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Abstract

The human nervous system is one of the most complicated systems in nature. Complex nonlinear 

behaviours have been shown from the single neuron level to the system level. For decades, linear 

connectivity analysis methods, such as correlation, coherence and Granger causality, have been 

extensively used to assess the neural connectivities and input-output interconnections in neural 

systems. Recent studies indicate that these linear methods can only capture a small amount of 

neural activities and functional relationships, and therefore cannot describe neural behaviours in a 

precise or complete way. In this review, we highlight recent advances in nonlinear system 

identification of neural systems, corresponding time and frequency domain analysis, and novel 

neural connectivity measures based on nonlinear system identification techniques. We argue that 

nonlinear modelling and analysis are necessary to study neuronal processing and signal transfer in 

neural systems quantitatively. These approaches can hopefully provide new insights to advance our 

understanding of neurophysiological mechanisms underlying neural functions. These nonlinear 

approaches also have the potential to produce sensitive biomarkers to facilitate the development of 

precision diagnostic tools for evaluating neurological disorders and the effects of targeted 

intervention.

Introduction

The human nervous system is a complicated network comprised of more than 10 billion 

neurons, with trillions of synapses connecting them. Neuronal information processing is 

complex at different levels, from the microscopic pre- and post-synaptic cellular interactions 

to the macroscopic interactions between large populations of neurons in, for instance, 

sensory processing and motor response (Stanley, 2005). The behaviour of a single neuron is 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neuroscience. Author manuscript; available in PMC 2022 March 15.

Published in final edited form as:
Neuroscience. 2021 March 15; 458: 213–228. doi:10.1016/j.neuroscience.2020.12.001.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



highly nonlinear, showing a step-like ‘none-or-all’ firing response (Koch and Segev, 2000), 

while the behaviour of neurons in a population could be relatively similar. Therefore, the 

nonlinear response of each individual neuron may be smoothed out by the distribution of 

membrane thresholds across the population, known as the pool effect (Rosenbaum et al., 

2010). This effect typically occurs in a mono-synaptic neural system such as the cortico-

spinal tract where the supraspinal motor command is linearly transferred to the motor output 

due to the pool effect of motor units (Negro and Farina, 2011). However, multi-synaptic 

neural systems, such as the somatosensory system, have been reported highly nonlinear, 

showing harmonic responses to periodic stimuli (Langdon et al., 2011; Yang et al., 2016a; 

Ren et al., 2019; Yang et al., 2020b). Cross-frequency coupling in the corticothalamic 

interactions has also been reported when characterising essential tremor (He et al., 2016). 

Nonlinear behaviours in neural systems are thought to be associated with various neural 

functions, including neuronal encoding, neural processing of synaptic inputs, 

communication between different neuronal populations and functional integration (Friston, 

2001; Yang et al., 2018; Fell and Axmacher, 2011; French and Korenberg, 1989).

Various functional and effective connectivity measures have been developed (Pereda et al., 

2005) to characterise such linear and nonlinear functional integration in neural networks, 

from large-scale neurophysiological signals. These signals, such as electroencephalogram 

(EEG) and magnetoencephalogram (MEG) from the brain, electromyogram (EMG) from 

muscles, measure neural activities from macro-scale neuronal populations. While functional 

connectivity measures, e.g. correlation, coherence, mutual information, only quantify the 

undirected statistical dependencies among signals from different areas, effective connectivity 

attempts to quantify the directed causal influences of one neural system over another, either 

at a synaptic or population level (Friston, 2011). Mostly, effective connectivity measures are 

based on models of neural interactions or coupling (although there exist model-free 

measures like transfer entropy (Dimitrov et al., 2011)) and is often time-dependent 

(dynamic). Therefore, effective connectivity has a strong link with dynamic modelling, also 

known as system identification in control systems theory (Ljung, 1999; Pintelon and 

Schoukens, 2012; Schoukens and Ljung, 2019), and corresponding model-based causality 

analysis.

Nonlinear system identification techniques have been formally applied to study neuronal 

information processing and neural systems since the 1970s. Some pioneering work includes: 

the nonlinear dynamic modelling of the retinal neuron chains in receptive-field responses 

(Marmarelis and Naka, 1973a,b), the identification of nonlinear synaptic interactions 

(Brillinger et al., 1976), the identification of neural systems using stimulus-response and 

white-noise approach (Marmarelis and Marmarelis, 1978; Marmarelis and Naka, 1972; 

Marmarelis, 2012), the development of nonlinear systems analytic approach based on 

functional power (or Volterra/Wiener) series to study central nervous system function and 

hippocampal formation (Sclabassi et al., 1988b,a), and nonlinear identification of stretch 

reflex dynamics (Kearney and Hunter, 1988). Until now, many linear and nonlinear system 

identification methods have then been proposed and developed in the neuroscience context. 

Nevertheless, recent studies indicate that linear methods can only capture a small amount of 

neural activities and functional relationships, and therefore cannot describe neural 

behaviours in a precise or complete way (Vlaar et al., 2016, 2017). Nonlinear approaches 
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provide us with useful tools to explore the nonlinear nature of neural systems (Friston, 

2001). In this review article, we highlight the need and recent advances in nonlinear system 

identification of neural systems, as well as novel neural connectivity analysis methods based 

on nonlinear system identification techniques. A diagram that summarises the linear and 

nonlinear functional and effective connectivity measures and their links with system 

identification is provided in Figure 1.

Nonlinearity in the neuronal level and neural systems

At a single neuron level, the action potential spike is the principal basis of information 

encoding, which allows signal transmission across different neuronal populations (French 

and Korenberg, 1989). The spike timing is thought to be associated with the coding scheme 

in neural systems (Fetz, 1997). The nonlinear nature of the neuronal process of synaptic 

input influences the temporal firing behaviour of individual neurons. Different types of 

neurons have their own repertoire of ion channels that are responsible for their characteristic 

nonlinear firing patterns and associated neural functions. For example, persistent inward 

currents mediated by their voltage-gated sodium and calcium channels are an important 

source of the nonlinear behaviour of spinal motoneurons. They are instrumental in 

generating the sustained force outputs required for postural control (Hounsgaard et al., 

1988). Activation of the L-type calcium channels in nigral dopaminergic neurons results in 

intrinsic bursting behaviour (Sinha et al., 2020b), exhibiting low-dimensional determinism 

and likely encodes meaningful information in the awake state of the brain Jeong et al. 

(2012). The nonlinearity of the neuronal transfer function mediated by its component ion 

channels can generate various types of nonlinear output patterns such as harmonic, 

subharmonic and/or intermodulation of input patterns.

Despite plenty of knowledge of the nonlinear behaviour of a single neuron, the input-output 

relation at the neural system level is yet to be understood entirely. The system-level neural 

response is a composite output of collective neuronal activities from a large number of 

neurons. In a neuronal population, the pool effect can reduce the nonlinearity generated from 

each individual neuron, by smoothing the neuronal dynamics from a scale of milliseconds 

(spikes) to 10 milliseconds (local field potentials) or to 100 milliseconds (large-scale 

neurophysiological activities or signals such as EEG) (Ros et al., 2014). Such effects have 

been previously demonstrated through both a computational model and an in vivo study in 

the human motor system, where the motor command can be transmitted linearly via the 

mono-synaptic corticospinal tract when more than five motoneurons are activated (Negro 

and Farina, 2011). However, a small amount of nonlinearity may still be present (Yang et al., 

2016b). A recent study simulated nonlinear neuronal dynamics on a large-scale neural 

network that captured the inter-regional connections of neocortex in the macaque. The 

authors applied information-theoretic measures to identify functional networks and 

characterised structure-function relations at multiple temporal scales (Honey et al., 2007). 

The nonlinearity in each neuronal population can cumulatively increase if the system 

involves multiple synaptic connections (Sinha et al., 2020a). A recent study in hemiparetic 

stroke shows that the nonlinearity in the motor system increases due to an increased usage of 

multi-synaptic indirect motor pathways, e.g. cortico-reticulospinal tract (Li et al., 2019), 

following damage to the mono-synaptic corticospinal tract (Yang et al., 2020a).
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Assessing the input-output relation in neural systems, e.g. sensory, motor and cognitive 

processes, is essential to a better understanding of the nervous system. For instance, it could 

help to gain a better insight into the normal and pathological neural functions. It is well 

known that a linear system generates only iso-frequency interactions between an input and 

the output, e.g. the coupling of neuronal oscillations at a specific frequency band (Fries, 

2015). For decades, correlation and coherence measures have been used to identify the linear 

interaction in neural systems. More recently, various studies indicate the input-output neural 

interactions can cross different frequency components or bands, which is named cross-

frequency coupling (Jensen and Colgin, 2007; Canolty and Knight, 2010; Hyafil et al., 2015; 

Aru et al., 2015) and is a distinctive feature of a nonlinear system. In the following sections, 

we review both the linear and nonlinear approaches for identifying neural systems and 

associating neural connectivity, especially from a system identification perspective.

Linear connectivity and system identification

The nervous system is a highly cooperative network composed of different groups of 

neurons. Neural connectivity, i.e., the synchronization of neural activity across these groups, 

is crucial to the coordination among distant, but functionally related, neuronal groups 

(Varela et al., 2001). Linear neural connectivity can be assessed by determining the signal 

correlation or causality between the recorded neural signals. This section reviews commonly 

used linear connectivity, system identification methods and their interconnections in 

studying neural systems.

Correlation and coherence

The most widely used measure of interdependence between two time series in the time 

domain is the cross-correlation function (Pereda et al., 2005), which measures the linear 

correlation between two signals or stochastic processes X and Y with discrete observations 

x(t) and y(t), at t = 1, 2, …, N, as a function of their delay time:

Cxy(τ) = 1
N − τ ∑

k = 1

N − τ
x(k + τ)y(k) (1)

where N is the number of samples and τ the time lag between two signals. This function 

ranges from −1 (complete linear inverse correlation) to 1 (complete linear direct correlation). 

The value of τ that maximizes this function can be used to estimate the linearly related delay 

between signals. The well-known Pearson correlation coefficient is equal to Cxy(τ) when τ = 

0. The linear dependence between two signals in the frequency domain is usually measured 

by the spectral coherence. The coherence between two signals at frequency f is defined as:

Cxy(f) = Sxy(f) 2

Sxx(f)Syy(f)
(2)

where Sxy(f) is the cross-spectral density between x and y, and Sxx(f) and Syy(f) the auto-

spectral density of x and y respectively. The cross-spectral and auto-spectral densities are the 

Fourier transforms of the cross-correlation and auto-correlation functions of the two signals. 

Values of coherence are always between 0 and 1. The correlation and coherence measures 
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have been widely applied to EEG, MEG or EMG signals to characterise the neuronal 

interactions, from the firing of cortical neuron spike trains to complicated neural systems 

(for reviews see (Pereda et al., 2005; Bastos and Schoffelen, 2016)).

System identification and causality

Unlike functional connectivity, effective connectivity emphasises on the directional causal 

influences between neural areas or signals. Here, we first introduce the classical Granger 

causality and its link with the time-domain linear system identification, i.e. regression 

models of bivariate time series. The frequency-domain causality measures can then be linked 

with the frequency response function of linear systems.

