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Abstract

Mitochondria form networks that continually remodel and adapt to carry out their cellular 

function. The mitochondrial network is remodeled by changes in mitochondrial morphology, 

number, and distribution within the cell. Mitochondrial dynamics depend directly on fission, 

fusion, shape transition, and transport or tethering along the cytoskeleton. Over the past several 

years, many of the mechanisms underlying these processes have been uncovered. It has become 

clear that each process is precisely and contextually regulated within the cell. Here, we discuss the 

mechanisms regulating each aspect of mitochondrial dynamics, which together shape the network 

as a whole.
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Introduction

Mitochondria are highly dynamic organelles that morphologically adapt to fit cellular needs. 

The mitochondrial network changes in response to diverse cellular pathways, such as 

metabolism, intracellular calcium signaling, apoptosis, mitosis, and mitochondrial DNA 

replication. Despite the diversity of contexts that alter mitochondrial dynamics, the resultant 

effects on the mitochondrial network are dependent on four distinct processes. Fission, the 

division of a single mitochondrion into two mitochondria by cleavage of the Inner 

Mitochondrial Membrane (IMM) and Outer Mitochondrial Membrane (OMM), and fusion, 

the joining of the OMM and IMM, are in equilibrium to determine network connectivity. 
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Network morphology is simultaneously determined by mitochondrial shape transitions 

independent of fission/fusion and precise positioning along the cytoskeleton (Fig. 1). As our 

understanding of each process develops, we must also establish a holistic understanding of 

how mitochondrial dynamics are orchestrated to control network properties. Here, we 

highlight recent progress that provides new insights into the complexity of each aspect of 

mitochondrial dynamics.

Dividing mitochondria with Drp1 and actin

The key events of mitochondrial fission are constriction and scission of both the OMM and 

IMM. Outer membrane constriction is driven by Drp1, a GTPase that dynamically associates 

with the endoplasmic reticulum (ER) and mitochondria (Fig. 2A)1,2. Drp1 is recruited to 

mitochondria via interactions with receptors in the OMM: mitochondrial fission factor 

(MFF) and mitochondrial dynamics proteins 49 and 51 (MID49/51)3–6. Some Drp1 is 

transferred to the OMM following MFF-dependent oligomerization on the ER; this transfer 

likely occurs at mitochondria-ER contact sites, which mark sites of mitochondrial division 

(Fig. 2B)2,7. Drp1-dependent fission at mitochondria-ER contacts is facilitated by actin 

assembly, as inhibiting actin polymerization reduces fission frequency and Drp1 recruitment 

to mitochondria1,2,8,9. Actin assembly at mitochondria-ER contacts depends on two actin 

nucleating proteins, the formin INF2 and Spire1C, which reside on the ER and 

mitochondria, respectively. These proteins interact to promote actin assembly and 

mitochondrial constriction (Fig. 2B)8,10. Actin filaments locally assemble in a wave-like 

manner around mitochondrial subpopulations to induce fission11. Following actin 

disassembly, these mitochondrial subpopulations undergo fusion to locally remodel the 

mitochondrial network.

Recent advances in electron microscopy have revealed the three-dimensional ultrastructure 

of the actin cytoskeleton during mitochondrial constriction. Yang and Svitkina (2019) found 

dense arrays of filamentous actin with criss-cross orientation at mitochondrial 

constrictions12. Many of these actin filaments extend from the nearby ER. This study also 

examined the positioning of non-muscle myosin II (NMII), as this motor has been 

implicated along with actin and INF2 in fission1,13. NMII is located near mitochondrial 

constrictions, primarily along the interstitial actin network (Fig. 2B–C), and is proposed to 

pull on the interstitial actin network to deform mitochondria upstream of Drp1, consistent 

with findings that NMII promotes Drp1 recruitment to mitochondria13.

