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Multi-omics analysis reveals contextual tumor
suppressive and oncogenic gene modules within
the acute hypoxic response
Zdenek Andrysik1,2, Heather Bender1,2, Matthew D. Galbraith 1,2✉ & Joaquin M. Espinosa 1,2,3✉

Cellular adaptation to hypoxia is a hallmark of cancer, but the relative contribution of hypoxia-

inducible factors (HIFs) versus other oxygen sensors to tumorigenesis is unclear. We employ

a multi-omics pipeline including measurements of nascent RNA to characterize transcrip-

tional changes upon acute hypoxia. We identify an immediate early transcriptional response

that is strongly dependent on HIF1A and the kinase activity of its cofactor CDK8, includes

indirect repression of MYC targets, and is highly conserved across cancer types. HIF1A drives

this acute response via conserved high-occupancy enhancers. Genetic screen data indicates

that, in normoxia, HIF1A displays strong cell-autonomous tumor suppressive effects through

a gene module mediating mTOR inhibition. Conversely, in advanced malignancies, expression

of a module of HIF1A targets involved in collagen remodeling is associated with poor prog-

nosis across diverse cancer types. In this work, we provide a valuable resource for investi-

gating context-dependent roles of HIF1A and its targets in cancer biology.

https://doi.org/10.1038/s41467-021-21687-2 OPEN

1 Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. 2 Linda Crnic Institute for Down
Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. 3 Department of Molecular, Cellular and Developmental
Biology, University of Colorado Boulder, Boulder, CO, USA. ✉email: matthew.galbraith@cuanschutz.edu; joaquin.espinosa@cuanschutz.edu

NATURE COMMUNICATIONS |         (2021) 12:1375 | https://doi.org/10.1038/s41467-021-21687-2 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21687-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21687-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21687-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-21687-2&domain=pdf
http://orcid.org/0000-0003-0485-3927
http://orcid.org/0000-0003-0485-3927
http://orcid.org/0000-0003-0485-3927
http://orcid.org/0000-0003-0485-3927
http://orcid.org/0000-0003-0485-3927
http://orcid.org/0000-0001-9048-1941
http://orcid.org/0000-0001-9048-1941
http://orcid.org/0000-0001-9048-1941
http://orcid.org/0000-0001-9048-1941
http://orcid.org/0000-0001-9048-1941
mailto:matthew.galbraith@cuanschutz.edu
mailto:joaquin.espinosa@cuanschutz.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Hypoxia plays an important role in both physiological and
pathological processes in humans and is a common fea-
ture of solid tumors as a consequence of rapid prolifera-

tion and aberrant vascularization1. The hypoxia-inducible
transcription factors HIF1A and HIF2A are well-known reg-
ulators of the response to hypoxia, inducing genes involved in
metabolic reprogramming, angiogenesis, tissue remodeling,
stemness, and immune regulation1. In cancer, HIFs have been
described as oncogenes or tumor suppressors in different settings.
HIF activity has been associated with increased mortality,
metastasis, stemness, immune evasion, and resistance to ther-
apy1–4, thus providing rationale for therapeutic targeting of these
transcription factors in cancer. Indeed, HIF2A-specific inhibitors
have shown promise in treating clear cell renal cell carcinoma2.
However, both HIF1A and HIF2A can also exert tumor-
suppressive effects in certain contexts5,6, and the mechanisms
driving this functional duality are unclear. Therefore, a deeper
understanding of gene expression programs driven by HIFs and
their roles in cancer biology is necessary for better design and use
of HIF-based interventions.

Although both HIF1A and HIF2A are stabilized upon exposure to
hypoxia and regulate overlapping sets of target genes, evidence sug-
gests that they may preferentially regulate short- versus long-term
hypoxia, respectively7. In addition, rapid HIF-independent O2-sen-
sing mechanisms have recently been identified, raising the possibility
that the earliest hypoxic signaling may not be driven by the HIFs8–10.
To date however, studies of HIF-dependent and -independent tran-
scriptional responses to hypoxia have focused on steady-state mRNA
levels at relatively long time points8–15, rather than directly mea-
suring changes in transcription, preventing a clear dissection of HIF-
driven direct versus indirect effects on the transcriptome.

In this work, in order to better define the early transcriptional
response to acute hypoxia, we measured changes in transcription
using Precision Run-On with sequencing (PRO-seq). PRO-seq only
detects transcriptionally engaged RNA polymerases, thus enabling
rapid and direct measurement of changes in nascent RNA synth-
esis16. Combined with measurement of HIF1A chromatin binding
and steady-state mRNA levels in multiple cell lines, PRO-seq
enabled a deep characterization of the HIF1A-driven transcriptional
response to acute hypoxia. Our analysis of this comprehensive
data set identified both protein-coding and non-coding HIF1A
target genes as part of the acute response and produced several
mechanistic insights. Hypoxia induces acute transactivation and
repression in a HIF1A-dependent manner, but only transactivation
is associated with HIF1A binding. Repressed genes are enriched for
MYC targets, which could be explained by transactivation of MXI1,
a HIF1A target known to attenuate MYC-driven transcription.
HIF1A-dependent transactivation involves the release of paused
RNA polymerase II (RNAPII) and requires the kinase activity of
CDK8, a known HIF1A cofactor. Interestingly, a subset of HIF1A
targets, including DDIT4, are sensitive to basal HIF1A levels in
normoxia. The acute response is highly conserved across cancer cell
types and is associated with strong HIF1A binding to promoters
and actively transcribed enhancers. Analysis of genetic screen data
reveals that, in normoxia, HIF1A behaves as a strong tumor sup-
pressor, which is genetically linked to its target DDIT4, a repressor
of mTOR signaling. Contrastingly, in human cancers, a subset of
HIF1A targets involved in remodeling of the extracellular matrix is
consistently associated with poor prognosis. Our data sets and
analyses thus provide a resource for advanced understanding of the
role of HIF1A and its targets in cancer biology.

Results
Identification of the acute transcriptional response to hypoxia.
In order to identify rapid changes in transcriptional activity upon

hypoxia, we performed PRO-seq in HCT116 wild-type (WT) and
HIF1A−/− cells under normoxia (21% O2) and after 90 min of
exposure to hypoxia (1% O2) (Fig. 1a). This short treatment time
was sufficient to induce both intracellular hypoxia, as detected in
real-time using the fluorogenic hypoxia reporter Image-iT Red
(Supplementary Fig. 1a), and stabilization of HIF1A and HIF2A
(Fig. 1b). In addition, we measured HIF1A chromatin binding by
ChIP-seq and changes in the steady-state transcriptome using
poly(A)+ RNA-seq after longer-term exposure to hypoxia (24 h)
(Fig. 1a). This later time point was chosen to capture persistent
changes in steady-state mRNA and because HIF1A chromatin
binding patterns have been shown to be stable over time14.

At most human protein-coding genes, shortly after initiation,
elongating RNAPII pauses at ~20–60 nucleotides downstream of
transcription start sites (TSS), due to the action of negative
elongation factors and before recruitment of positive elongation
factors enables further elongation17,18. This regulated rate-
limiting step results in typical PRO-seq profiles with peaks of
high read density near the TSS, representing paused RNAPII, and
lower coverage throughout gene bodies, corresponding to
elongating RNAPII. Thus, to identify changes in productive
transcription in response to acute hypoxia, we first quantified
PRO-seq signals within gene body regions and tested for
differential transcriptional activity using DESeq2 (ref. 19) on data
from biological replicates (seeMethods, Supplementary Data 1 and
Supplementary Fig. 1b, c for replicate comparison). Rapid
transcriptional activation and repression were apparent after 90
min of hypoxia in WT cells (Fig. 1c). This early transcriptional
response was largely dependent on the presence of HIF1A, with
both activation and repression reduced in HIF1A−/− cells (Fig. 1c,
d), and included many well-characterized HIF1A targets such as
ENO1, PDK1, HK1, and SLC2A1 (Supplementary Fig. 1d).
Genome browser views for example downregulated and
unchanged genes are shown in Supplementary Fig. 1e. Thus,
while other O2-sensitive factors such as lysine demethylases may
rapidly modulate the chromatin environment8,9, our data indicate
that HIF1A plays a critical functional role in driving the acute
transcriptional response to hypoxia. The residual changes
observed in HIF1A−/− cells could be driven by HIF2A, which
is expressed in HCT116 cells and stabilized upon hypoxia
(Fig. 1b).