Considering two signals or variables X and Y, the interactions of the signals can be 

described by bivariate linear autoregressive with exogenous input (ARX) models jointly,

x(t) = ∑
k = 1

q
a11, kx(t − k) + ∑

k = 1

p
a12, ky(t − k) + ex(t)

y(t) = ∑
k = 1

q
a21, kx(t − k) + ∑

k = 1

p
a22, ky(t − k) + ey(t)

(3)

where p and q are the model order of y and x regressors; ex(t) and ey(t) are the uncorrelated 

model prediction errors over time. A linear causal influence from X to Y defined by Granger 

can be expressed as a log ratio of the prediction error variances of the corresponding 

restricted (AR) and unrestricted (ARX) models:

FX Y = ln var y ∣ y−

var y ∣ y−, x− = ln
Σ22

y−

Σ22
(4)

where x− and y− denotes contributions from lagged input and output terms, respectively; y
−

22 denotes the variance of ey when there are only regression terms of Y. The linear ARX 

models (3) can be re-written in matrix form and mapped to the frequency domain by Fourier 

transformation:

A11(f) A12(f)
A21(f) A22(f)

X(f)
Y (f) =

Ex(f)
Ey(f) (5)

where the components of the coefficient matrix A(f) are 

Alm(f) = δlm − ∑k = 1
p(or q)alm, ke−j2πkf /fs with fs the sampling frequency and δlm the Kronecker 

delta function. We can re-write the above equation by inverting the coefficient matrix G(f) = 

A−1(f) and moving the so-called transfer function matrix G(f) to the right-hand-side the 

equation. Different frequency-domain Granger causality measures, such as partial directed 

coherence (PDC), directed transfer function (DTF), spectral Granger causality and directed 

coherence (DCOH) (Baccalá and Sameshima, 2001; Chicharro, 2011; Gourévitch et al., 

2006), can then be expressed as a function of the elements of either the coefficient matrix 

A(f) or the transfer function matrix G(f) (Baccala and Sameshima, 2001; Chicharro, 2011). 

By dividing both sides of (5) with the corresponding diagonal elements in the coefficient 
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matrix A, the off-diagonal elements in the transformed coefficient matrix are actually related 

to the negative frequency response functions (FRFs) of linear ARX systems, if one signal is 

treated as the input while the other is treated as the output. For instance,

A21(f)
A21(f) = − HX Y (f) (6)

the FRF, HX→Y (f), describes the input-output relationship, i.e., with input X and output Y, 

of the (noise-free) ‘system’ in the frequency domain. It is also known as the ‘transfer 

function’ in linear system theory. Frequency-domain Granger causality measure, e.g. PDC, 

can be expressed as a function of the FRFs of the corresponding linear ARX and AR 

models:

PDCX Y (f) = −HX Y (f)
A11(f)/A21(f) 2 + HX Y (f) 2 (7)

Establishing such a link between the causality measures and linear system identification, in 

both time and frequency domains, is crucial to the further development of nonlinear model-

based causality measures via nonlinear system identification, which will be investigated in 

the ‘Nonlinear system identification of neural systems’ and the ‘Nonlinear neural 

connectivity analysis’ sections.

Limitation of linear approaches on identifying neural system

Linear connectivity and system identification allow the assessment of communication 

between neuronal populations at the same oscillatory frequency band or similar neuronal 

firing patterns. The applications of linear approaches have been thoroughly reviewed 

previously (Sakkalis, 2011; Blinowska, 2011). However, it is not clear how much 

information is missing when using the linear approach since the behaviour of various neural 

systems can be highly nonlinear (Friston, 2001; Yang et al., 2018). When one uses a linear 

measure to investigate a neural system, the nonlinear neural interaction is ignored, especially 

between the neuronal populations which have very different mean firing rates such as the 

central nervous system and the periphery. A recent study reported that in the human 

somatosensory system over 80% of the cortical response to wrist joint sensory input comes 

from nonlinear interactions, where a linear model explains only 10% of the cortical response 

(Vlaar et al., 2016). Therefore, nonlinear connectivity and modelling approaches are needed 

to investigate neural systems in a complete way.

Nonlinear system identification of neural systems

It is often impossible to derive a mechanistic model of a neural system, due to the 

complexity of the underlying biological process and many unobservable state variables. In 

this section, we focus on the generic nonlinear model representations of a single-input and 

single-output (SISO) neural dynamic system, its identification process in the time domain, 

and corresponding frequency-domain analysis. We first investigate the identification of 

nonlinear time-invariant systems, and then time-varying nonlinear systems.
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Time-domain nonlinear system identification

Volterra series—The Volterra series model is a direct generalisation of the linear 

convolution integral and provides an intuitive representation for a nonlinear input-output 

system. The output y(t) of a SISO nonlinear system can be expressed as a Volterra functional 

of the input signal u(t):

y(t) = ∑
n = 1

M
y(n)(t) + ey(t)

y(n)(t) = ∫
−∞

+∞
⋯∫

−∞

+∞
ℎn τ1, ⋯, τn ∏

i = 1

n
u t − τi dτi

(8)

where y(n)(t) is the nth-order output and M is the maximum order of the system’s 

nonlinearity; hn(τ1, · · ·, τn) is the nth-order impulse response function or Volterra kernel, 

which describes nonlinear interactions among n copies of input and generalises the linear 

convolution integral to deal with nonlinear systems. Neurobiologically, Volterra series can be 

directly interpreted as the effective connectivity - ‘the influence that one neural system 

exerts over another, either at a synaptic or population level’ (Friston, 1994). The first-order 

kernel describes the linear ‘driving’ efficacy or linear synchronous interactions, and the 

second- or higher-order kernels represent the ‘modulatory’ influence or asynchronous 

interactions (Friston, 2001). The Fourier transform of the first-order kernel is the FRF (or 

transfer function) that describes the interactions in the same frequencies, while the 

frequency-domain counterparts of the higher-order kernels are the GFRFs (to be discussed in 

the ‘Frequency-domain nonlinear system analysis: nonlinear frequency response functions’ 

section) which quantify the cross-frequency interactions.

Practically, to deal with a large number of Volterra series coefficients, a regularization 

strategy is often employed in the estimation procedure (Birpoutsoukis et al., 2017). Volterra 

model has been widely used in physiological systems, including neural systems, modelling. 

Some recent examples include the study of nonlinear interactions in the hippocampal-

cortical neurons (Song et al., 2007), in the spectrotemporal receptive fields of the primary 

auditory cortex (Pienkowski and Eggermont, 2010), in the sensory mechanoreceptor system 

(Vlaar et al., 2016), in the human somatosensory system (i.e. the cortical response to the 

wrist joint sensory input) indicating the dominance of nonlinear response (Vlaar et al., 

2017), in multiple-input and multiple-output (MIMO) spiking neural circuits (Lazar and 

Slutskiy, 2015) and hippocampal memory prostheses (Song et al., 2016). The Volterra model 

also has a strong theoretical link with the NARMAX model (Billings, 2013) and the 

dynamic causal modelling (Friston et al., 2003) to be discussed next.

NARMAX model—Although Volterra series can provide an intuitive representation for 

nonlinear systems, there are several critical limitations including i) it cannot represent 

severely nonlinear systems; ii) the order of the Volterra series expansion can be very high in 

order to achieve a good approximation accuracy; however iii) the estimation of high order 

Volterra kernel requires a large number of data and can be computationally very expensive. 

Nonlinear Autoregressive Moving Average Model with Exogenous Inputs (NARMAX) 

model (Leontaritis and Billings, 1985; Billings, 2013) has therefore been developed as an 

He and Yang Page 7

Neuroscience. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



alternative to the Volterra series. NARMAX model normally contains a much smaller 

number of terms due to the inclusion of output delay terms, and its identification process is 

computationally more efficient. Similar to the Volterra series, a polynomial Nonlinear 

Autoregressive Model with Exogenous Inputs, NARX (the simplest NARMAX) model, can 

be expressed as a summation of a series of output terms with different orders of nonlinearity:

y(n)(t) = ∑
p = 0

n
∑

k1, kp + q = 1

K
cp, q k1, …, kp + q × ∏

i = 1

p
y t − ki ∏

i = p + 1

p + q
x t − ki (9)

where p + q = n, ki = 1, …, K, and ∑k1, kp + q = 1
K ≡ ∑k1

K ⋯∑kp + q = 1
K . The number of model 

terms depends on the order of input and output (q and p) and the maximum lags (K). The 

NARX model structure and parameters are typically identified based on the forward 

regression with the orthogonal least squares (FROLS) method (Chen et al., 1989). In cases 

where the system under study is stochastic with unknown coloured noise, noise moving 

average (MA) models should be employed to form a full NARMAX model. The identified 

model can be statistically validated using nonlinear correlation tests (Billings and Voon, 

1983; He et al., 2014a).

A wide range of nonlinear systems can be represented by NARMAX method, including 

systems with exotic nonlinear behaviours such as subharmonics, bifurcations, and chaos, as 

observed in the human nervous system (Breakspear, 2017). Until now, NARMAX 

methodology has been employed to develop dynamic models for nonlinear sensory 

processing circuit from spiking neuron data (Florescu and Coca, 2018) as an improvement to 

the previous Volterra model-based studies (Lazar and Slutskiy, 2015), to investigate the 

somatosensory afferent pathways from muscles to the brain (Tian et al., 2018; Gu et al., 

2020); as well as to study the corticothalamic nonlinear interactions during tremor active and 

resting states (He et al., 2016). Apart from efficient time-domain predictive modelling, 

NARMAX also provides an essential base for the nonlinear frequency-domain analysis, 

nonlinear time-varying modelling, and nonlinear causality analysis to be discussed in the 

following sections.

Dynamic causal modelling—Most of the effective connectivity models, e.g. linear and 

nonlinear autoregressive models, are directly identified from functional neurophysiological 

signals. However, sometimes it would be more accurate and meaningful to identify the 

causal interactions of the underlying neuronal activities at the level of neuronal dynamics 

(Stephan et al., 2007). The aim of dynamic causal modelling (DCM) (Friston et al., 2003, 

2019) is to infer such connectivity among brain regions (or sources) under different 

experimental factors or inputs. A DCM comprises typically two parts: a neuronal part that 

describes dynamics among neuronal sources and a measurement part that describes how the 

source dynamics generate measurable observations, e.g. EEG or MEG (Kiebel et al., 2008; 

David et al., 2006). Therefore, DCM can be naturally expressed as a nonlinear state-space 

model with hidden states denoting unobserved neuronal dynamics and the observation 

equation (e.g. the lead-field) assumed linearly in the states. The effective connectivity among 

those sources can be identified via Bayesian model selection and Bayesian inference of the 

neuronal model parameters. One strength of DCM is its biophysical and neuronal 
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interpretation of how the neurophysiological signals are generated from the underlying 

neuronal system, through the generative or forward (state-space) modelling. Due to the 

complexity and computational cost of Bayesian model selection, DCM is more suitable to 

investigate the connectivity among pre-defined regions of interest, rather than exploratory 

analysis of relatively large brain or neural networks (Stephan et al., 2010). Compared to the 

hypothesis-driven DCM, the NARMAX or Volterra models are more flexible in terms of 

model structure identification and their direct frequency-domain mapping (to be discussed) 

is a powerful tool to study the nonlinear cross-frequency interactions between neurological 

regions.

