SqueezeNet: alexnet-level accuracy with 50x
fewer parameters and <0.5MBmodel size,” 2016, https://arxiv.
org/abs/1602.07360v4.

[20] S. Gao, Z. Miao, Q. Zhang, and Q. Li, “DCRN: densely
connected refinement network for object detection,” Journal
of Physics: Conference Series, vol. 1229, Article ID 012034,
2019.

[21] M. Lin, Q. Chen, and S. Yan, “Network in network,” 2013,
http://arxiv.org/abs/1312.4400.

[22] L.-C. Chen, G. Papandreou, I. Kokkinos et al., “DeepLab:
semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 40, no. 4, p. 834, 2018.

[23] S. Zagoruyko and N. Komodakis, “Wide residual networks,”
2016, http://arxiv.org/abs/1605.07146.

[24] C. Szegedy, “Going deeper with convolutions,” in Procee-
dingsof the 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1–9, Boston, MA USA, June
2015.

[25] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column
deep neural networks for image classification,” 2012, http://
arxiv.org/abs/1202.2745.

[26] K. Gregor and Y. LeCun, “Emergence of complex-like cells in
a termporal product network with local receptive fields,” 2010,
http://arxiv.org/abs/1006.0448.

[27] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet clas-
sification with deep convolutional neural networks,” Ad-
vances in Neural Information Processing Systems, vol. 25,
pp. 1097–1105, 2012.

[28] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun,
“What is the best multi-stage architecture for object recog-
nition?” in Proceedings of the IEEE International Conference
on Computer Vision, pp. 2146–2153, Corfu, Greece, Sep-
tember 2009.

[29] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional
networks and applications in vision,” in Proceedings of the
International Symposium on Circuits and Systems (ISCAS
2010), pp. 253–256, Paris, France, June 2010.

[30] M. D. Zeiler and R. Fergus, “Stochastic pooling for regula-
rization of deep convolutional neural networks,” 2013, http://
arxiv.org/abs/1301.3557.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling
in deep convolutional networks for visual recognition,” 2014,
http://arxiv.org/abs/1406.4729.

8 Computational Intelligence and Neuroscience

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1409.5185
http://arxiv.org/abs/1511.05641
http://arxiv.org/abs/1511.05641
http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1802.06955
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1602.07360v4
https://arxiv.org/abs/1602.07360v4
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1202.2745
http://arxiv.org/abs/1202.2745
http://arxiv.org/abs/1006.0448
http://arxiv.org/abs/1301.3557
http://arxiv.org/abs/1301.3557
http://arxiv.org/abs/1406.4729

[32] T. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “PCANet: a
simple deep learning baseline for image classification?,” 2014,
http://arxiv.org/abs/1404.3606.

[33] C. Lee, P. Gallagher, and Z. Tu, “Generalizing pooling
functions in convolutional neural networks: mixed gated and
tree,” 2015, https://arxiv.org/abs/1509.08985.

[34] J. Springenberg, A. Dosovitskiy, T. T. Brox, and
M. Riedmiller, “Striving for simplicity: the all convolutional
net,” 2014, http://arxiv.org/abs/1412.6806.

[35] Y. Gong, L. Wang, R. Guo, and S. Lazebnik, “Multi-scale
orderless pooling of deep convolutional activation features,”
2014, http://arxiv.org/abs/1403.1840.

[36] D. Yoo, S. Park, J. Lee, and I. Kweon, “Multi-scale pyramid
pooling for deep convolutional representation,” in Proceed-
ings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1–5, Boston, MA USA,
September 2015.

[37] B. Graham, “Fractional max-pooling,” 2014, https://arxiv.org/
abs/1412.6071.

[38] N. Murray and F. Perronnin, “Generalized max pooling,” in
Proceedings of the 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2473–2480, Boston, MA
USA, September 2015.

[39] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville,
and Y. Bengio, “Maxout networks,” 2013, https://arxiv.org/
abs/1302.4389.

[40] Z. Liao and G. Carneiro, “On the importance of normalisation
layers in deep learning with piecewise linear activation units,”
2016, https://arxiv.org/abs/1508.00330.

[41] D. Clevert, “Fast and accurate deep network learning by
exponential linear units (ELUs),” 2015, https://arxiv.org/abs/
1511.07289.

[42] J.-R. Chang and Y.-S. Chen, “Batch-normalized maxout
network in network,” 2015, http://arxiv.org/abs/1511.02583.

[43] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” 2014, https://arxiv.org/abs/
1412.6572.

[44] F. Fan and G. Wang, “Fuzzy logic interpretation of quadratic
networks,” Neurocomputing, vol. 374, Article ID 09252312,
2019.

[45] Y. Liu, J. Zhang, C. Gao, J. Qu, and L. Ji, “NaturalLogarithm-
rectified activation function in convolutional neural net-
works,” 2019, https://arxiv.org/abs/1908.03682.

[46] N. Srivastava, H. Geoffrey, A. Krizhevsky, S. Ilya, S. Ruslan,
and Dropout, “A simple way to prevent neural networks from
overfitting,” Journal of Machine Learning Research, vol. 15,
pp. 1929–1958, 2014.

[47] C. Shorten and T. M. Khoshgoftaar, “A survey on image data
augmentation for deep learning,” Journal of Big Data, vol. 6,
p. 60, 2019.

[48] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated
residual transformations for deep neural networks,” 2016,
https://arxiv.org/abs/1611.05431.

Computational Intelligence and Neuroscience 9

http://arxiv.org/abs/1404.3606
https://arxiv.org/abs/1509.08985
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1403.1840
https://arxiv.org/abs/1412.6071
https://arxiv.org/abs/1412.6071
https://arxiv.org/abs/1302.4389
https://arxiv.org/abs/1302.4389
https://arxiv.org/abs/1508.00330
https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.02583
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1908.03682
https://arxiv.org/abs/1611.05431