Gene set enrichment analysis (GSEA) of the acute transcrip-
tional response indicates positive enrichment of known hypoxia-
and glycolysis-related genes (Fig. 1e, Supplementary Fig. 1f), and
the upstream regulator analysis module of Ingenuity Pathway
Analysis (IPA) suite correctly predicts inactivation of the prolyl
hydroxylases that repress HIF activity (EGLNs) concurrently with
activation of HIF1A (Supplementary Fig. 1g). Interestingly, GSEA
reveals early repression of MYC targets (Fig. 1e, Supplementary
Fig. 1f), which could be explained by HIF1A-dependent induction
of the MYC repressor MXI1 (refs. 20–23), a gene that we found is
indeed induced at the early time point by PRO-seq (Fig. 1c, d,
Supplementary Fig. 1d, Supplementary Data 1). Importantly, a
comparison of the acute transcriptional response identified by
PRO-seq with 22 published studies characterizing the hypoxic
response using more traditional approaches revealed that many
genes in our data set have not previously been linked to hypoxic
signaling (Supplementary Data 2), thus providing a resource to
further characterize hypoxia-regulated pathways.

In many transcriptional networks, stimulus-responsive genes
are associated with the release of pre-loaded, paused RNAPII17.
Indeed, relative to their gene bodies, acute hypoxia-inducible
genes display relatively modest changes in transcriptional activity
at TSSs and consequent decreases in pausing index (PI), with an
impaired response in HIF1A−/− cells (Fig. 1f, g). By contrast,
acute hypoxia-repressed genes (defined by decreases in gene body
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activity) display mildly decreased signals at TSS along with
increased PI values (Supplementary Fig. 2a–c). These observa-
tions are consistent with the ability of HIF1A to induce
recruitment of transcription elongation factors to sites of active
chromatin15,24,25.

Notably, depletion of HIF1A does not have an obvious global
impact on transcription during normoxia or hypoxia, with WT

and HIF1A−/− cells displaying highly correlated transcriptional
activity at both TSSs and gene bodies (Supplementary Fig. 2d, e).
However, the metagene profiles of HIF1A−/− cells show mildly
decreased signals at TSS (Fig. 1g, Supplementary Fig. 2b, c). Using
DESeq2 analysis, we identified 386 TSS regions and 1979 gene
body regions with significant changes in HIF1A−/− cells in
normoxia (Supplementary Fig. 2f, g, Supplementary Data 1).
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These observations led us to test if basal levels of HIF1A
contribute to the expression of hypoxia-inducible genes during
normoxia. Indeed, we found that a subset of 107 acute hypoxia-
inducible genes showed lower basal expression in HIF1A−/− cells
(Supplementary Fig. 2h), including well-characterized HIF1A
targets such as ETS1, ELF3, and DDIT4 (Fig. 1h-i, Supplementary
Data 1). Other key HIF1A targets did not show this basal HIF1A-
dependence in normoxia, with some displaying lower transcrip-
tion in WT cells, such as the glucose transporters SLC2A1 and
SLC2A3 (Fig. 1h, i). These observations are consistent with low
but measurable HIF1A activity in normoxia, which is further
supported by analysis of CRISPR genetic screen data under
normoxic conditions (see later).

Acute transactivation associates with strong HIF1A binding.
We next investigated the relationship between acute activation
and repression, and HIF1A chromatin binding as measured by
ChIP-seq (Supplementary Data 3). Expectedly, HIF1A ChIP-seq
peaks identified in this data set are enriched for hypoxia response
element (HRE) motifs (Supplementary Fig. 3a, b) and essentially
all display increased signal in hypoxia (Fig. 2a). Although ChIP-
seq enrichment signal increases at TSSs for all classes of genes
upon hypoxia, only those that are acutely upregulated display
stronger binding around their TSS during hypoxia relative to
genes with non-significant (n.s.) differences in transcription, with
HIF1A peaks being most frequent within 2.5 kbp of the TSS
(Fig. 2b, Supplementary Fig. 3c). Although hypoxia induces
HIF1A binding near hundreds of promoter regions, peaks asso-
ciated with acutely transactivated genes tend to display a stronger
enrichment signal relative to either repressed or unaffected genes
(Fig. 2c). Furthermore, HIF1A enrichment signal at TSS or at
peaks within 50 kbp tends to be higher for genes that depend on
HIF1A for their upregulation during hypoxia than for genes that
display HIF1A-independent upregulation (Supplementary
Fig. 3d, e). When HIF1A peaks are classified as “proximal” and
“distal” according to enrichment signal and distance from TSS
(Supplementary Fig. 3f), the high-confidence proximal peaks are
significantly overrepresented near upregulated (~36%) but not
downregulated (~10%) genes (Supplementary Fig. 3g). Earlier
studies suggest that HIF1A can also operate over larger distances
by acting on preformed enhancer-promoter interactions26,27. Our
data support these findings, with distal HIF1A binding sites also
being significantly overrepresented near acute upregulated
(~21%) but not downregulated (~15%) genes or genes with no
significant change during acute hypoxia (Supplementary Fig. 3h).

Closer examination of distal HIF1A peaks revealed that those
associated with upregulated genes, referred herein as “productive”

binding sites, exhibit bidirectional transcriptional activity even in
normoxia, prior to upregulation of their associated genes (Fig. 2d).
Bidirectional transcription at intergenic regions is a recognized
hallmark of active enhancers28–30. Transcription at these sites
increases upon exposure to hypoxia and is dampened in HIF1A−/−

cells (Fig. 2d, e). By contrast, distal peaks not associated with
upregulated genes, referred herein as “unproductive” binding sites,
display much lower transcriptional activity that is mostly unaffected
by hypoxia or the absence of HIF1A (Fig. 2d, e). When we examined
available ENCODE data for HCT116 cells, we found that productive
distal sites display increased DNaseI accessibility and increased
enrichment of histone modifications associated with enhancers (e.g.
H3K27ac, H3K4me1) relative to unproductive sites (Fig. 2f).

HIF1A enrichment signal for both proximal and distal peaks is
positively correlated with fold changes in gene body transcription
at upregulated genes, with a stronger correlation being observed
for proximal peaks (Fig. 2g, h). Overall, genes associated with
proximal and/or distal HIF1A peaks account for ~52% of acute
transactivation events (Fig. 2i) and genes with both peak types
tend to display larger increases in productive transcription
(Fig. 2j). Together, these data indicate that HIF1A binding is
associated with acute transactivation, and do not support a direct
role for HIF1A in acute transcriptional repression, which may be
explained in part by indirect repression of the MYC transcrip-
tional program via MXI1 induction22 (Fig. 1d, e, Supplementary
Fig. 1d, f). Thus, from this point forth, we focused on the acute
transactivation response.

Curiously, nearly half of the acute transactivation events
exhibit dependence on HIF1A despite having no associated
HIF1A peaks within 50 kbp (Fig. 2i, j, “no peak” category),
suggesting either that some indirect transactivation events can
occur by 90 min of hypoxia, or that these genes are regulated by
HIF1A enhancers located at much greater distances. In support of
the former hypothesis, IPA upstream regulator analysis predicts
that some of these genes are regulated by signaling pathways,
transcription factors, and chromatin regulators that are them-
selves directly induced by HIF1A, such as TGFB signaling (which
could be explained by the strong induction of the SMAD family
members SMAD3 and SMAD9), FOXO3, and KDM3A (Fig. 2k, l,
Supplementary Fig. 3i). Therefore, the bulk of the acute
transactivation response dependent on HIF1A can be attributed
to strong HIF1A binding near direct target genes and the indirect
action of early targets of HIF1A.

CDK8 kinase activity is required for acute transactivation. We
previously identified the Mediator-associated kinase CDK8 as
a transcriptional cofactor of HIF1A31. However, our studies

Fig. 1 Identification of an acute transcriptional response to hypoxia driven by HIF1A. a Genome browser view of PRO-seq, ChIP-seq, and RNA-seq
signals across the ENO1 locus for HCT116 wild-type (WT) and HIF1A−/− cells exposed to normoxia (21% O2, blue) or hypoxia (1% O2, red). bWestern blot
analysis of HIF1A and HIF2A levels in HCT116 wild-type cells exposed to 21% or 1% O2 for the indicated times. Images are representative of at least two
replicates with similar results. Source data are provided as a Source Data file. c DESeq2 differential expression analysis of PRO-seq signal within gene body
regions for HCT116 WT (blue) and HIF1A−/− (green) cells. Horizontal dashed lines indicate an FDR threshold of 10% for negative binomial Wald test;
numbers and colored points indicate significant genes at this threshold. d Comparison of fold changes in PRO-seq gene body signal induced by 90min
hypoxia in HCT116 WT versus HIF1A−/− cells. Red/green points denote genes with significant up/down regulation; points representing all other genes are
colored by density. e Gene set enrichment analysis (GSEA) of “Hallmark” gene sets against genes ranked by gene body fold changes induced by 90min
hypoxia in HCT116 WT cells. Red/green points denote gene sets with significant (FDR 10%) positive/negative enrichment. f Distributions of fold changes
in PRO-seq signal at gene bodies and transcription start sites (TSS) and pausing index (PI) for upregulated genes in HCT116 WT (blue) and HIF1A−/−