Other black-box neural nonlinear system identification methods—Apart from 

the aforementioned three important generic nonlinear model representations, other black-

box modelling approaches have also been applied in the ‘neural system identification’ 

context. For example, artificial neural networks (ANNs), e.g. recurrent, multilayer 

perceptron, fuzzy, probabilistic neural networks, have often been used as alternatives to 

classical system identification models. ANNs have been applied to predict neural responses 

in visual cortex (Lehky et al., 1992; Lau et al., 2002), and to improve the prediction of 

synaptic motor neuron responses (Meruelo et al., 2016). More recently, deep neural 

networks (DNNs), such as convolutional neural network (CNN) or recurrent neural network 

(RNN), are employed to model sensory neural responses, to understand neural computations 

and to learn feature spaces for neural system identification (McIntosh et al., 2016; Batty et 

al., 2016; Klindt et al., 2017; Kell and McDermott, 2019; Keshishian et al., 2020). 

Nevertheless, in the current neuroscience literature, ANNs and DNNs are applied more 

towards automatic feature extraction and classification problems rather than traditional 

‘system identification’. For instance, automatic detection and diagnosis of neurological 

disorders via a combination of ANN with other nonlinear feature extraction techniques such 

as approximate entropy and wavelet (Srinivasan et al., 2007; Ocak, 2009; Guo et al., 2010; 

Subasi, 2006), or direct implementation of DNNs (Zhou et al., 2018; Emami et al., 2019). 

Nonparametric Bayesian approaches like Gaussian process (GP) is closely related to ANN. 

GP has recently been used for system identification purpose (Kocijan et al., 2005; Gregorčič 

and Lightbody, 2008, 2009) and applied to analyse neurophysiological signals (Wu et al., 

2015), such as the use of GP modelling for EEG-based seizure detection and prediction 

(Faul et al., 2007) and heteroscedastic modelling of noisy high-dimensional MEG data 

(Fyshe et al., 2012). Compared with ANN, GP can be applied to model datasets with small 

sample size and it has a relatively small number of hyperparameters. Additionally, due to its 

Bayesian nature, GP can incorporate prior knowledge and specifications into the modelling 

and can directly capture the model uncertainty. Another well-known system identification 

paradigm is the nonlinear state-space model (Verdult, 2002; Schön et al., 2011). Its strength 

in dynamic (latent) state estimation and sequential inference process makes it a suitable 

candidate in the identification of certain neural systems. The state-space models have been 

applied to infer neural spiking activity induced by an implicit stimulus observed through 

point processes (Smith and Brown, 2003), to perform optimal decoding given multi-neuronal 

spike train data and tracking nonstationary neuron tuning properties (for a review, see 

(Paninski et al., 2010)), and to perform source localization from neurophysiological signals 

like MEG and EEG (Fukushima et al., 2012; Barton et al., 2008). All of those black-box 
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modelling approaches are usually flexible and accurate in quantifying complex and long-

range nonlinear interactions. In comparison, the advantages of NARMAX and Volterra 

models are their modelling simplicity, interpretability of nonlinear interactions in the time-

domain (e.g. the order of nonlinearity, phase delay), and frequency-domain mapping and 

analysis (e.g. energy transfer, intermodulations).

Frequency-domain nonlinear system analysis: nonlinear frequency response 
functions—Many nonlinear effects, such as harmonics, intermodulations and energy 

transfer, can only be accurately and intuitively characterised in the frequency domain. Thus, 

it is important to ‘map’ the identified time-domain nonlinear models to the frequency 

domain for further analysis. A multidimensional Fourier transform of the nth-order Volterra 

kernel in (8) yields the so-called nth-order generalised frequency response function (GFRF), 

Hn(f1, · · ·, fn), which is a natural extension of the linear frequency response function to the 

nonlinear case (Billings, 2013). The output spectrum Y (f) of a nonlinear system can then be 

expressed as a function of the input spectrum X(f) and GFRF, known as the output frequency 

response function (OFRF) (Lang and Billings, 1996; Billings, 2013):

Y (f) = ∑
n = 1

M 1
n∫f1 + ⋯ + fn = f

Hn(f1, ⋯, fn) ∏
i = 1

n
X(fi)df (10)

Compared with the Volterra series, the GFRFs can be more efficiently computed from the 

identified time-domain NARMAX model (9) and corresponding model parameters (Billings 

and Tsang, 1989). As shown in Figure 2, the peaks in 1st-order GFRF indicate the well-

known ‘resonance frequencies’ of the linear part of the system; and the peaks (or ridges) in 

the 2nd-order GFRF would indicate nonlinear harmonics (f1 + f2 when f1 = f2) or inter-

modulation effects (f1 ± f2 when f1 ≠ f2) in the output spectrum, and so on. Since 

Y (f) = ∑n = 1
m Y n(f), the nth OFRF Yn(f) represents the nth-order (linear or nonlinear) 

contribution from the input to the output spectrum. Practically, by comparing the OFRF with 

the spectrum of the output signal, obtained from a classical nonparametric estimation such 

as fast Fourier transform, one can also ‘validate’ the accuracy of the time-domain modelling 

in addition to the aforementioned NARMAX model validation (He et al., 2016).

NARMAX-based frequency-domain analysis method has been applied to quantify the 

dynamic characteristics of nonlinear sensory processing circuit models from spiking neuron 

data (Florescu and Coca, 2018), the cross-frequency interactions in the corticothalamic loops 

with respect to tremor (He et al., 2016), and the characterisation of epileptic brain states (He 

et al., 2014a). More details will be discussed in the ‘Neurological and clinical applications’ 

section.

Time-varying nonlinear system identification—Many neurological subsystems are 

inherently nonstationary, since the brain is a dissipative and adaptive dynamical system 

(Kaplan et al., 2005; Lehnertz et al., 2017). Modelling and identification approaches of 

nonstationary processes have been well developed for linear systems, i.e. linear time-varying 

(LTV) systems. They are primarily based on adaptive recursive methods, such as recursive 

least squares, least mean squares, and the Kalman filter (Ljung and Gunnarsson, 1990), or 
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based on a finite basis function expansion of the time-varying coefficients (Zou et al., 2003; 

Tsatsanis and Giannakis, 1993; Niedzwiecki and Klaput, 2002; Zheng et al., 2001). The 

identification of a nonlinear time-varying system is more sophisticated. The primary 

difficulty is how to effectively and simultaneously resolve the nonlinear model structure 

selection and the time-varying coefficient estimation. Approaches based on time-varying 

Volterra series combining artificial neural networks (Iatrou et al., 1999), principal dynamic 

modes (Zhong et al., 2007), or sliding-window strategy (Li et al., 2016), have been 

proposed. However, the model structure selection is still an unsolved issue, and the 

identification and frequency-domain analysis are computationally costly.

A better strategy is to extend the basis function expansion approach, originally proposed for 

LTV identification, to nonlinear time-varying cases (Billings and Wei, 2005). The time-

varying (TV) parameters in TV-NARX models are first expanded using multi-wavelet basis 

functions, and TV nonlinear model is transformed into an expanded time-invariant model; 

the challenging TV model selection and parameter estimation problem can then be solved 

using the computational efficient FROLS algorithm. To accommodate the stochastic 

perturbations or additive coloured noise, this procedure can also be extended to more general 

TV-NARMAX models by introducing a modified extended least squares (ELS) algorithm 

(He et al., 2015). Several modifications to the TV-NARX model has recently been proposed 

using different basis functions or model selection procedure (Li et al., 2018; Guo et al., 

2019). The corresponding frequency-domain analysis for nonlinear time-varying systems 

has also been developed based on the identified time-domain TV-NARX or TV-NARMAX 

model and the TV-GFRF concepts (He et al., 2013, 2015). By fitting TV-NARX models to 

two fragments of intracranial EEG recordings measured from epileptic patients, the 

corresponding frequency-domain analysis (i.e. TV-GFRF and TV-OFRF) shows the 

nonlinear energy transfer effect – the underlying neural system transfers the energy from 

lower frequencies to higher frequencies as the seizure spreading from the left to the right 

brain regions over time (He et al., 2013, 2014b).

An overview of the NARMAX model-based system identification framework, including 

both time-invariant (NARMAX) and time-varying (TV-NARX) modelling along with 

corresponding frequency-domain analysis to neurophysiological signal analysis, is 

summarised in Figure 3.

Nonlinear neural connectivity analysis

The communication between different neuronal populations which have very different firing 

behaviours can result in nonlinear neural connectivity, showing neural coupling across two 

or more different frequencies. To quantitatively study such a ‘cross-frequency coupling’, this 

section reviews recent advances in nonlinear neural functional and effective connectivity 

analysis.

High-order spectrum and nonlinear coherence

The power spectra and coherence discussed in the ‘Correlation and coherence’ section are 

Fourier transforms of the auto- and cross-correlations of signals, hence they are only linear 

frequency-domain measures. Practically these measures cannot detect certain nonlinear 
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effects such as quadratic moments in or between signals that have a zero mean (Billings, 

2013). Higher-order spectral analysis has been developed to detect nonlinear coupling 

between spectral components (Nikias and Mendel, 1993). For example, the most widely 

used bispectral analysis is the frequency-domain mapping of the third-order statistics. It can 

be used to quantify the quadratic nonlinear interactions, i.e. quadratic phase coupling. The 

bispectrum or bicoherence (and the bivariate cross-bispectrum or cross-bicoherence) 

analysis is well-known in engineering signal processing, whereas it has only relatively 

recently been applied to study the nonlinear interactions in neurophysiological signals (Sigl 

and Chamoun, 1994; Chella et al., 2014, 2016). For example, bispectral measures were used 

to detect long-range nonlinear coupling and synchronization in healthy subjects from human 

EEG (Isler et al., 2008; Chella et al., 2014), to characterise and predict epileptic seizures 

(Chua et al., 2009), and to study the nonlinear interactions between different frequency 

components related to Parkinson’s disease and tremor (Marceglia et al., 2006; Wang et al., 

2014; He et al., 2016).

However, bispectrum or bicoherence cannot detect nonlinearity beyond second order, such 

as the higher-order harmonics and intermodulation effects, or the subharmonic coupling. A 

generalised nonlinear coherence analysis framework has therefore been proposed, based on 

two different nonlinear mappings from the input to the output of an ‘open-loop’ system in 

the frequency domain (Yang et al., 2016a):

1) n:m Mapping: to measure harmonic or subharmonic coupling related to individual input 

frequencies. Y m fY = H(n:m)Xn fX , Xn ≡ XX⋯X
n

, where the output frequencies (fY ) are 

related to the input frequencies (fX) by the ratio n/m (n and m are co-prime positive 

integers), and H(n : m) is the n:m mapping function. The n:m mapping can generate cross-

frequency (e.g. harmonic m = 1 or subharmonic m > 1) coupling between the input and the 

output.

2) Integer Multiplication Mapping: to quantify intermodulation coupling among multiple (≥ 

2) input frequencies.

Y fY = H f1, f2, ⋯, fN; a1, a2, …, aN; fY M ∏
i = 1

N
Xai fi (11)

where fY = a1f1 + a2f2 + · · · + aNfN. The M is the corresponding multinomial coefficient, 

and H(f1, f2, · · ·, fN; a1, a2, · · ·, aN; fY ) indicates amplitude scaling and phase shift from the 

input to the output.