Once recruited, Drp1 oligomerizes to wrap around the outer membrane (Fig. 2C). Upon 

GTP hydrolysis, Drp1 changes conformation, dissociating MID49/51 to shrink the 

oligomeric ring (Fig. 2D)14. While the Drp1 ring constricts the OMM, there is debate as to 

whether Drp1 carries out membrane scission. Initial studies found no evidence that Drp1 

could drive membrane scission. Dynamin-2 (Dnm2), another dynamin GTPase, was found at 

fission sites following Drp1 recruitment; Dnm2 knockdown was also found to inhibit 

mitochondrial fission15. However, several recent studies implicate Drp1 as the protein 

responsible for membrane scission. Fibroblasts lacking Dnm2 or all three dynamin proteins 

display normal mitochondrial division, suggesting dynamins 1–3 are dispensable for 

fission16,17; in contrast, Drp1 is required for fission9,16,17. Further, purified Drp1 can induce 
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the fission of membrane tubules up to 250 nm in radius17. While these results implicate 

Drp1 as the protein responsible for scission, more work is required to confirm whether Drp1 

drives the final step in fission.

Whereas outer membrane scission depends on Drp1 oligomerization and GTP hydrolysis, 

the mechanism of inner membrane scission is less clear. Recent studies have shown that the 

IMM constricts and divides at mitochondria-ER contacts prior to Drp1-dependent OMM 

fission18,19. IMM constriction depends on INF2-mediated actin polymerization and NMII, 

similar to outer membrane constriction. Actin assembly at mitochondria-ER contacts 

stimulates calcium release from the ER and subsequent mitochondrial uptake through the 

mitochondrial calcium uniporter (MCU; Fig. 2B)18. Elevated mitochondrial calcium then 

stimulates IMM constriction in a Drp1-independent manner, but the subsequent mechanism 

of IMM scission is a black box.

While it is clear that mitochondrial fission is largely coordinated by the ER, several other 

factors determine sites of fission. Fission relies on the dynamic recruitment of lysosomes 

and the lysosomal GTPase RAB7. GTP-bound RAB7 is recruited to mitochondria by the 

mitochondrial fission protein 1 (Fis1), an OMM protein with two tetratricopeptide repeat 

domains exposed to the cytosol20. Once recruited, GTP-bound RAB7 promotes 

mitochondria-lysosome contact formation21. Mitochondria-lysosome contacts restrict 

mitochondrial motility, regulate inter-mitochondrial tethering, and mark sites of fission22. 

Fission is also modulated by the dynamic recruitment of the trans-Golgi network (TGN). 

The small GTPase ADP-ribosylation factor 1 (Arf1) and its effector, phosphatidylinositol 4-

kinase-III-b [PI(4)KIIIb] are recruited to fission sites on TGN vesicles after Drp1 

recruitment23. Loss of Arf1 or PI(4)KIIIb produces a hyperfused and branched network, 

suggesting these proteins affect mitochondrial branching in addition to fission. Intriguingly, 

TGN vesicles converged with lysosomes and ER at fission sites. Each of these organelles is 

present at most, but not all mitochondrial fission sites. Further analysis of the temporal and 

spatial dynamics of these organelles and their effector proteins is necessary to understand 

how they are coordinated to promote fission.

Promoting fusion or inhibiting fission: a balancing act

Mitochondrial fusion is mediated by the dynamin family GTPases mitofusin 1 (Mfn1), 

mitofusin 2 (Mfn2), and Opa1. Fusion begins with Mfn1/2-mediated OMM tethering and 

merging followed by Opa1-mediated joining of the IMM (Fig. 3A)24,25. Opa1 has two 

isoforms: a long isoform (L-Opa1) containing a transmembrane domain, and a short isoform 

(S-Opa1) lacking the transmembrane domain. S-Opa1 is produced via proteolytic cleavage 

of L-Opa1 by one of two proteases, Yme1L or Oma126. Yme1L knockdown produces a 

fragmented mitochondrial network, suggesting that Opa1 processing promotes fusion26. A 

separate study found that L-Opa1 was sufficient for fusion in cells lacking Yme1L and 

Oma1; conversely, S-Opa1 overexpression in these cells resulted in mitochondrial 

fragmentation27. These contrasting results raised the question of whether Opa1 processing 

promotes fission or fusion. Two recent studies used in vitro membrane fusion assays to gain 

mechanistic insight into Opa1-mediated fusion28,29. Both studies tested the sufficiency of 

Opa1 to facilitate membrane fusion of liposomes. In these assays, L-Opa1 is sufficient to 
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drive fusion through a heterotypic interaction with cardiolipin (CL), a mitochondrial 

phospholipid, whereas S-Opa1 is unable to drive fusion28,29. However, these studies found 

that S-Opa1 and L-Opa1 work synergistically to catalyze fusion. Ge et al. (2020) show that 

fusion efficiency peaks at an equimolar ratio of S-Opa1 to L-Opa1 (Fig. 3B)28. Thus, Opa1 

processing tightly regulates fusion, with insufficient or excess processing inhibiting fusion.