(green) cells. Horizontal spread of data points is proportional to density; boxes indicate medians and upper and lower quartiles; numbers above the
HIF1A−/− plots indicate effect size estimates and p-values for two-sided Mann–Whitney U tests against the corresponding measure in WT cells. g
Metagene showing typical PRO-seq signal profiles across upregulated genes in HCT116 WT (blue) and HIF1A−/− (green). Data are represented as splined
linear fit lines with 95% confidence intervals in gray. h Upregulated genes ranked by WT/HIF1A−/− fold-change in normoxia, comparing the effect of HIF1A
in normoxia (green/black/red points) and hypoxia (gray points). i Heatmap of gene body RPKM Z-scores for select example genes in HCT116 WT and
HIF1A−/− cells in normoxia and hypoxia. See also Supplementary Figs. 1, 2 and Supplementary Data 1, 2.
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employed measurements of steady-state mRNA, which could not
properly define direct versus indirect contributions of CDK8 to
the transcriptional program during acute hypoxia. Furthermore,
our previous studies did not test the role of CDK8 catalytic
activity versus structural or scaffolding functions in HIF1A-
driven transactivation. Importantly, in different settings, the

kinase activity of CKD8 has been involved in both transcriptional
repression and activation32,33, and Mediator-associated kinases
have been shown to have kinase-independent effects in some
transcriptional networks33,34. Therefore, we employed PRO-seq
analysis of HCT116 cells engineered to express an “analog-sen-
sitive” allele of CDK8 (CDK8as/as) that can be specifically
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inhibited by bulky ATP analogs. The generation and character-
ization of this cell line were previously reported35. Notably, the
CDK8as/as alleles behave as hypomorphs, showing decreased
kinase activity even in the absence of bulky ATP analogs, while
the remaining kinase activity can be fully blocked by the ATP
analog 3MB-PP1 (ref. 35). We thus repeated our PRO-seq analysis
in HCT116 WT and CDK8as/as cells treated with vehicle (DMSO)
or 3MB-PP1 and exposed to 21% or 1% O2 for 90 min (Supple-
mentary Data 4, see Supplementary Fig. 4a, b for evaluation of
biological replicates). Analysis of gene body transcription activity
in DMSO- and 3MB-PP1-treated HCT116 cells revealed a
widespread requirement for CDK8 kinase activity for hypoxia-
driven transactivation, with a more obvious impact in the +3MB-
PP1 conditions (Fig. 3a, Supplementary Fig. 4c, d). Among 1547
genes significantly transactivated upon hypoxia in this experi-
ment, 405 were expressed at significantly lower levels upon full
CDK8 inhibition with 3MB-PP1, while 99 genes showed
increased expression (Fig. 3b, Supplementary Fig. 4c). Thus,
among hypoxia-inducible genes, CDK8 behaves mostly as a
positive regulator of transcription. This requirement for CDK8
kinase activity was also evident, albeit with milder quantitative
effects, in DMSO-treated cells expressing the hypomorph
CDK8as/as alleles (Supplementary Fig. 4c, d).

Pathway analysis reveals stronger enrichment of gene signa-
tures associated with hypoxia, glycolysis, and extracellular matrix
remodeling among hypoxia-inducible genes that require CDK8
kinase activity (Fig. 3c). Upstream regulator analysis identifies
enrichment of genes regulated by HIF1A among those that
required CDK8 for transactivation, whereas no clear upstream
regulators are identified among “CDK8 repressed genes” (Fig. 3d).
CDK8-dependent genes include prominent HIF1A targets
involved in glycolysis (Fig. 3e), consistent with our previous
finding that CDK8 inhibition impairs glycolysis35. Among
hypoxia-inducible genes that require CDK8 kinase activity for
transactivation, CDK8 inhibition significantly reduced productive
elongation, with lesser impacts on transcription at TSSs (Fig. 3f, g,
Supplementary Fig. 4e, f). Thus, upon CDK8 inhibition, pausing
indices were not decreased at these genes during hypoxia,

reinforcing the notion of HIF1A and CDK8 working coordinately
to stimulate RNAPII elongation (Fig. 3g).

Interplay between acute transactivation and mRNA expression.
We next examined the relationship between the acute transacti-
vation response and subsequent changes in steady-state mRNA
levels at 24 h hypoxia (Supplementary Data 5). A majority
(~59%) of acute transactivation events correspond to significant
increases in steady-state polyadenylated mRNAs at the later time
point (460 genes, Fig. 4a). We define this gene set henceforth as
acute response genes. Expectedly, hypoxia induced many more
changes at the mRNA level at the later time point that did not
correspond to early transactivation events, and we refer to these
genes as late response genes (1672 genes, Fig. 4a). We then asked
how HIF1A binding related to these two groups. When probing
only for proximal HIF1A binding, ~45% (209 out of 460) of acute
response genes display nearby HIF1A binding, compared to only
~13% (217 out of 1672) of late response genes (Supplementary
Fig. 5a). When extending the analysis to also include distal peaks,
the percentages increase to ~58% (268 out of 460) for acute
response genes and ~27% (457 out of 1672) for late response
genes. Thus, genes that are hypoxia-inducible as observed by both
PRO-seq and RNA-seq are more likely to be bound by HIF1A.
Furthermore, HIF1A peaks associated with acute response genes
tend to display stronger levels of HIF1A binding relative to peaks
associated with late response genes (Fig. 4b). This exercise reveals
that simply cross-referencing steady-state mRNA data with
HIF1A ChIP-seq data would predict the existence of hundreds of
putative direct HIF1A targets that are not immediately induced
by hypoxia (i.e. 457 genes when using proximal + distal sites,
Supplementary Fig. 5b). Additionally, this approach would miss
dozens of acute response genes identified by PRO-seq for which
nearby HIF1A is not evident (Supplementary Data 2).

Interestingly, the subset of transcripts that were detected as
hypoxia-inducible only by PRO-seq (234 genes, Fig. 4a) included
many antisense RNAs, miRNAs, and long non-coding RNAs
(lncRNAs) (Supplementary Fig. 5c,d, Supplementary Data 6).
Given the evolving annotation of lncRNAs, many of which have