According to these two different types of nonlinear mapping, Yang and colleagues proposed 

two basic metrics for quantifying nonlinear coherence: (i) n:m coherence and (ii) multi-

spectral coherence (Yang et al., 2016a).

n:m coherence—The n:m coherence is a generalized coherence measure for quantifying 

nonlinear coherence between two frequency components of the input X(f) and the output Y 
(f) (Yang et al., 2016a):
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Cnm fX, fY = SXY fX, fY

SXX
n fX SY Y

m fY
(12)

where n : m = fY : fX. SXY (fX, fY ) =< Xn(fX)(Ym(fY ))* > is the n:m cross-spectrum, with < 

· > represents the averaging over repetitions. 

SXX
n fX = < Xn fX Xn fX * > = < |X fX X fX ⋯X fX

n
|2 > is the nth-order auto-

spectra. According to Cauchy-Schwarz-inequality, we have:

< Xn(fX)(Y m fY ) * > ≤ ( < Xn fX) 2 > )
1/2

⋅ ( < Y n fY ) 2 > )
1/2

(13)

Thus, n:m coherence is bounded by 0 and 1, where one indicates that two signals are 

perfectly coupled for the given frequency pair (fX, fY ).

A simplified version of n:m coherence that considers only the phase relation between the 

input and the output is known as n:m phase synchronization index (Wacker and Witte, 

2010). The n:m coherence and n:m phase synchronization index has been widely applied to 

neuroscience research to investigate nonlinear functional connectivity in different brain 

regions (Scheffer-Teixeira and Tort, 2016; Darvas et al., 2009a), as well as the nonlinear 

connectivity between the brain and muscles (Yang et al., 2016b).

Multi-spectral coherence—Multi-spectral coherence measures the multi-frequency 

nonlinear coupling generated by the integer multiplication mapping (Yang et al., 2016a). It is 

defined as:

CMS(f1, ⋯, fN; a1, ⋯, aN; fY ) = SXY (f1, ⋯, fN; a1, ⋯, aN; fY )

(∏i = 1
n SXX

ai (fi))SY Y (fY )
(14)

where fY = a1f1 + · · · + aNfN; SXY (f1, · · ·, fN; a1, · · ·, aN; fY ) is the high-order cross-

spectrum between X and Y, and equal to < ∏i = 1
n X ai fi Y * fY >. Here ‘*’ indicates the 

complex conjugate. When there are only two input frequencies, the multi-spectral coherence 

is degraded to the bicoherence (Elgar and Guza, 1988). The multi-spectral coherence or 

bicoherence has been applied to study the nonlinear behaviours in visual (Shils et al., 1996), 

auditory (Chandran, 2012) and somatosensory systems (Yang et al., 2016a), which are 

thought to be associated with neural coding and functional integration of various sensory 

inputs (Gundlach and Müller, 2013).

A simplified version of multi-spectral coherence that considers only the phase relation 

between the input and the output is known as multi-spectral phase coherence (Yang et al., 

2016c). Similarly, there is a degraded measure, named bi-phase locking value (Darvas et al., 

2009b), for the case involving only two input frequencies. The advantage of multi-spectral 

phase coherence or bi-phase locking value is that it allows precise estimation of time delay 

in the nervous system based on the relative phase relationship between the input and output 

(Yang et al., 2016c; Tian et al., 2020). The multi-spectral phase coherence or bi-phase 
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locking value has been previously used to determine neural transmission delays in the 

human visual system (Shils et al., 1996) and the stretch reflex loops (Yang et al., 2016b).

Nonlinear causality analysis: system identification based approaches

Time-domain analysis

In terms of effective connectivity, classical linear Granger causality analysis (GCA) (as 

discussed in the ‘System identification and causality’ section) may provide misleading 

results when used to analyse EEG/MEG or EMG signals, as the possible nonlinear 

interactions within a neural system are not modelled explicitly by simply using linear 

regression models. The Granger causality definition has been extended to nonlinear cases in 

the time domain, based on nonparametric methods (Diks and Panchenko, 2006; Hiemstra 

and Jones, 1994), radial basis functions (Ancona et al., 2004), kernel methods (Marinazzo et 

al., 2008), local linear models (Chen et al., 2004). DCM (Friston et al., 2003) (see the 

‘Dynamic causal modelling’ section) was developed to accommodate both linear and 

nonlinear causal effects using a dynamic state-space model, and the effective connectivity 

among hidden states (unobserved neuronal dynamics) can be identified via Bayesian 

inference. Information-theoretical effective connectivity measures have also been proposed, 

such as the bivariate transfer entropy (TE) (Liu and Aviyente, 2012; Shovon et al., 2017) and 

phase transfer entropy (PTE). TE is a model-free measure, which compares two conditional 

probabilities using the Kullback-Leibler divergence - the amount of uncertainty in the future 

of target signal Y conditioned only on the target’s past and the future of Y conditioned on 

the past of both its own Y and the source X, in a conceptually similar way as the GCA. A 

more recent work (Harmah et al., 2019) generalised the TE method by using multivariate 

transfer entropy, which can overcome the problems of inferring spurious or redundant 

causality and missing synergistic interactions between multiple sources and target.

Another strategy to implement nonlinear granger causality under a system identification 

framework is to use NARX models (Faes et al., 2008; Zhao et al., 2013), by calculating the 

relative predictability improvement obtained from the NARX model compared to the 

corresponding NAR model. More importantly, compared to other nonlinear causality 

measures (e.g. nonparametric or information-theoretic measures), the advantage of using 

NARX-based causal inference (Zhao et al., 2013) is that one can easily separate the linear 

and nonlinear causal influence, for example from an input X to an output Y. After fitting a 

polynomial NARX model with the form (9), the linear causality can still be calculated from 

(4) based on the linear part of the NARX model, while the nonlinear causal influence from 

X to Y can be defined as:

FX Y
n = ln var Y ∣ Y l

−, Y n
−, Xl

−

var Y ∣ Y l
−, Y n

−, Xl
−, Xn

−, (XY )n
− or ln var Y ∣ Xl

−

var Xl
−, Xn

−, (XY )n
− (15)

Here Y n
−, Xn

− and (XY )n− denote the sets of all nonlinear delayed terms of Y, X and nonlinear 

product terms XY. This nonlinear causality measure can also be generalised to nonlinear 

time-varying systems, by computing similar linear and nonlinear causality indices based on 
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the identified TV-NARX models (as described in the ‘Time-varying nonlinear system 

identification’ section), as proposed in (Zhao et al., 2013; Li et al., 2012).

Frequency-domain analysis

In the frequency domain, linear Granger causality measures, such as PDC, DTF and spectral 

Granger causality, can all be expressed as a function of the elements in the coefficient matrix 

or its inverse the transfer function matrix of the corresponding linear ARX models (3). By 

identifying the link between the PDC and the FRFs of the corresponding linear ARX models 

(as described in the the ‘System identification and causality’ section), a new nonlinear PDC 

(NPDC) measure has been proposed (He et al., 2014a) by generalising the spectrum 

decomposition with respect to a nonlinear NARX model in a similar way as the linear case. 

The NPDC from X to Y can then be expressed as a direct generalization of the linear PDC:

NPDCX Y (f) = −HX Y (f)

Hy
e(f)/Hx

e(f) 2 + HX Y (f) 2 (16)

Here, the HX→Y (f) is the ‘nonlinear FRF’ which replaces the FRF in the linear PDC (7), 

and Hy
e(f) and Hx

e(f) are the error-driven GFRFs correspond to the restricted NAR models 

with respect to Y and X as discussed in (He et al., 2014a). The NPDC measures both linear 

and nonlinear causal influences from X to Y. The linear causal effects can be interpreted as a 

special case of (16) by only considering the 1st-order nonlinear FRFs of NARX (i.e. 

H1,X→Y (f)) and NAR (i.e. H1, x
e (f) and H1, y

e (f)) models.

This new NPDC measure has recently been applied to predict epileptic seizures from EEG 

data (Zhang et al., 2020) by advancing the construction of functional brain networks, 

nonlinear feature selection and classification. This new nonlinear causality measure helps to 

provide better prediction accuracy compared to other standard graph theory or nonlinear 

classification based methods. A nonlinear generalization of Geweke’s spectral Granger 

causality has also been proposed (He et al., 2014b) using the NARX methodology.

Neurological and clinical applications

Movement, sensation and cognition arise from the cumulative activity of neurons within 

neural circuits and across distant, macroscale networks in the nervous system. Although the 

behaviour of an individual neuron has been investigated and well understood for decades, 

the mechanisms underlying neural communications between macroscale neural networks are 

still yet to better understand. Newly developed nonlinear system identification approaches 

allow us to investigate neural communications from large-scale neural activities measured by 

EEG, MEG and EMG, with the most recent application examples discussed below.

Nonlinear cortical response to somatosensory inputs

The human somatosensory system is highly nonlinear (Yang et al., 2018). Previous studies 

applied periodic sinusoid tactile stimulations to the index finger and measured the cortical 

response, where they found harmonic and subharmonic patterns in the response (Langdon et 

al., 2011; Tobimatsu et al., 1999). Several recent studies used sum-of-sinusoid stimulations 
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to the wrist joint and found not only harmonics and subharmonics but also intermodulation 

patterns (Vlaar et al., 2016; Yang et al., 2016a). The majority of intermodulation responses 

presented the second-order nonlinearity, which is the sum or the difference between input 

frequencies (Yang et al., 2020b). These findings indicate that the nonlinearities in the 

somatosensory system allow the functional integration of input signals at different 

frequencies, and they can be transmitted in different somatosensory ascending pathways.

Yang and colleagues recently built a hierarchical neural network based on known 

neuroanatomical connections and corresponding transmission delays in neural pathways to 

model the cortical response to somatosensory input (Tian et al., 2018). The proposed 

computational model contains a neural layer at the thalamus that integrates the inputs from 

different ascending pathways, including Ia and II afferents. The computational model well 

captured the majority of the cortical response to the given somatosensory inputs, indicating 

the functional integration of different somatosensory input signals may occur at the thalamus 

and is then transmitted to the cortex via the thalamocortical radiation.

Tremor: nonlinearity in the thalamocortical loop

Essential tremor is a common neurological movement disorder widely considered to have a 

centrally-driven origin. There is both neurophysiological and clinical evidence of thalamic 

involvement in the central oscillatory network generating essential tremor (Hua and Lenz, 

2005; Marsden et al., 2000; Deuschl et al., 2011). Local field potential (LFP) recordings of 

thalamic ventralis intermedius (Vim) nucleus show a strong linear correlation with the 

contralateral EMG during tremor (Marsden et al., 2000). Some studies using EEG and MEG 

suggest that the sensorimotor cortex is also part of the central tremor-related oscillatory 

network, with significant coupling in some cases with the contralateral tremorgenic EMG 

(Hellwig et al., 2001; Raethjen and Deuschl, 2012; Buijink et al., 2015). Despite a well-

established reciprocal anatomical connection between the thalamus and cortex, the 

functional association between the two structures during ‘tremor-on’ periods had not been 

extensively defined.

He and co-authors (He et al., 2016) investigated the functional connectivity among cortical 

EEG, thalamic (Vim) LFPs and contralateral EMG signals over both ‘tremor-on’ and 

‘tremor-off’ states, using linear coherence and nonlinear bispectral analysis methods. In 

addition to expected strong coherence between EMG and thalamic LFP, nonlinear 

interactions (i.e. quadratic phase coupling) at different frequencies, i.e. low frequency during 

tremor on and higher frequency during tremor off, in LFPs have been reported. More 

importantly, by using the NARX-based nonlinear system identification and frequency-

domain analysis (as described in the ‘Frequency-domain nonlinear system analysis: 

nonlinear frequency response functions’ section), two distinct and non-overlapping 

frequency ‘channels’ of communication between thalamic Vim and the ipsilateral motor 

cortex were identified, which robustly defined the ‘tremor-on’ versus ‘tremor-off’ states. 