Additional insight into the control of fusion has come from reexamination of Fis1 and 

mitochondria-ER contact sites. Mammalian Fis1 was initially thought to promote fission 

since its yeast homolog recruits Drp1 to mitochondria and because Fis1 overexpression 

induces mitochondrial fragmentation30. However, human Fis1 does not function through 

Drp1 and is dispensable for fission3,5,6. Fis1 has recently been shown to inhibit the activity 

of the fusion GTPases Opa1 and Mfn1/231, suggesting that fusion inhibition is sufficient to 

fragment the mitochondrial network, mirroring fission activation (Fig. 3C). Mitochondrial 

fusion also occurs at mitochondria-ER contact sites, similar to fission22,32,33. Fission and 

fusion proteins colocalize at mitochondria-ER contacts to form hotspots for membrane 

dynamics32; these ER-associated dynamics also include contact untethering between 

mitochondria22. Thus, the ER regulates multiple aspects of mitochondrial dynamics at 

contact sites. The next challenge is to determine how these separate machineries are 

coordinated to promote a single process.

Mitochondrial shape transition independent of fission/fusion

Mitochondrial shape varies depending on a variety of cellular signals. Two stimuli 

commonly used to alter mitochondrial network morphology are increased intracellular 

calcium and mitochondrial depolarization. Both produce a mitochondrial network comprised 

of small, rounded mitochondria, leading to speculation that both induce fission. However, 

Fung et al. (2019) revealed that calcium-induced and depolarization-induced mitochondrial 

fragmentation are distinct34. Calcium-induced actin assembly on mitochondria requires 

INF2, and thus undergoes canonical INF2-dependent fission (Fig. 2). Mitochondrial 

depolarization induced with the mitochondrial uncoupler carbonyl cyanide 3-

chlorophenylhydrazone (CCCP) has a different effect on actin and mitochondria. CCCP-

induced actin dynamics are INF2-independent, relying instead on the Arp2/3 complex to 

form transient actin clouds around depolarized mitochondria34. Depolarized mitochondria 

then undergo inner membrane rounding, resulting in shape deformation.

CCCP-induced mitochondrial deformations appear as rings. However, a recent study 

combining live imaging and volume electron microscopy found that mitochondrial rings are 

actually three-dimensional discs with central invaginations that only appear as rings in cross 

sections35. Most CCCP-induced shape changes were generated from rounding of the 

mitochondrion, rather than fission or fusion34,35. Consistently, CCCP-induced shape change 

is Drp1-independent and occurs due to IMM rearrangement, while the OMM remains 

intact34. Thus, CCCP-induced mitochondrial shape transition regulates the switch between a 

connected and fragmented mitochondrial network independent of fission/fusion (Fig. 3C).

Other mitochondrial inhibitors, such as inhibition of ATP synthesis with oligomycin, have 

distinct effects on mitochondrial morphology9. Thus, the relationship between mitochondrial 
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function and morphology depends on multiple factors; metabolic function affects 

mitochondrial dynamics through fission, fusion, transport, and more36. However, 

mitochondrial form does not always match function. In Drosophila neurons, normal 

mitochondrial function is required for organism viability, independent of mitochondrial 

distribution, indicating that these processes are separable37.

Increasing cytosolic calcium has multiple effects on mitochondrial morphology. While 

increasing intracellular calcium promotes fission through canonical Drp1 oligomerization 

and actin polymerization1,2,18, calcium separately affects mitochondrial morphology through 

Miro1, an OMM transmembrane protein with two GTPase domains and two calcium-

binding EF hands. Calcium induces mitochondrial shortening by binding to a single EF-hand 

of Miro138. Miro1-dependent mitochondrial shortening produces small, rounded 

mitochondria independent of Drp1, indicating this transition is distinct from fission38. Thus, 

calcium affects multiple aspects of mitochondrial morphology by promoting fission and 

shape transition through separate mechanisms. Additional work is needed to understand how 

these pathways intersect and cooperate to remodel the mitochondrial network in response to 

cytosolic calcium levels.