Fig. 2 Acute transactivation, not repression, is associated with HIF1A binding. a Comparison of enrichment signal in normoxia and hypoxia for HIF1A
peaks called in hypoxic HCT116 wild-type (WT) cells (n= 3996 peaks). Points are colored by density. b Meta profile showing typical HIF1A occupancy
profile over transcription start sites (TSS) of upregulated (red), downregulated (green), and not significantly regulated (n.s., gray) genes during acute
hypoxia. Data are represented as splined linear fit lines with 95% confidence intervals in gray. c Enrichment signal for HIF1A peaks within 50 kbp of TSS,
separated by gene body differential expression class: not significantly regulated (n.s., gray), upregulated (red), downregulated (green). Horizontal spread of
data points is proportional to density; boxes indicate medians and upper and lower quartiles; horizontal bars with numbers indicate FDR-adjusted p-values
for two-sided Mann–Whitney U tests. d Meta profiles showing typical PRO-seq signal profile across distal HIF1A peak regions associated with genes
upregulated (Productive) or not upregulated (Unproductive) during acute hypoxia in HCT116 WT (blue) and HIF1A−/− (green) cells. Data are represented
as splined linear fit lines with 95% confidence intervals in lighter shades, with positive and negative values reflecting signal density on + and − genomic
DNA strands, respectively. e Distributions of fold changes in PRO-seq signal (+/− strands combined) within ±250 bp of distal HIF1A peaks, separated by
association with genes upregulated (Productive) or not upregulated (Unproductive) during acute hypoxia in HCT116 WT (blue) and HIF1A−/− (green)
cells. Horizontal spread of data points is proportional to density; boxes indicate medians and upper and lower quartiles; numbers indicate FDR-adjusted
p-values for two-sided Mann–Whitney U tests. f Distributions of DNaseI accessibility or ChIP-seq signal enrichment for various chromatin marks within
regions corresponding to distal HIF1A peaks associated with genes upregulated (Productive, pink) or not upregulated (Unproductive, teal) during acute
hypoxia. Horizontal spread of data points is proportional to density; boxes indicate medians and upper and lower quartiles; numbers indicate p-values for
two-sided Mann–Whitney U tests. g, h Comparison of PRO-seq (gene body) fold-change with ChIP-seq peak signal for proximal (g) and distal (h) HIF1A
peaks. Gene class indicates PRO-seq gene body differential expression: not significantly regulated (n.s., gray), upregulated (red), downregulated (green).
Solid lines in corresponding colors denote linear model fits to the data, with 95% confidence intervals in gray. Numbers in upper left are Pearson correlation
coefficients in corresponding colors; * denotes significant correlations (p-value < 0.05). i Proportions of genes in each class associated with proximal and/
or distal HIF1A peaks. j Distributions of fold changes in gene body activity for upregulated genes associated with different classes of HIF1A peaks: proximal
and distal (Both, pink), proximal only (green), distal only (teal), or no peak (purple). Horizontal spread of data points is proportional to density; boxes
indicate medians and upper and lower quartiles; numbers indicate FDR-adjusted p-values for two-sided Mann–Whitney U tests. k Heatmap of activation
Z-scores for upstream regulator predictions by the Ingenuity Pathway Analysis suite for acutely upregulated genes lacking associated HIF1A binding.
l Heatmap showing relative expression of putative indirect regulators of the acute hypoxic response. Data are represented as row-wise Z-scores calculated
from RPKM values. See also Supplementary Fig. 3 and Supplementary Data 3.
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Fig. 3 The acute transcriptional response to hypoxia requires CDK8 kinase activity. a Heatmap showing relative gene body signal for genes with increased
transcription activity after 90min hypoxia in wild-type (WT) and CDK8as/as HCT116 cells treated with 3MB-PP1 during normoxia (21% O2) and hypoxia
(1% O2). Data are represented as row-wise Z-scores calculated from RPKM values. b Upregulated genes ranked by CDK8as/as/WT fold-change in hypoxia +
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Heatmap color represents −log10(p-value) from hypergeometric enrichment test. d Comparison of transcription regulators with enriched targets among
CDK8-dependent and CDK8-repressed genes, as identified by the TRRUST module of Metascape. Heatmap color represents −log10(p-value) from
hypergeometric enrichment test. e Bubble plots showing relative transcription activity in WT and CDK8as/as HCT116 cells exposed to normoxia (pink) or
hypoxia (blue) for CDK8-dependent glycolytic genes. Circle areas correspond to gene-wise Z-scores calculated from gene body RPKM values. f Metagene
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PP1. Data are represented as splined linear fit lines with 95% confidence intervals in gray. g PRO-seq fold-change distributions for gene body, transcription
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effect size estimates and p-values for two-sided Mann–Whitney U tests against the corresponding measure in WT cells. See also Supplementary Fig. 4 and
Supplementary Data 4.
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been reclassified as eRNAs upon further examination36, we hope
our PRO-seq data set will enable a more detailed characterization
of these transcripts in future studies.

Upstream regulator analysis demonstrates strong enrichment
of HIF1A targets among acute response genes, whereas targets of
a much larger set of transcriptional regulators are enriched
among the late response genes (Fig. 4c), involving many other

pathways (Supplementary Fig. 5e). From this point forth, we
focused our analyses on acute response genes.

When comparing gene-body PRO-seq signals to mRNA RNA-
seq signals for acute response genes, we observed that both RNA
output levels and fold-change are positively correlated between
the two measurements (Fig. 4d, Supplementary Fig. 5f), with
many changes in transcriptional activity being amplified in terms
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of steady-state changes (Supplementary Fig. 5f). However, fold
changes in gene body activity have a weaker correlation with
output levels (Supplementary Fig. 5g). This suggests that early
transcriptional output is an important driver of steady-state
mRNA levels at much later time points, with hypoxia-inducible
genes displaying expression levels covering several orders of
magnitude (Fig. 4d). For example, HIF1A targets such as ENO1
and DDIT4 produce >100-fold more nascent RNA early on and
steady-state mRNA later on relative to lowly transcribed genes
such as PTPRR and NEDD9 (Fig. 4e). To investigate the
mechanisms modulating the strength of transcriptional output,
we analyzed variations in chromatin environment, RNAPII
occupancy, and HIF1A binding. Transcriptional output at
90 min of hypoxia correlates positively with the pre-existing
levels of histone marks associated with gene activity, such as
H3K27 acetylation (H3K27ac) and H3K79 dimethylation
(H3K79me2), but not so with H3K9 trimethylation
(H3K9me3), a mark of repressed chromatin (Fig. 4f, Supplemen-
tary Fig. 6a). Highly transcribed acute response genes also show
higher levels of DNAse I accessibility, RNAPII occupancy, and
H3K4me3 (a mark of transcriptional initiation) around their
promoters in normoxia (Fig. 4f, Supplementary Fig. 6a). By
contrast, these chromatin features are not correlated with the
fold-change in transcriptional activity (Supplementary Fig. 6b).
Lastly, HIF1A peaks associated with highly transcribed genes tend
to show higher enrichment signal in hypoxia (Fig. 4f). Thus, the
strength of HIF1A binding correlates with both absolute
transcriptional output (Fig. 4f) and fold-change in transcriptional
output (Fig. 2g) among its target genes.

Altogether, these observations indicate that an open chromatin
environment during normoxia is positively associated with the
strength of transcriptional output (but not fold-change) during
the acute response to hypoxia and with subsequent steady-state
mRNA levels.

Conservation of the acute transcriptional response to hypoxia.
To investigate the conservation of the acute transcriptional
response to hypoxia, we repeated RNA-seq and HIF1A ChIP-seq
analyses for three additional cancer cell types: RKO (colorectal
carcinoma), A549 (lung cancer), and H460 (lung cancer) (Sup-
plementary Data 3, 5). Although we observed high overall
diversity among hypoxia-induced mRNAs detected by RNA-seq
after 24 h hypoxia (Supplementary Fig. 7a), ~90% of the acute
response genes identified in HCT116 cells were induced in one or
more additional cell lines (Fig. 5a, b). Genes upregulated in all
four cell lines (core) tend to display greater increases in both
nascent RNA and steady-state mRNA relative to less-conserved
(shared 3, shared 2) or HCT116-specific genes (Fig. 5c, d).

Comparison of HIF1A peaks identified in each cell type
indicates that, although HIF1A binding is consistently induced by
hypoxia in all four cell types (Supplementary Fig. 7b) and
consistently associated with underlying HREs (Supplementary
Fig. 7c), there is vast cell type-specificity in HIF1A peak calls
(Supplementary Fig. 7d). However, within this massive diversity,
common HIF1A peaks show stronger HIF1A binding (Fig. 5e)
and those associated with core genes are mostly conserved across
cell types (Fig. 5f) and display significantly higher HIF1A signals
than peaks associated with non-core genes (Fig. 5g). Furthermore,
HIF1A peaks are associated with greater fractions of core
upregulated genes in each cell type than less-conserved or cell
type-specific genes (Supplementary Fig. 7e).

Overall, these results reveal that acute response genes are more
conserved across cancer cell types than late response genes,
commonly associated with high-occupancy HIF1A binding sites,
and thus more likely to play a role in the cellular adaptation to
hypoxia across multiple cancer types.

A tumor-suppressive role for HIF1A linked to mTOR sup-
pression. Having identified the acute transcriptional response to
hypoxia, which is more conserved than the late response across
several cancer cell lines and also more clearly associated with
strong and conserved HIF1A binding events, we then set out to
investigate the contribution of these acute response genes to
HIF1A-dependent processes in cancer cells. First, we analyzed
genome-wide CRISPR-mediated knockout data for 625 cancer
cell lines from the Cancer Dependency Map project37. In this
data set, depletion of tumor suppressor genes leads to improved
cell fitness and positive gene effect scores (e.g. RB1), while
depletion of oncogenes has the opposite effect (e.g. KRAS)
(Fig. 6a). Gene effect scores for HIF1A are positive in most cell
types with a distribution similar to that of RB1, whereas the HIF
repressors HIF1AN, EGLN1, and VHL clearly promote cell fit-
ness (Fig. 6a). Therefore, in the context of in vitro cell culture
under normoxia and nutrient-rich conditions, HIF1A behaves as
a strong tumor suppressor through cell-autonomous mechan-
isms. Furthermore, this reveals a clear cellular role for HIF1A
under normoxia, likely explained by the existence of additional
HIF1A-activating stimuli such as growth factor signaling and
genetic alterations in cancer cells2,3.