Longer corticothalamic nonlinear phase lags in the tremor active state were also uncovered, 

suggesting the possible involvement of an indirect multi-synaptic loop. This work 

demonstrates, for the first time, the importance of cross-frequency nonlinear interactions 

between the cortex and the thalamus in characterising the essential tremor.
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Nonlinear analysis for determining motor impairment in stroke

After a stroke, damage to the brain increases the reliance on indirect motor pathways 

resulting in motor impairments and changes in neural connectivity between the brain and 

muscles. A hallmark of impairments post-stroke is a loss of independent joint control that 

leads to abnormal co-activation between shoulder, arm and hand muscles, known as the 

upper limb synergy (Roh et al., 2013). The upper limb synergy is thought to be caused by 

progressive recruitment of indirect motor pathways via the brainstem following a stroke-

induced loss of corticospinal projections (McPherson et al., 2018). Thus, a neural 

connectivity measure that quantifies the recruitment of these indirect motor pathways would 

be crucial to evaluate post-stroke motor impairments. Recent model-based simulation and 

clinical studies indicate that the increased usage of indirect motor pathways enhances 

nonlinear distortion of motor command transmissions, which leads to stronger nonlinear 

interaction between the brain and muscles (Sinha et al., 2020a; Yang et al., 2020a). The ratio 

of nonlinear interaction over linear interaction, known as the nonlinear-over-linear index (N-

L Index), has been reported to be associated with the relative ratio of the recruitment of 

indirect versus direct motor pathways (Yang et al., 2020a). This new measure may facilitate 

the future determination of the effect of new therapeutic interventions that aim to optimise 

the usage of motor pathways, and thus facilitate the stroke recovery.

Epilepsy

It has been widely recognised that epileptic seizures are highly nonlinear phenomena, due to 

low dimensional chaos during epileptic seizure or transitions between ordered and 

disordered stats (Iasemidis and Sackellares, 1996). Currently, the treatment mainly relies on 

long-term medication with antiepileptic drugs or neurosurgery, which can cause cognitive or 

other neurological deficits. New treatment strategies such as on-demand therapies during the 

pre-seizure (preictal) state or electrical stimulation are therefore needed. A vital part of this 

new on-demand strategy is the accurate and timely detection of the preictal state, even 

seconds before seizure onset (Lehnertz, 2008). A range of univariate, bivariate and 

multivariate linear and nonlinear measures have been developed for the characterisation and 

detection or prediction of epileptic brain states and achieving a better understanding of the 

spatial and temporal dynamics of the epileptic process (Carney et al., 2011; Lehnertz, 2008). 

There is a comprehensive review of using different parametric and nonparametric nonlinear 

features (in time, frequency and time-frequency domains) for the automated epilepsy stage 

detection and classification (Acharya et al., 2013).

Given the current challenges in epilepsy detection and diagnostics (Elger and Hoppe, 2018; 

Lehnertz, 2008), e.g. to improve the understanding of brain dynamics and mechanisms 

during the seizure-free interval and seizure initiation and termination, there is a great need to 

develop more accurate nonlinear methods to improve the detectability of directional 

interactions in underlying functional and anatomical networks. Developing new nonlinear 

system identification and nonlinear causality measures are therefore crucial. A nonlinear 

causality measure, partial transfer entropy (Papana et al., 2012), has been applied to analyse 

the EEG of epileptic patients during preictal, ictal and postictal states. It can provide better 

detection of causality strength variations compared to linear PDC. An adaptive nonlinear 

Granger causality measure was also proposed (Sysoeva et al., 2014) and applied to LFP data 
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(intracranial EEG in cortex and thalamus) in rats. It was reported to provide more sensitive 

detection of changes in the dynamics of network properties compared to linear Granger 

causality. The recently proposed nonlinear frequency-domain causality measure NPDC (He 

et al., 2014a) (as reviewed in the ‘Frequency-domain analysis’ section) has been applied to 

analyse EEG recordings of two bipolar channels from a patient with childhood absence 

epilepsy. It shows this nonlinear measure can detect extra frequency-domain causal 

interactions compared to standard linear PDC.

Discussion

The complexity and nonlinearity of neural systems require advanced system identification 

techniques to understand their properties and mechanisms better. This review investigated 

the links between connectivity analysis and system identification, as well as recent progress 

of nonlinear system identification of neural systems. With the state-of-the-art examples of 

clinical applications, we argued that nonlinear dynamic modelling and corresponding 

connectivity analysis allows new insights into the underlying neural functions and 

neuropathological mechanisms of the abnormality caused by various neurological disorders. 

These novel approaches may well facilitate the development of new precision diagnostic 

tools and brain-computer interface (BCI) techniques (Nicolas-Alonso and Gomez-Gil, 2012; 

Chaudhary et al., 2016; Abiri et al., 2019), and therefore improve the diagnosis and 

treatment of neurological disorders as well as restore communication and movement for 

people with motor disabilities.

Compared to the linear system identification and iso-frequency connectivity analysis, 

nonlinear dynamic modelling and cross-frequency analysis are much more complicated. 

Such complexity brings challenges but also research opportunities. Potential future work 

includes: i) further developing multivariate system identification techniques and 

corresponding multivariate nonlinear frequency-domain analysis and causality analysis 

measures. Most existing nonlinear system identification based (time or frequency-domain) 

analysis or causality analysis are primarily bivariate, which limits nonlinear analysis to the 

only pre-defined local brain or neural regions. New multivariate system identification (e.g. 

multivariate nonlinear regression modelling) or inference approaches would generalise the 

existing nonlinear connectivity analysis to larger neural networks, although developing 

efficient model selection and reducing the computational cost would be challenging tasks; ii) 

many neuronal systems or interactions are in nature nonstationary and nonlinear, how to 

automatically distinguish the nonlinearity and time-varying effects (nonstationarity) via 

novel system identification technique is still an open and important research topic, although 

significant progress has been made so far (as reviewed in the ‘Time-varying nonlinear 

system identification’ section); iii) machine learning and deep learning techniques have 

recently been applied to Granger causality analysis (Tank et al., 2018; Chivukula et al., 

2018; Peng, 2020), an interesting future work is to further explore and combine the 

advantages of deep learning, e.g. accurate quantification of complex and long-range 

nonlinear interactions, and nonlinear system identification approaches to study the nonlinear 

causal interactions in complex neural networks; iv) using nonlinear system identification 

techniques to extract new nonlinear features for the BCI; v) apart from those clinical 

applications described in the ‘Neurological and clinical applications’ section, the importance 
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of nonlinearity in understanding and characterising other important neurological disorders, 

e.g. Parkinson’s disease and Alzheimer’s disease (Stam, 2005; Stam et al., 1995; Blackburn 

et al., 2018; Gunawardena et al., 2020), has been reported recently. Therefore nonlinear 

system identification approaches will have great potential in developing new diagnostic tools 

for those primary neurological disorders that affect a large population worldwide.

Acknowledgment

This work was supported by NIH NICHD R21HD099710.

References

Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X, 2019. A comprehensive review of eeg-based brain–
computer interface paradigms. J Neural Eng 16, 011001. [PubMed: 30523919] 

Acharya UR, Sree SV, Swapna G, Martis RJ, Suri JS, 2013. Automated eeg analysis of epilepsy: a 
review. Knowl Based Syst 45, 147–165.

Ancona N, Marinazzo D, Stramaglia S, 2004. Radial basis function approach to nonlinear granger 
causality of time series. Phys Rev E 70, 056221.

Aru J, Aru J, Priesemann V, Wibral M, Lana L, Pipa G, Singer W, Vicente R, 2015. Untangling cross-
frequency coupling in neuroscience. Curr Opin Neurol 31, 51–61.

Baccalá LA, Sameshima K, 2001. Partial directed coherence: a new concept in neural structure 
determination. Biol Cybern 84, 463–474. [PubMed: 11417058] 

Barton MJ, Robinson PA, Kumar S, Galka A, Durrant-Whyte HF, Guivant J, Ozaki T, 2008. Evaluating 
the performance of kalman-filter-based eeg source localization. IEEE Trans Biomed Eng 56, 122–
136.

Bastos AM, Schoffelen JM, 2016. A tutorial review of functional connectivity analysis methods and 
their interpretational pitfalls. Front Syst Neurosci 9, 175. [PubMed: 26778976] 

Batty E, Merel J, Brackbill N, Heitman A, Sher A, Litke A, Chichilnisky E, Paninski L, 2016. 
Multilayer recurrent network models of primate retinal ganglion cell responses.

Billings S, Tsang K, 1989. Spectral analysis for non-linear systems, part ii: Interpretation of non-linear 
frequency response functions. Mech Syst Sig Process 3, 341–359.

Billings S, Voon W, 1983. Structure detection and model validity tests in the identification of nonlinear 
systems, in: IEE Proc-D, IET. pp. 193–199.

Billings SA, 2013. Nonlinear system identification: NARMAX methods in the time, frequency, and 
spatio-temporal domains. John Wiley & Sons.

Billings SA, Wei HL, 2005. The wavelet-narmax representation: A hybrid model structure combining 
polynomial models with multiresolution wavelet decompositions. Int J Syst Sci 36, 137–152.

Birpoutsoukis G, Marconato A, Lataire J, Schoukens J, 2017. Regularized nonparametric volterra 
kernel estimation. Automatica 82, 324–327.

Blackburn DJ, Zhao Y, De Marco M, Bell SM, He F, Wei HL, Lawrence S, Unwin ZC, Blyth M, Angel 
J, et al., 2018. A pilot study investigating a novel non-linear measure of eyes open versus eyes 
closed eeg synchronization in people with alzheimer’s disease and healthy controls. Brain Sci 8, 
134.

Blinowska KJ, 2011. Review of the methods of determination of directed connectivity from 
multichannel data. Med Biol Eng Comput 49, 521–529. [PubMed: 21298355] 

Breakspear M, 2017. Dynamic models of large-scale brain activity. Nat Neurosci 20, 340. [PubMed: 
28230845] 

Brillinger DR, Bryant HL, Segundo JP, 1976. Identification of synaptic interactions. Biol Cybern 22, 
213–228. [PubMed: 953079] 

Buijink AW, van der Stouwe AM, Broersma M, Sharifi S, Groot PF, Speelman JD, Maurits NM, van 
Rootselaar AF, 2015. Motor network disruption in essential tremor: a functional and effective 
connectivity study. Brain 138, 2934–2947. [PubMed: 26248468] 

He and Yang Page 19

Neuroscience. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Canolty RT, Knight RT, 2010. The functional role of cross-frequency coupling. Trends Cogn Sci 14, 
506–515. [PubMed: 20932795] 

Carney PR, Myers S, Geyer JD, 2011. Seizure prediction: methods. Epilepsy Behav 22, S94–S101. 
[PubMed: 22078526] 

Chandran V, 2012. Time-varying bispectral analysis of auditory evoked multi-channel scalp eeg, in: 
11th Int Conf on Information Science, Signal Processing and their Applications (ISSPA), IEEE. 
pp. 205–212.