Mitochondrial transport and anchoring: stop and go on two cytoskeletons

Mitochondrial network morphology is also controlled by many additional interactions with 

the cytoskeleton. Mitochondrial transport is critical in highly polarized cells, such as 

neurons, where mitochondria undergo long-distance transport39. Most mitochondrial 

transport is microtubule-based, with transport toward the microtubule plus-end mediated by 

kinesin-1 and transport toward the minus-end mediated by cytoplasmic dynein 1 (dynein) 

and its partner complex, dynactin40,41. In the canonical model of mitochondrial transport, 

these opposing motors are tethered to mitochondria through the TRAK/Miro motor adaptor 

complex (Fig. 4A)39,41. TRAK1 and TRAK2, the mammalian orthologs of Drosophila 
Milton, interact with kinesin-1 and dynein-dynactin41, while Miro1 and Miro2 function as 

calcium-sensitive adaptors that link the motor/TRAK complexes to mitochondria42.

Motors, TRAKs and Miro proteins are required for mitochondrial transport, but the 

functional interactions among these components remain largely untested, and the molecular 

basis by which opposing kinesin and dynein motors are coordinated to produce directional 

transport of mitochondria is not understood. Motor regulation may be adaptor-specific. For 

instance, TRAK2 has been proposed to predominantly interact with dynein-dynactin 

whereas TRAK1 interacts with both kinesin-1 and dynein-dynactin41. TRAK1 

overexpression promotes plus-end directed mitochondrial transport in mouse embryonic 

fibroblasts (MEFs) while TRAK2 overexpression promotes minus-end directed 

mitochondrial transport. However, TRAK2 requires Miro1, but not Miro2, to promote 

dynein-dependent transport43. Combined, these results suggest that the direction of 

mitochondrial transport is determined by specific associations between TRAK and Miro 

isoforms. Further studies are required to determine how individual TRAK and Miro proteins 

interact with microtubule motors to selectively promote transport toward either microtubule 

end.
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A recent study found that TRAKs localize to mitochondria and drive transport in MEFs 

lacking Miro1 and Miro243. While transport is reduced in Miro1/2 knockout cells, this 

finding suggests that TRAKs can function independently of Miro. Since TRAKs interact 

with other OMM proteins, such as Mfn144,45, another OMM protein may function as an 

alternate adaptor for TRAK1/2. Miro proteins also serve as adaptors for myosin XIX 

(Myo19), a mitochondria-associated myosin motor, though Myo19 can also associate with 

the OMM independent of Miro (Fig. 4A)43,46,47. Myo19 overexpression increases 

mitochondrial motility in an actin-dependent manner48. Furthermore, TRAK overexpression 

reduces the association of Myo19 with mitochondria46, suggesting that Myo19 and TRAKs 

compete for Miro binding to induce actin- or microtubule-based mitochondrial motility. 

Given the nature of Miro proteins, it will be interesting to see how calcium binding and GTP 

hydrolysis affect the interaction of Miro with TRAKs and Myo19.

Mitochondria are also anchored to the cytoskeleton at specific cellular locations. 

Mitochondrial anchoring is particularly important in neurons, where mitochondria are 

tethered at presynaptic sites in axons to supply energy for neurotransmission. In mammalian 

neurons, actin stabilizes mitochondria at presynaptic terminals49,50. A recent study found 

that stationary mitochondria at presynaptic sites are more firmly anchored in place than 

other mitochondria49. The tethering of these presynaptic mitochondria is partially dependent 

on actin. Given that Myosin V and VI oppose mitochondrial motility in Drosophila 
neurons51, and Myosin VI can form actin cages around mitochondria52, it will be interesting 

to determine whether these myosins or a separate tether link mitochondria to actin for 

anchoring at presynaptic sites (Fig. 4B). Mitochondrial anchoring at presynaptic sites is also 

facilitated by syntaphilin, a microtubule-binding protein that has been proposed to dock 

mitochondria by binding kinesin-1, preventing motor activation by the Miro-TRAK complex 

(Fig. 4B)53. Thus, similar to mitochondrial transport, mitochondrial anchoring relies on both 

the actin and microtubule cytoskeletons and further investigations of mitochondrial 

anchoring must account for the effects of each.