Next, to assess the contribution of acute response genes to
HIF1A suppressive effects in vitro, we analyzed co-dependency
relationships in this large data set (Supplementary Table 7).
Reassuringly, the HIF1A cofactor ARNT shows a strong positive
co-dependency with HIF1A, while the HIF1A repressors EGLN1-
3, VHL, and HIF1AN/FIH exhibit strong negative relationships
(Fig. 6b, c, Supplementary Fig. 8a), confirming the validity of this

Fig. 4 Acute transcriptional output shapes the steady-state transcriptional response to hypoxia. a Qualitative overlap between genes called as
upregulated in PRO-seq (90min hypoxia) and RNA-seq data sets (24 h hypoxia). Odds ratio (OR) and p-value (p) are for two-sided Fisher’s exact test.
b Distributions of HIF1A ChIP-seq enrichment signal for HIF1A peaks associated with genes upregulated in both PRO-seq and RNA-seq data sets (Acute
response, pink) or RNA-seq only (Late response, teal). Horizontal spread of data points is proportional to density; boxes indicate medians and upper and
lower quartiles. Number below plot indicates p-value for two-sided Mann–Whitney U test between the two distributions. c Comparison of transcription
regulators with enriched targets among Acute response and Late response genes, as identified by the TRRUST module of Metascape. Heatmap color
represents −log10(p-value) from hypergeometric enrichment test. d Comparison of transcription activity at 90min hypoxia (gene body RPKM) with mRNA
levels after 24 h hypoxia (RNA RPKM) for Acute response genes. Points are colored by density and selected example genes are labeled. Pearson
correlation coefficient is shown in upper left, * denotes significant correlation (p < 2.2e−16). e Bubble plots showing relative transcription activity in wild-
type (WT) and CDK8as/as HCT116 cells exposed to normoxia (pink) or hypoxia (blue) for CDK8-dependent glycolytic genes. Circle area corresponds to
log2(RPKM) values, scaled within each data set. f Comparison of transcription activity at 90min hypoxia (gene body RPKM) with enrichment signal (mean
normalized tag counts) at TSS regions (for ENCODE project chromatin and RNAPII data) or peak regions (for HIF1A ChIP-seq data) for Acute response
genes. Points are colored by density. Blue lines denote linear model fits to the data, with 95% confidence intervals in gray. Numbers in upper left are
Pearson correlation coefficients, * denotes significant correlations (10% FDR). FDR-corrected p-values are as follows: H3K27ac 4.07e−29, H3K79me2
1.29e−27, H3K9me3 5.36e−2, DNaseI 3.93e−6, RNAPII 3.70e−15, H3K4me3 1.26e−7. See also Supplementary Figs. 5, 6 and Supplementary Data 5, 6.
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approach for identifying bona fide functional relationships.
Conversely, for VHL the strongest negative correlation is with
HIF1A, while the HIF1A repressors EGLN1 and EGLN3 as well
as the VHL cofactors ELOB and CUL2 exhibit positive
correlations. (Fig. 6d, e, Supplementary Fig. 8b).

Notably, the strongest positive correlation for HIF1A is DDIT4
(REDD1) (Fig. 6b, c), a core acute response gene (Supplementary
Fig. 8c) previously characterized as a direct HIF1A target38.
DDIT4 was previously shown to repress mTOR signaling
through the TSC1-2 complex39, a notion that is recapitulated
by our co-dependency analysis, whereby DDIT4 shows positive
correlations with TSC1-2 and negative correlations with
MTOR and LAMTOR1 (Fig. 6f, g, Supplementary Fig. 8d). There
is also a strong positive relationship between HIF1A and FOXO3
(Fig. 6b, c, Supplementary Fig. 8a), another acute response
gene that encodes a transcription factor with central roles in
multiple stress responses40, and a known repressor of
mTORC1 (ref. 41).

Altogether, these results point to cell-autonomous anti-
proliferative effects for HIF1A before the onset of hypoxia, likely
through suppression of mTOR signaling via induction of DDIT4,
a target gene sensitive to basal levels of HIF1A (Fig. 1h, i).

Acute response genes associated with cancer progression.
Having shown that acute transcriptional output and early fold
changes in transcriptional activity have proportional impacts on
steady-state mRNA levels at late time points of hypoxia, we then
set out to investigate the prognostic value of acute response genes
through analysis of ~11,000 human tumors across 27 cancer types
for which gene expression are available via The Cancer Genome
Atlas (TCGA) and for which curated patient survival data have
been derived42. We first tested for association between progression-
free interval (PFI) and an aggregate expression score across all
acute response genes present in this data set using an iterative log-
rank approach to find the optimal split between samples with
high and low scores (see Methods, Supplementary Table 8).
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Importantly, high expression scores were predominantly associated
with decreased survival, reaching statistical significance (FDR <
10%) in six cancer types: stomach adenocarcinoma (STAD), ade-
noid cystic carcinoma (ACC), cervical squamous cell carcinoma
(CESC), low-grade gliomas (LGG), kidney renal papillary cell
carcinoma (KIRP), and urothelial bladder carcinoma (BLCA)

(Fig. 7a, b, Supplementary Fig. 9a), indicating that high expression
of hypoxia-inducible genes as a group is preferentially associated
with worse outcome. Only one tumor type, skin cutaneous mela-
noma (SKCM), presented better prognosis when expressing high
levels of acute response genes (Fig. 7a, Supplementary Fig. 9a). We
then analyzed acute response genes individually (Supplementary
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Table 8), focusing on those significantly associated with PFI in
multiple cancer types (FDR < 5%). High expression of individual
acute response genes was more often associated with unfavorable
than favorable prognosis (161 versus 107, respectively), with some
genes exhibiting divergent associations in different cancer types
(83 genes) (Supplementary Fig. 9b). Of note, MXI1, the acute
response gene known to repress the MYC transcriptional program,
was consistently associated with favorable prognosis, as would be
expected for a suppressor of MYC signaling (Supplementary
Fig. 9c, d).

Importantly, when we analyzed the pathways enriched among
acute response genes significantly associated with decreased PFI
across increasing numbers of cancer types, we observed increased
enrichment only of genes related to ECM remodeling (Fig. 7c, d).
This subset of acute response genes included key enzymes
involved in collagen remodeling (e.g. PLOD2, PLOD1, P4HA1,
LOXL2), collagen subunits (COL1A1, COL13A1), and proteins
previously involved in cell migration and invasion, such as
SERPINE1 (ref. 43), CD109 (ref. 44), and calpastatin (CAST)45.
Some of these genes have previously been linked to hypoxia-
induced ECM remodeling, local invasion, and/or metastasis, such
as PLOD1/2, P4HA1, and LOXL2 (refs. 3,46). When we repeated
this analysis using Overall Survival (OS) as an endpoint instead of
PFI, high expression of these ECM-related genes was also
associated with shorter time to death (Supplementary Fig. 9e).
Consistently, high expression of these genes in diverse tumor
types is associated with poor prognosis (Fig. 7e, Supplementary
Fig. 9d). Cox regression analysis with additional variables (see
Methods) further confirmed association of these genes with
adverse outcome (Fig. 7f, Supplementary Table 8). Notably, PFI
and OS data may not be sufficiently mature for some cancer types
in the TCGA data set, which prompts cautious interpretation of
negative results in this analysis.

Overall, these results highlight the pleiotropic nature of the
acute hypoxic response, with tumor-suppressive and oncogenic
roles in different contexts through the action of diverse HIF1A
targets, while also revealing a prominent role for hypoxia-induced
ECM remodeling in cancer progression.

Discussion
Several proteins capable of exerting O2-sensitive signal trans-
duction have been identified in humans, most prominent among
them the well-characterized HIF transcription factors47, Jmjc
domain-containing lysine demethylases8,9, and the thiol oxidase
ADO10. The recent identification of HIF-independent O2-sensing
mechanisms reveals the need to dissect their relative contribution
to the overall cellular and organismal responses to hypoxia, as
well as their roles in cancer and other pathologies. The Jmjc
domain-containing lysine demethylases KDM5A and KDM6A
are inhibited during hypoxia, resulting in hypermethylation of

histone marks associated with gene activation and repression,
respectively8,9, which could potentially enforce O2-sensitive epi-
genetic programs. The thiol oxidase ADO, a human homolog of
plant cysteine oxidases, was found to regulate protein stability in
an O2-sensitive fashion through the N-degron pathway, including
targets involved in calcium signaling, MAPK signaling, and
angiogenesis10. These two O2-sensing mechanisms may evolu-
tionarily predate the HIFs and appear capable of rapid responses
to hypoxia48, suggesting that the earliest hypoxic signaling may be
independent of the HIFs. To advance knowledge in this area, we
completed a multi-omics analysis of the cellular response to
hypoxia, including an analysis of nascent RNA synthesis at short
time points of O2 deprivation.