Chaudhary U, Birbaumer N, Ramos-Murguialday A, 2016. Brain–computer interfaces for 
communication and rehabilitation. Nat Rev Neurosci 12, 513.

Chella F, Marzetti L, Pizzella V, Zappasodi F, Nolte G, 2014. Third order spectral analysis robust to 
mixing artifacts for mapping cross-frequency interactions in eeg/meg. Neuroimage 91, 146–161. 
[PubMed: 24418509] 

Chella F, Pizzella V, Zappasodi F, Nolte G, Marzetti L, 2016. Bispectral pairwise interacting source 
analysis for identifying systems of cross-frequency interacting brain sources from 
electroencephalographic or magnetoencephalographic signals. Phys Rev E 93, 052420. [PubMed: 
27300936] 

Chen S, Billings SA, Luo W, 1989. Orthogonal least squares methods and their application to non-
linear system identification. Int J Control 50, 1873–1896.

Chen Y, Rangarajan G, Feng J, Ding M, 2004. Analyzing multiple nonlinear time series with extended 
granger causality. Phys Lett A 324, 26–35.

Chicharro D, 2011. On the spectral formulation of granger causality. Biol Cybern 105, 331–347. 
[PubMed: 22249416] 

Chivukula AS, Li J, Liu W, 2018. Discovering granger-causal features from deep learning networks, 
in: Australasian Joint Conference on Artificial Intelligence, Springer. pp. 692–705.

Chua K, Chandran V, Rajendra Acharya U, Lim C, 2009. Analysis of epileptic eeg signals using higher 
order spectra. J Med Eng Technol 33, 42–50. [PubMed: 19116853] 

Darvas F, Miller KJ, Rao RP, Ojemann JG, 2009a. Nonlinear phase–phase cross-frequency coupling 
mediates communication between distant sites in human neocortex. J Neurosci 29, 426–435. 
[PubMed: 19144842] 

Darvas F, Ojemann JG, Sorensen LB, 2009b. Bi-phase locking—a tool for probing non-linear 
interaction in the human brain. Neuroimage 46, 123–132. [PubMed: 19457390] 

David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ, 2006. Dynamic causal modeling 
of evoked responses in eeg and meg. NeuroImage 30, 1255–1272. [PubMed: 16473023] 

Deuschl G, Raethjen J, Hellriegel H, Elble R, 2011. Treatment of patients with essential tremor. Lancet 
Neurol 10, 148–161. [PubMed: 21256454] 

Diks C, Panchenko V, 2006. A new statistic and practical guidelines for nonparametric granger 
causality testing. J Econ Dyn Control 30, 1647–1669.

Dimitrov AG, Lazar AA, Victor JD, 2011. Information theory in neuroscience. J Comput Neurosci 30, 
1–5. [PubMed: 21279429] 

Elgar S, Guza RT, 1988. Statistics of bicoherence. IEEE Trans Acoust 36, 1667–1668.

Elger CE, Hoppe C, 2018. Diagnostic challenges in epilepsy: seizure under-reporting and seizure 
detection. Lancet Neurol 17, 279–288. [PubMed: 29452687] 

Emami A, Kunii N, Matsuo T, Shinozaki T, Kawai K, Takahashi H, 2019. Seizure detection by 
convolutional neural network-based analysis of scalp electroencephalography plot images. 
NeuroImage Clin 22, 101684. [PubMed: 30711680] 

Faes L, Nollo G, Chon KH, 2008. Assessment of granger causality by nonlinear model identification: 
application to short-term cardiovascular variability. Ann Biomed Eng 36, 381–395. [PubMed: 
18228143] 

Faul S, Gregorcic G, Boylan G, Marnane W, Lightbody G, Connolly S, 2007. Gaussian process 
modeling of eeg for the detection of neonatal seizures. IEEE Trans Biomed Eng 54, 2151–2162. 
[PubMed: 18075031] 

Fell J, Axmacher N, 2011. The role of phase synchronization in memory processes. Nat Rev Neurosci 
12, 105–118. [PubMed: 21248789] 

He and Yang Page 20

Neuroscience. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fetz EE, 1997. Temporal coding in neural populations? Science 278, 1901–1902. [PubMed: 9417639] 

Florescu D, Coca D, 2018. Identification of linear and nonlinear sensory processing circuits from 
spiking neuron data. Neural Comput 30, 670–707. [PubMed: 29342394] 

French AS, Korenberg M, 1989. A nonlinear cascade model for action potential encoding in an insect 
sensory neuron. Biophys J 55, 655–661. [PubMed: 2720064] 

Fries P, 2015. Rhythms for cognition: communication through coherence. Neuron 88, 220–235. 
[PubMed: 26447583] 

Friston KJ, 1994. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 
2, 56–78.

Friston KJ, 2001. Book review: brain function, nonlinear coupling, and neuronal transients. 
Neuroscientist 7, 406–418. [PubMed: 11597100] 

Friston KJ, 2011. Functional and effective connectivity: a review. Brain Connect 1, 13–36. [PubMed: 
22432952] 

Friston KJ, Harrison L, Penny W, 2003. Dynamic causal modelling. Neuroimage 19, 1273–1302. 
[PubMed: 12948688] 

Friston KJ, Preller KH, Mathys C, Cagnan H, Heinzle J, Razi A, Zeidman P, 2019. Dynamic causal 
modelling revisited. Neuroimage 199, 730–744. [PubMed: 28219774] 

Fukushima M, Yamashita O, Kanemura A, Ishii S, Kawato M, Sato M.a., 2012. A state-space 
modeling approach for localization of focal current sources from meg. IEEE Trans Biomed Eng 
59, 1561–1571. [PubMed: 22394573] 

Fyshe A, Fox E, Dunson D, Mitchell T, 2012. Hierarchical latent dictionaries for models of brain 
activation, in: Artificial Intelligence and Statistics, pp. 409–421.

Gourévitch B, Le Bouquin-Jeannés R, Faucon G, 2006. Linear and nonlinear causality between 
signals: methods, examples and neurophysiological applications. Biol Cybern 95, 349–369. 
[PubMed: 16927098] 

Gregorčič G, Lightbody G, 2008. Nonlinear system identification: From multiple-model networks to 
gaussian processes. Eng Appl Artif Intell 21, 1035–1055.

Gregorčič G, Lightbody G, 2009. Gaussian process approach for modelling of nonlinear systems. Eng 
Appl Artif Intell 22, 522–533.

Gu Y, Yang Y, Dewald J, Van der Helm FC, Schouten AC, Wei LH, 2020. Nonlinear modeling of 
cortical responses to mechanical wrist perturbations using the narmax method. IEEE Trans 
Biomed Eng.

Gunawardena SR, He F, Sarrigiannis P, Blackburn DJ, 2020. Nonlinear classification of eeg recordings 
from patients with alzheimer’s disease using gaussian process latent variable model. medRxiv.

Gundlach C, Müller MM, 2013. Perception of illusory contours forms intermodulation responses of 
steady state visual evoked potentials as a neural signature of spatial integration. Biol Psychol 94, 
55–60. [PubMed: 23665197] 

Guo L, Rivero D, Dorado J, Rabunal JR, Pazos A, 2010. Automatic epileptic seizure detection in eegs 
based on line length feature and artificial neural networks. J Neurosci Methods 191, 101–109. 
[PubMed: 20595035] 

Guo Y, Wang L, Li Y, Luo J, Wang K, Billings S, Guo L, 2019. Neural activity inspired asymmetric 
basis function tv-narx model for the identification of time-varying dynamic systems. 
Neurocomputing 357, 188–202.

Harmah DJ, Li C, Li F, Liao Y, Wang J, Ayedh WM, Bore JC, Yao D, Dong W, Xu P, 2019. Measuring 
the non-linear directed information flow in schizophrenia by multivariate transfer entropy. Front 
Comput Neurosci 13. [PubMed: 30941027] 

He F, Billings SA, Wei HL, Sarrigiannis PG, 2014a. A nonlinear causality measure in the frequency 
domain: Nonlinear partial directed coherence with applications to eeg. J Neurosci Methods 225, 
71–80. [PubMed: 24472530] 

He F, Billings SA, Wei HL, Sarrigiannis PG, Zhao Y, 2013. Spectral analysis for nonstationary and 
nonlinear systems: A discrete-time-model-based approach. IEEE Trans Biomed Eng 60, 2233–
2241. [PubMed: 23508247] 

He and Yang Page 21

Neuroscience. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



He F, Sarrigiannis PG, Billings SA, Wei H, Rowe J, Romanowski C, Hoggard N, Hadjivassilliou M, 
Rao DG, Grünewald R, et al., 2016. Nonlinear interactions in the thalamocortical loop in essential 
tremor: a model-based frequency domain analysis. Neurosci 324, 377–389.

He F, Wei HL, Billings SA, 2015. Identification and frequency domain analysis of non-stationary and 
nonlinear systems using time-varying narmax models. Int J Syst Sci 46, 2087–2100.

He F, Wei HL, Billings SA, Sarrigiannis PG, 2014b. A nonlinear generalization of spectral granger 
causality. IEEE Trans Biomed Eng 61, 1693–1701. [PubMed: 24845279] 

Hellwig B, Häußler S, Schelter B, Lauk M, Guschlbauer B, Timmer J, Lücking C, 2001. Tremor-
correlated cortical activity in essential tremor. Lancet 357, 519–523. [PubMed: 11229671] 

Hiemstra C, Jones JD, 1994. Testing for linear and nonlinear granger causality in the stock price-
volume relation. J Finance 49, 1639–1664.

Honey CJ, Kötter R, Breakspear M, Sporns O, 2007. Network structure of cerebral cortex shapes 
functional connectivity on multiple time scales. Proc Natl Acad Sci 104, 10240–10245. [PubMed: 
17548818] 

Hounsgaard J, Hultborn H, Jespersen B, Kiehn O, 1988. Bistability of alpha-motoneurones in the 
decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. J Physiol 405, 
345–367. [PubMed: 3267153] 

Hua SE, Lenz FA, 2005. Posture-related oscillations in human cerebellar thalamus in essential tremor 
are enabled by voluntary motor circuits. J Neurophysiol 93, 117–127. [PubMed: 15317839] 

Hyafil A, Giraud AL, Fontolan L, Gutkin B, 2015. Neural cross-frequency coupling: connecting 
architectures, mechanisms, and functions. Trends Neurosci 38, 725–740. [PubMed: 26549886] 

Iasemidis LD, Sackellares JC, 1996. Review: Chaos theory and epilepsy. Neuroscientist 2, 118–126.

Iatrou M, Berger TW, Marmarelis VZ, 1999. Modeling of nonlinear nonstationary dynamic systems 
with a novel class of artificial neural networks. IEEE Trans Neural Netw 10, 327–339. [PubMed: 
18252530] 

Isler JR, Grieve PG, Czernochowski D, Stark RI, Friedman D, 2008. Cross-frequency phase coupling 
of brain rhythms during the orienting response. Brain Res 1232, 163–172. [PubMed: 18675795] 

Jensen O, Colgin LL, 2007. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci 
11, 267–269. [PubMed: 17548233] 

Jeong J, Shi WX, Hoffman R, Oh J, Gore JC, Bunney BS, Peterson BS, 2012. Bursting as a source of 
non-linear determinism in the firing patterns of nigral dopamine neurons. Eur J Neurosci 36, 
3214–3223. [PubMed: 22831464] 

Kaplan AY, Fingelkurts AA, Fingelkurts AA, Borisov SV, Darkhovsky BS, 2005. Nonstationary nature 
of the brain activity as revealed by eeg/meg: methodological, practical and conceptual challenges. 
Signal Process 85, 2190–2212.