Conclusion

As new imaging techniques have uncovered the precise shaping and remodeling of the 

mitochondrial network, we have increased our understanding of this dynamic organelle. 

Recent work has helped define the molecular dynamics of fission, fusion, shape transition, 

transport, and tethering. However, the mechanistic details of each process and their interplay 

with each other have not been worked out. The intersection of these pathways, with varied 

effects on mitochondrial morphology, gives rise to the morphological complexity found in 

this dynamic organelle. Future endeavors accounting for each aspect of mitochondrial 

dynamics will more fully uncover the nature of this organelle network and determine how it 

remodels and reshapes to fit cellular needs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of mitochondrial dynamics.
Mitochondria form a complex, interconnected network within the cell (center). The 

morphology of this network is determined by fission, fusion, mitochondrial shape transition, 

and positioning along the cytoskeleton. Fission begins with IMM division followed by 

OMM scission. Fusion involves merging of two outer membranes followed by joining of the 

inner membranes. Mitochondrial shape transition is a process independent of fission/fusion 

that controls the transition between rounded and elongated mitochondrial morphologies. 

Mitochondrial positioning involves transport and tethering along the microtubule and actin 

cytoskeletons.
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Figure 2. Mechanism of mitochondrial fission.
A) A mitochondrion is embedded in the interstitial actin network and closely associated with 

the ER. A closer view of the mitochondria-ER contact is shown in A’. Drp1 dynamically 

associates with the cytosol, mitochondria, and ER prior to fission. B) Peripheral NMII pulls 

on actin filaments to deform the mitochondrial membrane. Increased cytosolic calcium 

induces actin polymerization at mitochondria-ER contacts by INF2 on the ER and Spire1C 

on mitochondria. Mff and Mid49/51 begin recruiting Drp1 to the mitochondria-ER contact. 

Calcium is released from the ER and enters the mitochondria through the MCU, causing 

IMM constriction. C) Elevated mitochondrial matrix calcium causes IMM division prior to 

OMM division. Mff and Mid49/51 continue recruiting Drp1 to the mitochondria-ER contact, 

with some Drp1 coming from the ER. Drp1 oligomerizes along the constricted OMM. D) 
The Drp1 oligomer fully assembles around the OMM. Drp1 GTP hydrolysis dissociates 
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Mid49/51, constricting the Drp1 ring. The Drp1 ring constricts the OMM and completes the 

process of fission.
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Figure 3. Mitochondrial fusion and shape transition.
A) Proposed model of mitochondrial fusion. 1) Mitochondrial fusion begins with Mfn1/2-

mediated tethering of two mitochondrial outer membranes. 2) The inner membranes are 

positioned for fusion upon outer membrane fusion. 3) Interactions between L-Opa1 and 

cardiolipin (CL) dock the inner membranes, bringing them closer together. 4) S-Opa1 

functions with L-Opa1 and cardiolipin to promote efficient inner membrane fusion. B) 
Fusion efficiency at different S-Opa1:L-Opa1 ratios. Fusion efficiency peaks at an equimolar 

ratio of S-Opa1 to L-Opa1, with higher and lower ratios inhibiting fusion. C) Schematic of a 

connected mitochondrial network (left) and fragmented mitochondrial network (right). The 

transition between these networks can occur through direct regulation of fission, fusion, or 

mitochondrial shape transition.
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Figure 4. Mitochondrial transport and anchoring on the cytoskeleton.
A) TRAK and Miro proteins serve as adaptors for microtubule-based mitochondrial 

transport (below). Kinesin-1 drives transport to the microtubule plus-end while transport to 

the microtubule minus end is mediated by dynein/dynactin. Myo19 associates with Miro 

proteins and directly with the mitochondrial outer membrane to drive mitochondrial 

transport along the actin cytoskeleton. B) Mitochondria are anchored to the actin and 

microtubule cytoskeletons. Syntaphilin anchors mitochondria to microtubules while myosin 

V (Myo5), myosin VI (Myo6), or another tether may anchor mitochondria to actin.
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