Our PRO-seq analysis of the acute transcriptional response to
hypoxia reveals a strong dependency on HIF1A. Most acute
upregulated genes harbor relatively high levels of both active/
paused RNA polymerase, indicative of a permissive chromatin
landscape prior to hypoxic exposure. While we cannot discount a
possible role for further chromatin modification upon acute
hypoxia, this suggests that neither chromatin accessibility nor
RNAPII recruitment are limiting factors at most of these genes.
We previously demonstrated that HIF1A induces the recruitment
of elongation factors including CDK9/P-TEFb to stimulate
increased expression of target genes (measured as steady-state
mRNA) and that many of these genes harbor paused RNAPII in
normoxia, leading us to propose a transactivation model whereby
HIF1A acts predominantly by stimulating the release of pre-
loaded, paused RNAPII into productive elongation31. We also
showed that this process involves recruitment of the CDK8-
Mediator complex to HIF1A targets, many of which require
CDK8 for induced expression31. Our PRO-seq analysis of tran-
scription in both normoxia and hypoxia reported here provides a
definitive test of this model, demonstrating that hypoxia indeed
stimulates the release of TSS-proximal RNAPII at HIF1A target
genes, with a consequent increase in transcription across gene
bodies, and that these events require the kinase activity of CDK8.
Interestingly, we also found that a subset of HIF1A targets is
sensitive to HIF1A status even in normoxia, a finding that became
particularly relevant during our analysis of genetic screens per-
formed in normoxia. These observations could be linked to the
fact that HIF1A activity in normoxia can be increased by mere
depletion of SIRT6, a histone deacetylase that functions as a
negative regulator of RNAPII elongation49,50.

Our comparison of acute transactivation events with matched
HIF1A ChIP-seq data indicates that hypoxia-driven transactiva-
tion, but not repression, is a direct effect of HIF1A. Instead,
repression could be explained by the indirect action of early
HIF1A targets such as MXI1 (ref. 22). Interestingly, many acute
activation events are dependent on HIF1A despite the lack of any
associated HIF1A binding sites. While this may partly be

Fig. 6 HIF1A suppresses cancer cell viability in normoxia. a Gene effect score distributions for HIF1A and select known regulators, alongside the tumor
suppressor RB1 and oncogene KRAS for comparison, Horizontal spread of data points is proportional to density; boxes indicate medians and upper and
lower quartiles; dashed line indicates threshold below which a gene is considered essential. b Ranked Spearman correlation coefficients of gene effect
scores for each gene against HIF1A, with selected genes labeled, and acute response genes highlighted in red. * denotes significant correlations (FDR <
10%) — see Supplementary Data 7 for exact FDR values. c Comparison of gene effect scores with select genes for HIF1A. Points representing cell lines are
colored by density and dashed lines represent linear fits to the data with 95% confidence intervals in gray. d Ranked Spearman correlation coefficients of
gene effect scores for each gene against VHL, with selected genes labeled, and acute response genes highlighted in red. * denotes significant correlations
(FDR < 10%) — see Supplementary Data 7 for exact FDR values. e Comparison of gene effect scores with select genes for VHL. Points representing cell
lines are colored by density and dashed lines represent linear fits to the data with 95% confidence intervals in gray. f Ranked Spearman correlation
coefficients of gene effect scores for each gene against DDIT4, with selected genes labeled, and acute response genes highlighted in red. * denotes
significant correlations (FDR < 10%) — see Supplementary Data 7 for exact FDR values. g Comparison of gene effect scores with select genes for DDIT4.
Points representing cell lines are colored by density and dashed lines represent linear fits to the data with 95% confidence intervals in gray. See also
Supplementary Fig. 8 and Supplementary Data 7.
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explained by false negatives due to limitations in linking HIF1A
peaks to genes, our analysis of putative upstream regulators
identified several factors with targets enriched in this category
that are themselves direct acute HIF1A targets, such as SMAD
factors and FOXO3. This suggests that secondary transcriptional
events may be occurring very early during the hypoxic response

and warrants further investigation. The acute transactivation of
SMAD factors, which are key mediators of TGFB signaling, is
potentially relevant to the dual roles of the HIF1A network in
cell-autonomous tumor suppression versus cell-extrinsic tumor
promotion, as TGFB signaling is known to display similar con-
trasting effects at different stages of cancer progression51. The
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early induction of FOXO3 may in turn be involved in cell-
autonomous tumor suppression by HIF1A, as FOXO3 is
considered a tumor suppressor capable of repressing
mTORC1 (ref. 41).

Our analysis of acute response genes revealed strong con-
servation across vastly different cancer cell types. Although
hypoxia induces many cell-type-specific changes in gene expres-
sion, the core set of hypoxia-inducible genes is enriched for those
that were acutely transactivated in HCT116 cells. This core set
was clearly associated with strong and conserved HIF1A binding
events. Thus, while HIF1A may work with different partner
transcription factors to drive cell type-specific responses to
hypoxia47, it nonetheless activates a core group of genes in a
variety of cellular contexts. Accordingly, we restricted our analysis
of genetic screen data and human cancer samples to acute
response genes, which revealed tumor suppressive versus onco-
genic roles for different sets of HIF1A targets.

Our analysis of genetic screen data produced by the DepMap
Project revealed a clear anti-proliferative role for HIF1A in nor-
moxia. In addition to hypoxia, HIF1A activity is also induced by
additional signals common during cancer progression, including
reactive oxygen species, growth factor signaling, and mutation of
oncogenes and tumor suppressors2,3. Therefore, we hypothesized
that HIF1A knockout could modulate cell viability in the nor-
moxic conditions used in the DepMap Project, and that func-
tionally important acute response genes might exhibit similar
essentiality profiles as HIF1A in these experiments. Indeed, sev-
eral acute response genes are among the most strongly correlated
with HIF1A in this data set. Interestingly, HIF1A behaves simi-
larly to tumor suppressors such as RB1 in the normoxic and
nutrient-rich conditions under which the screenings were carried
out, with its knockout having a positive effect on cell viability.
While this might initially seem counterintuitive, a critical role of
HIF1A in adaptation to hypoxia involves balancing energy supply
and demand, in part by promoting glycolysis, downregulating
mitochondrial metabolism, and suppression of mTOR signal-
ing52. In this light, activation of HIF1A by oncogenic signaling in
normoxia might be expected to lead to decreased cell prolifera-
tion. In this context, the strong correlations of HIF1A with the
acute response genes DDIT4 and FOXO3, both negative reg-
ulators of mTOR39,41, suggests that inhibition of proliferation via
mTOR suppression may be an important function for basal levels
of HIF1A. Notably, our PRO-seq analysis detected reduced basal
transcription activity at the DDIT4 locus in HIF1A−/− HCT116
cells. Finally, this potential tumor-suppressive role of HIF1A in
normoxic cancer cells suggests caution in applying therapeutic
approaches aiming to inhibit HIF1A signaling.

Although high HIF1A protein levels are an independent pre-
dictor of mortality in multiple cancer types3, HIF1A can also
exert tumor-suppressive effects5. Moreover, oxygen levels during
cancer development are seldom static7 and, while circulating

tumor cells may be well-oxygenated, metastases frequently occur
in tissues with hypoxic niches4, providing multiple scenarios
where the acute response might influence disease progression.
Our analysis of TCGA expression and survival data show that
stronger expression of acute response genes as a group is more
commonly associated with shorter progression-free intervals
across different cancer types. For individual genes, high expres-
sion was also more commonly associated with unfavorable
prognosis, although many genes also had favorable associations in
certain cancer types (e.g. MXI1). By focusing our analysis on the
most consistent associations across cancer types, we identified a
set of acute response genes related to ECM remodeling and col-
lagen modifications as being associated with poor prognosis in
multiple cancer types. Thus, induction of these genes during the
acute response could conceivably contribute to dissemination of
cells from initial tumors as well as establishment at sites of
metastasis.

Overall, our integrative analyses of multiple genomics data sets,
together with data from over 600 cancer cell lines and 11,000
human tumor samples, indicate that HIF1A is the main driver of
the acute transcriptional response to hypoxia, and that this
transcriptional program encodes divergent functions linked to
intrinsic suppression of cancer cell proliferation as well as cell-
extrinsic disease progression via ECM remodeling.

Methods
See Supplementary Table 1 for a list of reagents and resources, including primer
sequences.

Cell culture. HCT116, RKO, A549, and H460 cells were cultivated in McCoy’s
(HCT116), DMEM (RKO, A549), and RPMI media (H460) (Gibco, Thermo Fisher
Scientific) supplemented with 10% fetal bovine serum (Peak Serum) and 1%
antibiotic-antimycotic mixture (Gibco). HCT116 HIF1A−/− cells were created by
disrupting exons 3 and 4 of the HIF1A locus using adeno-associated virus-medi-
ated homologous recombination, resulting in a 226-bp deletion with translation
stop codons in all three reading frames53. All cells were plated the day before
treatment and maintained in a humidified atmosphere with 5% CO2 at 37 °C. Cells
were maintained in normoxia (as above) or exposed to hypoxic conditions by
incubation in a humidified atmosphere containing 1% O2, 5% CO2, and 94% N2
for the indicated time.