Kearney RE, Hunter IW, 1988. Nonlinear identification of stretch reflex dynamics. Ann Biomed Eng 
16, 79–94. [PubMed: 3408053] 

Kell AJ, McDermott JH, 2019. Deep neural network models of sensory systems: windows onto the role 
of task constraints. Curr Opin Neurol 55, 121–132.

Keshishian M, Akbari H, Khalighinejad B, Herrero JL, Mehta AD, Mesgarani N, 2020. Estimating and 
interpreting nonlinear receptive field of sensory neural responses with deep neural network 
models. Elife 9, e53445. [PubMed: 32589140] 

Kiebel SJ, Garrido MI, Moran RJ, Friston KJ, 2008. Dynamic causal modelling for eeg and meg. Cogn 
Neurodyn 2, 121. [PubMed: 19003479] 

Klindt D, Ecker AS, Euler T, Bethge M, 2017. Neural system identification for large populations 
separating “what” and “where”, in: Adv Neural Inf Process Syst, pp. 3506–3516.

Koch C, Segev I, 2000. The role of single neurons in information processing. Nat Neurosci 3, 1171–
1177. [PubMed: 11127834] 

Kocijan J, Girard A, Banko B, Murray-Smith R, 2005. Dynamic systems identification with gaussian 
processes. Math Comput Modell Dyn Syst 11, 411–424.

Lang ZQ, Billings S, 1996. Output frequency characteristics of nonlinear systems. Int J Control 64, 
1049–1067.

He and Yang Page 22

Neuroscience. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Langdon AJ, Boonstra TW, Breakspear M, 2011. Multi-frequency phase locking in human 
somatosensory cortex. Prog Biophys Mol Biol 105, 58–66. [PubMed: 20869386] 

Lau B, Stanley GB, Dan Y, 2002. Computational subunits of visual cortical neurons revealed by 
artificial neural networks. Proc Natl Acad Sci 99, 8974–8979. [PubMed: 12060706] 

Lazar AA, Slutskiy YB, 2015. Spiking neural circuits with dendritic stimulus processors. J Comput 
Neurosci 38, 1–24. [PubMed: 25175020] 

Lehky SR, Sejnowski TJ, Desimone R, 1992. Predicting responses of nonlinear neurons in monkey 
striate cortex to complex patterns. J Neurosci 12, 3568–3581. [PubMed: 1527596] 

Lehnertz K, 2008. Epilepsy and nonlinear dynamics. J Biol Phys 34, 253–266. [PubMed: 19669475] 

Lehnertz K, Geier C, Rings T, Stahn K, 2017. Capturing time-varying brain dynamics. EPJ Nonlinear 
Biomedical Physics 5, 2.

Leontaritis I, Billings SA, 1985. Input-output parametric models for nonlinear systems part i: 
deterministic non-linear systems. Int J Control 41, 303–328.

Li S, Chen YT, Francisco GE, Zhou P, Rymer WZ, 2019. A unifying pathophysiological account for 
post-stroke spasticity and disordered motor control. Front Neurol 10. [PubMed: 30733702] 

Li Y, Cui WG, Guo YZ, Huang T, Yang XF, Wei HL, 2018. Time-varying system identification using 
an ultra-orthogonal forward regression and multiwavelet basis functions with applications to eeg. 
IEEE Trans Neural Netw Learn Syst 29, 2960–2972. [PubMed: 28650829] 

Li Y, Wei HL, Billings SA, Liao XF, 2012. Time-varying linear and nonlinear parametric model for 
granger causality analysis. Phys Rev E 85, 041906.

Li Y, Wei HL, Billings SA, Sarrigiannis PG, 2016. Identification of nonlinear time-varying systems 
using an online sliding-window and common model structure selection (cmss) approach with 
applications to eeg. Int J Syst Sci 47, 2671–2681.

Liu Y, Aviyente S, 2012. Quantification of effective connectivity in the brain using a measure of 
directed information. Comput Math Methods Med 2012.

Ljung L, 1999. System identification. Wiley encyclopedia of electrical and electronics engineering, 1–
19.

Ljung L, Gunnarsson S, 1990. Adaptation and tracking in system identification—a survey. Automatica 
26, 7–21.

Marceglia S, Foffani G, Bianchi A, Baselli G, Tamma F, Egidi M, Priori A, 2006. Dopamine-
dependent non-linear correlation between subthalamic rhythms in parkinson’s disease. J Physiol 
571, 579–591. [PubMed: 16410285] 

Marinazzo D, Pellicoro M, Stramaglia S, 2008. Kernel-granger causality and the analysis of dynamical 
networks. Phys Rev E 77, 056215.

Marmarelis PZ, Marmarelis VZ, 1978. The white-noise method in system identification, in: Analysis 
of physiological systems. Springer, pp. 131–180.

Marmarelis PZ, Naka K, 1973a. Nonlinear analysis and synthesis of receptive-field responses in the 
catfish retina. i. horizontal cell leads to ganglion cell chain. J Neurophysiol 36, 605–618. 
[PubMed: 4713310] 

Marmarelis PZ, Naka K, 1973b. Nonlinear analysis and synthesis of receptive-field responses in the 
catfish retina. ii. one-input white-noise analysis. J Neurophysiol 36, 619–633. [PubMed: 
4713311] 

Marmarelis PZ, Naka KI, 1972. White-noise analysis of a neuron chain: an application of the wiener 
theory. Science 175, 1276–1278. [PubMed: 5061252] 

Marmarelis V, 2012. Analysis of physiological systems: The white-noise approach. Springer Science & 
Business Media.

Marsden J, Ashby P, Limousin-Dowsey P, Rothwell J, Brown P, 2000. Coherence between cerebellar 
thalamus, cortex and muscle in man: cerebellar thalamus interactions. Brain 123, 1459–1470. 
[PubMed: 10869057] 

McIntosh L, Maheswaranathan N, Nayebi A, Ganguli S, Baccus S, 2016. Deep learning models of the 
retinal response to natural scenes, in: Adv Neural Inf Process Syst, pp. 1369–1377. [PubMed: 
28729779] 

He and Yang Page 23

Neuroscience. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



McPherson JG, Chen A, Ellis MD, Yao J, Heckman C, Dewald JP, 2018. Progressive recruitment of 
contralesional cortico-reticulospinal pathways drives motor impairment post stroke. J Physiol 
596, 1211–1225. [PubMed: 29457651] 

Meruelo AC, Simpson DM, Veres SM, Newland PL, 2016. Improved system identification using 
artificial neural networks and analysis of individual differences in responses of an identified 
neuron. Neural Netw 75, 56–65. [PubMed: 26717237] 

Negro F, Farina D, 2011. Linear transmission of cortical oscillations to the neural drive to muscles is 
mediated by common projections to populations of motoneurons in humans. J Physiol 589, 629–
637. [PubMed: 21135042] 

Nicolas-Alonso LF, Gomez-Gil J, 2012. Brain computer interfaces, a review. Sensors 12, 1211–1279. 
[PubMed: 22438708] 

Niedzwiecki M, Klaput T, 2002. Fast recursive basis function estimators for identification of time-
varying processes. IEEE Trans Signal Process 50, 1925–1934.

Nikias CL, Mendel JM, 1993. Signal processing with higher-order spectra. IEEE Signal Process Mag 
10, 10–37.

Ocak H, 2009. Automatic detection of epileptic seizures in eeg using discrete wavelet transform and 
approximate entropy. Expert Syst Appl 36, 2027–2036.

Paninski L, Ahmadian Y, Ferreira DG, Koyama S, Rad KR, Vidne M, Vogelstein J, Wu W, 2010. A 
new look at state-space models for neural data. J Comput Neurosci 29, 107–126. [PubMed: 
19649698] 

Papana A, Kugiumtzis D, Larsson PG, 2012. Detection of direct causal effects and application to 
epileptic electroencephalogram analysis. Int J Bifurcation Chaos 22, 1250222.

Peng W, 2020. Dli: A deep learning-based granger causality inference. Complexity 2020.

Pereda E, Quiroga RQ, Bhattacharya J, 2005. Nonlinear multivariate analysis of neurophysiological 
signals. Prog Neurobiol 77, 1–37. [PubMed: 16289760] 

Pienkowski M, Eggermont JJ, 2010. Nonlinear cross-frequency interactions in primary auditory cortex 
spectrotemporal receptive fields: a wiener–volterra analysis. J Comput Neurosci 28, 285–303. 
[PubMed: 20072806] 

Pintelon R, Schoukens J, 2012. System identification: a frequency domain approach. John Wiley & 
Sons.

Raethjen J, Deuschl G, 2012. The oscillating central network of essential tremor. Clin Neurophysiol 
123, 61–64. [PubMed: 22055842] 

Ren J, Xiang J, Chen Y, Li F, Wu T, Shi J, 2019. Abnormal functional connectivity under 
somatosensory stimulation in migraine: a multi-frequency magnetoencephalography study. J 
Headache Pain 20, 1–10. [PubMed: 30616570] 

Roh J, Rymer WZ, Perreault EJ, Yoo SB, Beer RF, 2013. Alterations in upper limb muscle synergy 
structure in chronic stroke survivors. J Neurophysiol 109, 768–781. [PubMed: 23155178] 

Ros T, J Baars B, Lanius RA, Vuilleumier P, 2014. Tuning pathological brain oscillations with 
neurofeedback: a systems neuroscience framework. Front Hum Neurosci 8, 1008. [PubMed: 
25566028] 

Rosenbaum R, Trousdale J, Josic K, 2010. Pooling and correlated neural activity. Front Comput 
Neurosci 4, 9. [PubMed: 20485451] 

Sakkalis V, 2011. Review of advanced techniques for the estimation of brain connectivity measured 
with eeg/meg. Comput Biol Med 41, 1110–1117. [PubMed: 21794851] 

Scheffer-Teixeira R, Tort AB, 2016. On cross-frequency phase-phase coupling between theta and 
gamma oscillations in the hippocampus. Elife 5, e20515. [PubMed: 27925581] 

Schön TB, Wills A, Ninness B, 2011. System identification of nonlinear state-space models. 
Automatica 47, 39–49.

Schoukens J, Ljung L, 2019. Nonlinear system identification: A user-oriented road map. IEEE Control 
Syst Mag 39, 28–99.

Sclabassi RJ, Eriksson JL, Port RL, Robinson GB, Berger TW, 1988a. Nonlinear systems analysis of 
the hippocampal perforant path-dentate projection. i. theoretical and interpretational 
considerations. J Neurophysiol 60, 1066–1076. [PubMed: 3171656] 

He and Yang Page 24

Neuroscience. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sclabassi RJ, Krieger DN, Berger TW, 1988b. A systems theoretic approach to the study of cns 
function. Ann Biomed Eng 16, 17–34. [PubMed: 3408048] 

Shils J, Litt M, Skolnick B, Stecker M, 1996. Bispectral analysis of visual interactions in humans. 
Electroencephalogr Clin Neurophysiol 98, 113–125. [PubMed: 8598171] 

Shovon MHI, Nandagopal N, Vijayalakshmi R, Du JT, Cocks B, 2017. Directed connectivity analysis 
of functional brain networks during cognitive activity using transfer entropy. Neural Process Lett 
45, 807–824.