Western blot. Protein samples were prepared by lysing cell pellets in RIPA buffer
(150 mM NaCl, 1% v/v Igepal C630 NP-40, 0.5% w/v sodium deoxycholate, 0.1%
w/v SDS, 5 mM EDTA, 50 mM Tris HCl pH 8.0, and protease/phosphatase inhi-
bitors), followed by sonication (2.5W, 10 s), and heat-denatured in SDS-loading
buffer (50 mM Tris HCl pH 6.8, 2% w/v SDS, 10% v/v glycerol, 1% 2-mercap-
toethanol, 0.01% w/v bromophenol blue) for 5 min at 95 °C. Protein concentration
was measured using a BCA Protein Assay Kit (Pierce, Thermo Fisher Scientific).
20 µg of total protein per sample was resolved by SDS-PAGE, electrophoretically
transferred onto 0.45 µm PVDF membrane (Thermo Fisher Scientific) and blocked
with 5% w/v skim milk powder in TBST buffer (10 mM Tris pH 8.0, 150 mM NaCl,
0.1% v/v Tween 20). Proteins of interest were labeled overnight at 4 °C with pri-
mary antibodies in milk/TBST. Membranes were washed three times in milk/TBST
for 10 min, incubated with HRP-conjugated secondary antibodies (BioRad) for 1 h,
and again washed three times in milk/TBST. SuperSignal West Pico Plus

Fig. 7 Acute response genes transactivated by HIF1A involved in ECM remodeling are associated with cancer progression. a Iterative log-rank analysis
of Acute Response Gene Score vs. progression-free interval (PFI): FDR-adjusted p-value vs. PFI ratio (mean survival time in high group/mean survival time
in low group) for the indicated cancer types; red/green denotes significant association of high score with PFI (FDR < 10%). b Kaplan–Meier plots for
indicated cancer types, separated by Acute Response Gene Score; split indicates the proportions of samples placed into high and low scoring groups, with
initial numbers at risk per arm indicated at lower left. P-values are from log-rank analysis with the indicated split. c Top 10 functional enrichment clusters
from Metascape pathway analysis among individual unfavorable acute response genes, limited by significance in increasing numbers of cancer types (left
to right). Heatmap color represents −log10(p-value) from hypergeometric enrichment test. d Heatmap showing significant adjusted p-values across cancer
types for ECM-related genes associated with lower PFS. Heatmap color represents −log10(p-value) from hypergeometric enrichment test. e Kaplan–Meier
plots for selected individual genes in the indicated cancer types, separated by expression level; split indicates the proportions of samples placed into high
and low expression groups, with initial numbers at risk per arm indicated at lower left or right. P-values are from log-rank analysis with the indicated split.
f Selected ECM-related genes with significant (FDR < 10%) association with PFI using Cox regression analysis. Blue boxes indicate estimated hazard ratio,
with box size proportional to FDR-adjusted p-value; bars indicate 95% confidence intervals. See also Supplementary Fig. 9 and Supplementary Data 8.
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Chemiluminescence Substrate (Pierce) was used for detection and digital images
were captured using an ImageQuant LAS 4000 (GE Healthcare Life Sciences).

Primary antibodies used for western blotting. HIF1A: BD Biosciences BDB610959
(1:1,500); HIF2A: Cell Signaling Technology 59973 (1:1,000); alpha-tubulin: Sigma
T9026 (1:10,000).

Fluorescent detection of hypoxia in live cells. Hypoxia in live cells was visualized
using Image-iT Red Hypoxia Reagent (Thermo Fisher Scientific) according to the
manufacturer’s instructions. Briefly, the dye was added directly to cultivation media
of HCT116 cells at a final concentration of 2.5 µM 90min prior to hypoxia
treatment. Fluorescence emission (624/40 nm) was imaged using an Olympus IX71
microscope at the indicated times.

PRO-seq library preparation and sequencing. PRO-seq library preparation was
performed as described previously34, based on the protocol of Mahat et al.54.

Preparation of nuclei. WT and HCT116 cells were plated at a density of 6.7 × 104

per cm2 in 150 mm diameter plates. The next day, sub-confluent cells (~70%)
treated either with DMSO (0.1% final concentration) or 10 µM 3MB-PP1 (Milli-
poreSigma/Calbiochem) were exposed to normoxia or hypoxia for 90 min. In total
three plates per sample were harvested. After treatment, cells were washed three
times with ice-cold PBS and overlaid with ice-cold lysis buffer (10 ml per 150 mm
plate, 10 mM Tris–HCl pH 7.4, 3 mM MgCl2, 2 mM CaCl2, 0.5% v/v NP-40, 10%
w/v glycerol, 1 mM DTT, 1 mM benzamidine, 1 mM sodium metabisulfite,
0.25 mM phenylmethylsulfonyl fluoride, and 4 U/ml SUPERase-In (Thermo Fisher
Scientific)). Lysates were scraped from the plates and centrifuged at 1000 g for
15 min at 4 °C. Supernatants were removed, and pellets were resuspended in 1.5 ml
of lysis buffer by pipetting 30 times. An extra 8.5 ml of lysis buffer was added to
each sample and suspensions were centrifuged as previously. Supernatants were
discarded and pellets were resuspended in 1 ml of lysis buffer. Following cen-
trifugation at 1000 g for 5 min at 4 °C, pellets were resuspended in 0.5 ml of
freezing buffer (50 mM Tris pH 8.3, 40% w/v glycerol, 5 mM MgCl2, 0.1 mM
EDTA, 4 U/ml SUPERase-In) and centrifugated once more at 2000 g for 2 min at
4 °C. Pelleted nuclei were resuspended in 100 µl of freezing buffer, counted and
aliquoted at 1 × 107 nuclei/100 µl before snap-freezing in liquid nitrogen and stored
at −80 °C. Two independent replicates of nuclei samples were prepared.

Nuclear run-on and library preparation. Nuclear run-on was performed essentially
as described in ref. 54. Briefly, two 1 × 107 nuclei aliquots per sample were incu-
bated with 100 µl of 2 × 1-Biotin run-on reaction mix (10 mM Tris pH 8.0, 5 mM
MgCl2, 1 mM DTT, 150 mM KCl, 50 µM Biotin-11-CTP (Perkin Elmer), 50 µM
rCTP, 250 µM rATP, 250 µM rGTP, 250 µM rUTP (Roche/Sigma Aldrich), 20 U
SUPERase-In, 1% v/v Sarkosyl) for 5 min at 37 °C. Reactions were terminated by
the addition of TRIzol LS (Thermo Fisher Scientific) and RNA was extracted
according to the manufacturer’s protocol. Next, RNA samples were heat-denatured
for 40 s at 65 °C, placed on ice, and base-hydrolyzed by adding ice-cold NaOH (0.2
M final concentration). Hydrolysis was stopped with Tris-HCl pH 6.8 (0.5 M final
concentration) and buffer was exchanged by running the samples through a P-30
column (BioRad). Next, samples were enriched for Biotin-11-CTP labeled RNA by
incubating for 20 min with Streptavidin beads (Dynabeads M-280, Thermo Fisher
Scientific) followed by two washes with High salt buffer (50 mM Tris-HCl pH 7.4,
2 M NaCl, 0.5% v/v Triton X-100), two washes with Binding buffer (10 mM Tris-
HCl pH 7.4, 300 mM NaCl, v/v 0.1% Triton X-100), and one wash with Low salt
buffer (5 mM Tris-HCl pH 7.4, v/v 0.1% Triton X-100). After RNA extraction with
TRIzol (Thermo Fisher Scientific), the VRA3 3′ RNA adaptor was ligated to RNA
fragments by incubating with T4 RNA ligase (New England Biolabs) at 20 °C for
4 h and samples were again enriched for biotin-labeled RNA. 5′ ends of the pre-
cipitated RNA were repaired with RNA 5′ Pyrophosphohydrolase followed by
phosphorylation with T4 polynucleotide kinase (both from New England Biolabs).
Following ligation of VRA5 5′ RNA adaptor, samples were enriched for biotin-
labeled RNA a third time and subjected to reverse transcription reaction with the
RP1 reverse transcription primer and Superscript III reverse transcriptase (Thermo
Fisher Scientific). Next, the cDNA was PCR amplified (Phusion HF, Thermo Fisher
Scientific) using barcoded primers (Illumina TruSeq Small RNA). Final cDNA
libraries were cleaned-up with Ampure XP beads (Beckman Coulter) and size-
selected on a Blue Pippin (200-500 bp, 2% agarose gel, Sage Science). Single-end
75 bp sequencing was performed on the Illumina NextSeq 500 platform (RTA
version: 2.4.11, Instrument ID: NB501447) at the BioFrontiers Sequencing Facility
at the University of Colorado Boulder.