Sigl JC, Chamoun NG, 1994. An introduction to bispectral analysis for the electroencephalogram. J 
Clin Monit 10, 392–404. [PubMed: 7836975] 

Sinha N, Dewald J, Heckman CJ, Yang Y, 2020a. Cross-frequency coupling in descending motor 
pathways: Theory and simulation. Front Syst Neurosci 13, 86. [PubMed: 31992973] 

Sinha N, Heckman C, Yang Y, 2020b. Slowly activating outward membrane currents generate input-
output sub-harmonic cross frequency coupling in neurons. J Theor Biol, 110509. [PubMed: 
33022285] 

Smith AC, Brown EN, 2003. Estimating a state-space model from point process observations. Neural 
Comput 15, 965–991. [PubMed: 12803953] 

Song D, Chan RH, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW, 2007. Nonlinear 
dynamic modeling of spike train transformations for hippocampal-cortical prostheses. IEEE 
Trans Biomed Eng 54, 1053–1066. [PubMed: 17554824] 

Song D, Robinson BS, Hampson RE, Marmarelis VZ, Deadwyler SA, Berger TW, 2016. Sparse large-
scale nonlinear dynamical modeling of human hippocampus for memory prostheses. IEEE Trans 
Neural Syst Rehabil Eng 26, 272–280. [PubMed: 28113595] 

Srinivasan V, Eswaran C, Sriraam N, 2007. Approximate entropy-based epileptic eeg detection using 
artificial neural networks. IEEE Trans Inf Technol Biomed 11, 288–295. [PubMed: 17521078] 

Stam C, Jelles B, Achtereekte H, Rombouts S, Slaets J, Keunen R, 1995. Investigation of eeg non-
linearity in dementia and parkinson’s disease. Electroencephalogr Clin Neurophysiol 95, 309–
317. [PubMed: 7489659] 

Stam CJ, 2005. Nonlinear dynamical analysis of eeg and meg: review of an emerging field. Clin 
Neurophysiol 116, 2266–2301. [PubMed: 16115797] 

Stanley GB, 2005. Neural system identification, in: Neural Eng. Springer, pp. 367–388.

Stephan KE, Harrison LM, Kiebel SJ, David O, Penny WD, Friston KJ, 2007. Dynamic causal models 
of neural system dynamics: current state and future extensions. J Biosci 32, 129–144. [PubMed: 
17426386] 

Stephan KE, Penny WD, Moran RJ, den Ouden HE, Daunizeau J, Friston KJ, 2010. Ten simple rules 
for dynamic causal modeling. Neuroimage 49, 3099–3109. [PubMed: 19914382] 

Subasi A, 2006. Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert 
Syst Appl 31, 320–328.

Sysoeva MV, Sitnikova E, Sysoev IV, Bezruchko BP, van Luijtelaar G, 2014. Application of adaptive 
nonlinear granger causality: Disclosing network changes before and after absence seizure onset 
in a genetic rat model. J Neurosci Methods 226, 33–41. [PubMed: 24486875] 

Tank A, Covert I, Foti N, Shojaie A, Fox E, 2018. Neural granger causality for nonlinear time series. 
arXiv:1802.05842.

Tian R, Dewald J, Yang Y, 2020. Assessing neural connectivity and associated time delays of muscle 
responses to continuous position perturbations. Ann Biomed Eng.

Tian R, Yang Y, van der Helm FC, Dewald J, 2018. A novel approach for modeling neural responses to 
joint perturbations using the narmax method and a hierarchical neural network. Front Comput 
Neurosci 12, 96. [PubMed: 30574083] 

Tobimatsu S, Zhang YM, Kato M, 1999. Steady-state vibration somatosensory evoked potentials: 
physiological characteristics and tuning function. Clin Neurophysiol 110, 1953–1958. [PubMed: 
10576493] 

Tsatsanis MK, Giannakis GB, 1993. Time-varying system identification and model validation using 
wavelets. IEEE Trans Signal Process 41, 3512–3523.

He and Yang Page 25

Neuroscience. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Varela F, Lachaux JP, Rodriguez E, Martinerie J, 2001. The brainweb: phase synchronization and 
large-scale integration. Nat Rev Neurosci 2, 229–239. [PubMed: 11283746] 

Verdult V, 2002. Non linear system identification: a state-space approach.

Vlaar MP, Birpoutsoukis G, Lataire J, Schoukens M, Schouten AC, Schoukens J, van der Helm FC, 
2017. Modeling the nonlinear cortical response in eeg evoked by wrist joint manipulation. IEEE 
Trans Neural Syst Rehabil Eng 26, 205–215. [PubMed: 28920904] 

Vlaar MP, Solis-Escalante T, Vardy AN, Van Der Helm FC, Schouten AC, 2016. Quantifying nonlinear 
contributions to cortical responses evoked by continuous wrist manipulation. IEEE Trans Neural 
Netw Learn Syst 25, 481–491.

Wacker M, Witte H, 2010. On the stability of the n: m phase synchronization index. IEEE Trans 
Biomed Eng 58, 332–338. [PubMed: 20682469] 

Wang Z, Huang Y, Wang S, Green A, Aziz T, Stein J, 2014. Tremor dependant nonlinear interaction in 
deep brain local field potentials of parkinson’s disease, in: Int Conf Biomed, IEEE. pp. 399–404.

Wu W, Nagarajan S, Chen Z, 2015. Bayesian machine learning: Eeg\/meg signal processing 
measurements. IEEE Signal Process Mag 33, 14–36.

Yang Y, Dewald JP, van der Helm FC, Schouten AC, 2018. Unveiling neural coupling within the 
sensorimotor system: directionality and nonlinearity. Eur J Neurosci 48, 2407–2415. [PubMed: 
28887885] 

Yang Y, Sinha N, Tian R, Gurari N, Drogos J, Dewald J, 2020a. Quantifying altered neural 
connectivity of the stretch reflex in chronic hemiparetic stroke. IEEE Trans Neural Syst Rehabil 
Eng 28, 1436–1441. [PubMed: 32275603] 

Yang Y, Solis-Escalante T, van der Helm FC, Schouten AC, 2016a. A generalized coherence 
framework for detecting and characterizing nonlinear interactions in the nervous system. IEEE 
Trans Biomed Eng 63, 2629–2637. [PubMed: 27362753] 

Yang Y, Solis-Escalante T, van de Ruit M, van der Helm FC, Schouten AC, 2016b. Nonlinear coupling 
between cortical oscillations and muscle activity during isotonic wrist flexion. Front Comput 
Neurosci 10, 126. [PubMed: 27999537] 

Yang Y, Solis-Escalante T, Yao J, Daffertshofer A, Schouten AC, Van Der Helm FC, 2016c. A general 
approach for quantifying nonlinear connectivity in the nervous system based on phase coupling. 
INT J NEURAL SYST 26, 1550031. [PubMed: 26404514] 

Yang Y, Yao J, Dewald J, Van der Helm FC, Schouten AC, 2020b. Quantifying the nonlinear 
interaction in the nervous system based on phase-locked amplitude relationship. IEEE Trans 
Biomed Eng.

Zhang Q, Hu Y, Potter T, Li R, Quach M, Zhang Y, 2020. Establishing functional brain networks using 
a nonlinear partial directed coherence method to predict epileptic seizures. J Neurosci Methods 
329, 108447. [PubMed: 31614163] 

Zhao Y, Billings SA, Wei H, He F, Sarrigiannis PG, 2013. A new narx-based granger linear and 
nonlinear casual influence detection method with applications to eeg data. J Neurosci Methods 
212, 79–86. [PubMed: 23041109] 

Zheng Y, Lin Z, Tay DBH, 2001. Time-varying parametric system multiresolution identification by 
wavelets. Int J Syst Sci 32, 775–793.

Zhong Y, Jan KM, Ju KH, Chon KH, 2007. Representation of time-varying nonlinear systems with 
time-varying principal dynamic modes. IEEE Trans Biomed Eng 54, 1983–1992. [PubMed: 
18018693] 

Zhou M, Tian C, Cao R, Wang B, Niu Y, Hu T, Guo H, Xiang J, 2018. Epileptic seizure detection 
based on eeg signals and cnn. Front Neuroinform 12, 95. [PubMed: 30618700] 

Zou R, Wang H, Chon KH, 2003. A robust time-varying identification algorithm using basis functions. 
Ann Biomed Eng 31, 840–853. [PubMed: 12971616] 

He and Yang Page 26

Neuroscience. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Overview of the linear and nonlinear functional and effective connectivity (causality) 

measures and their links with system identification methods. The linear functional 

connectivity, linear system identification and linear causality measures are first reviewed in 

the ‘Linear connectivity and system identification’ section. The nonlinear and nonlinear 

time-varying system identification approaches (in both time and frequency domains) are 

then investigated in the ‘Nonlinear system identification of neural systems’ section. The 

recently proposed nonlinear function connectivity measures and nonlinear causality 

measures (based on nonlinear system identification) are introduced in the ‘Nonlinear neural 

connectivity analysis’ section. The abbreviations in the diagram are defined as: 

autoregressive (AR), autoregressive with exogenous input (ARX), frequency response 

function (FRF), nonlinear autoregressive (moving average) model with exogenous inputs 

(NAR(MA)X), artificial neural networks (ANN), deep neural networks (DNN), generalised 

frequency response function (GFRF), output frequency response function (OFRF), time-

varying (TV), Granger causality analysis (GCA), partial directed coherence (PDC), directed 

transfer function (DTF), spectral Granger causality and directed coherence (DCOH), 

Granger causality (GC), dynamic causal modelling (DCM), nonlinear partial directed 

coherence (NPDC).
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Figure 2: 
The GFRFs of an exemplar nonlinear system. (A) The linear 1st-order GFRF, H1(f), shows a 

‘resonance’ peak at f = 0.9Hz; (B) and (C) the 3-D and contour plots of the 2nd-order GFRF, 

H2(f1, f2). It shows a peak at f1 = 0.9Hz, f2 = 0.9Hz, which indicates harmonics at 2f = f1 + 

f2 = 1.8Hz can be introduced in the output spectrum if input contains a 0.9Hz component.
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Figure 3: 
Analysing neurophysiological signals uses nonlinear time-invariant and time-varying system 

identification and corresponding frequency-domain analysis methods. The upper part of the 

diagram illustrates the nonlinear time-invariant modelling: first a NARMAX model is 

identified from the input and output neurophysiological signals (e.g. EEG, EMG, MEG, 

LFP); this time-domain model is then mapped to the frequency-domain with GFRFs (i.e. 

H1(f), H2(f), …), and the OFRF (Y (f) = Y1(f) + Y2(f), …) can be computed from the input 

spectrum and GFRFs. The lower part of the diagram shows the nonlinear time-varying 

system identification using a TV-NARX model, and the identified time-varying model can 

then be mapped to the time-frequency domain with (averaged) TV-GFRFs (i.e. H1(f, t), H2(f, 
t), …). The TV-OFRF can therefore be computed from a combination of the input time-

frequency spectrum and the TV-GFRFs.
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