PRO-seq data analysis. At active protein-coding genes, PRO-seq generates a high
density of reads near the transcriptional start site (TSS), corresponding to tran-
scriptionally engaged RNAPII undergoing promoter-proximal pausing, a rate-
limiting step at most protein-coding genes in human cells16,54. Read density
throughout gene bodies is typically lower and reflects productive transcription
elongation that contributes to mRNA pools.

PRO-seq data yield was ~61-82 × 106 raw reads and ~41-65 × 106 final mapped
reads per sample. Reads were demultiplexed and converted to fastq format using

bcl2fastq (bcl2fastq v2.20.0.422) and data from two sequencing runs merged per
sample. Data quality was assessed using FASTQC (v0.11.5, https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) and FastQ Screen (v0.11.0, https://
www.bioinformatics.babraham.ac.uk/projects/fastq_screen/). Trimming and
filtering of low-quality reads was performed using BBDUK from BBTools
(v37.99)55 and FASTQ-MCF from EAUtils (v1.05, https://expressionanalysis.
github.io/ea-utils/). Alignment to the human reference genome (GRCh37/hg19)
was carried out using Hisat2 (v2.1.0)56 in unpaired, no-spliced-alignment mode
with a GRCh37/hg19 index, and alignments were sorted and filtered for mapping
quality (MAPQ > 10) using Samtools (v1.5)57. Gene-level count data for TSS (−50
to +500) and gene body (+1001 to end) regions were obtained using featureCounts
from the Subread package (v1.6.2)58 with custom annotation files for single unique
TSS and gene body regions per gene. Custom annotation files with single unique
TSS and gene body regions per gene were generated as follows: 1) hg19
RefSeqCurated transcript-level annotation was downloaded from the UCSC
genome table browser (09-07-2018), transcripts shorter than 1500 bp and non-
standard chromosomes were removed, and only transcripts with unique start/stop
coordinates per gene were retained; 2) Sense and antisense counts were tabulated
and each candidate TSS region was ranked by sense and antisense reads to obtain a
single ‘most-active’ TSS per gene; 3) Finally, per gene, the TSS was combined with
the shortest gene body to avoid the influence of alternative transcription
termination/polyadenylation sites. “End of the gene” is defined by the cleavage/
polyadenylation site corresponding to the shortest version of the annotated gene
according to the RefSeq annotation. The choice of filtering genes shorter than 1500
bp enables separation of TSSs versus gene body regions of sufficient length, while
also removing rRNA gene from consideration. Differential expression analysis of
gene body regions was assessed using the DESeq2 package (v1.22.1)19 with a
custom R script (R v3.5.1/RStudio v1.1.453/Bioconductor v3.7) and cutoffs as
described in text and figure legends. Analysis of RNAPII pausing was carried out
using a custom R script (R v3.5.1/RStudio v1.1.453) with the ggplot2 package
(v3.1.0) used for visualizations. Gene body and TSS counts were normalized by
counts-per-million and by region length (cpm/bp) and Pausing Index (PI)
calculated as the ratio of normalized reads in the TSS (cpm/bp) to normalized reads
in the gene body (cpm/bp). Genes with < 0.5 cpm in all samples were excluded
from analysis. Means of duplicate values were used for plots and Wilcoxon/
Mann–Whitney U tests. For genome browser snapshots, aligned reads were
downsampled to the lower aligned read count per replicate using Samtools, to
ensure equal contributions from each replicate, followed by merging of
replicates and generation of coverage tracks in the bedGraph format using HOMER
(v4.9.1)59 Genome browser snapshots were generated from bedGraph files using
IGV (v2.8)60 or a custom R script (R v3.5.1/RStudio v1.1.453/Bioconductor v3.7)
and the Gviz package (v1.26.4)61.

PRO-seq data are available under GEO accession GSE145567.

RNA-seq library preparation and sequencing. RKO, A549, and H460 cells were
plated and treated for 24 h as described above, followed by harvesting in ice-cold
PBS. Total RNA was extracted from cell pellets using TRI Reagent (Sigma-Aldrich),
according to the manufacturer’s instructions. RNA quality was assessed using
Bioanalyzer RNA 6000 Pico chips (Agilent). Poly-A(+ ) RNA enrichment and
strand-specific library preparation were carried out using a TruSEQ mRNA library
prep kit (Illumina). Single-end 150 bp sequencing was carried out on the Illumina
HiSeq 4000 platform by the Genomics Core facility at the University of Colorado
Anschutz.

RNA-seq data analysis. RNA-seq data and processing for HCT116 cells were
published previously62 and are available under GEO accession GSE68297.

For RNA-seq data from RKO, A549, and H460 cells, data yield was ~49-65 × 106

raw reads and ~42-57 × 106 final mapped reads per sample. Data quality was assessed
using FASTQC (version 0.11.2, https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) and FastQ Screen (v0.4.4) was used to check for common sequencing
contaminants (https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/).
Low-quality bases (Q < 10) were trimmed from the 3′ end of reads and reads <30 nt
after trimming were removed using the Fastx toolkit (v0.0.13.2). Reads were aligned to
a GRCh37/hg19 Human reference using TopHat2 (v2.0.13, --b2-sensitive --keep-fasta-
order --no-coverage-search --max-multihits 10 --library-type fr-firststrand)63 with the
UCSC hg19 GTF annotation file provided in the iGenomes UCSC hg19 bundle
(https://support.illumina.com/sequencing/sequencing_software/igenome.html).
Aligned reads were then filtered to remove low-quality mapped reads (MAPQ < 10)
using SAMtools (v0.1.19). Alignments were then coordinate sorted, and duplicates
were marked using Picard (v1.129). Quality assessment of final mapped reads was
conducted using RSeQC (v2.6)64. Gene-level counts were obtained using HTSeq
(v0.6.1)65 with the following options (--stranded=reverse –minaqual=10 –type=exon
–idattr=gene_id --mode=intersection-nonempty) using the iGenomes UCSC hg19
GTF annotation file. Differential gene expression was evaluated using DESeq2 (version
1.6.3)19 in R (version 3.1.0), using q < 0.1 (FDR < 10%) and fold-change > 1.5 (Up) or
<1/1.5 (Down) as cutoffs for differentially expressed genes. Genome browser snapshots
were generated from bedGraph files using IGV (v2.8)60.

RNA-seq data for RKO, A549, and H460 are available under GEO accession
GSE145108.
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ChIP-seq library preparation and sequencing. Sub-confluent cultures of each cell
line (HCT116, RKO, A549, and H460) were placed in normoxic or hypoxic con-
ditions for 24 h. After treatment, media was removed and replaced with 1% for-
maldehyde in PBS (equilibrated by bubbling for 20 min with a mix of 1% O2, 5%
CO2, and 94% N2 for hypoxia samples). To avoid rapid degradation of HIF1A, a
crosslinking time of 5 min was used for all samples and terminated by the addition
of glycine to 0.125M final concentration. Following 5 min of formaldehyde
quenching, plates were placed on ice and washed three times with ice-cold PBS.
Subsequently, cells were lysed in RIPA buffer and sonicated to generate DNA
fragments of ~200-300 bp (Qsonica Q800R, 70% amplitude, 30 s on/30 s off cycle,
20 cycles for H460 lysates, 25 cycles for HCT116 and RKO lysates, and 30 cycles for
A549 lysates). Samples were centrifuged at 20,000 g for 20 min at 4 °C and protein
concentration in collected supernatants was measured with a BCA Protein Assay
Kit. At this step, input samples (50 µg of total protein per cell line) were set aside.
For each sample, four 1 ml aliquots each containing 1 mg of total protein were used
for immunoprecipitation. Samples were pre-cleared with 15 µl of RIPA-washed
Dynabeads Protein G (Invitrogen, Thermo Fisher Scientific) by rocking for 1 h at
4 °C. The supernatant was then collected and incubated with 30 µl of Dynabeads
and 5 µl of anti-HIF1A antibody (Novus Biologicals, NB100-134) incubated
overnight on a rocker at 4 °C. Next, beads were washed twice with RIPA buffer,
twice with IP wash buffer (500 mM LiCl, 100 mM Tris pH 8.5, 1% v/v NP-40, 1%
w/v sodium deoxycholate), and twice with RIPA (2 min on rocker at 4 °C for each
washing step). Immunocomplexes were eluted by resuspending beads in 100 µl TE
buffer and 200 µl of elution buffer (70 mM Tris pH 8, 1 mM EDTA and 1.5% w/v
SDS) and incubating for 10 min at 65 °C. Both eluted immunocomplexes and input
samples were combined with NaCl solution to a final concentration of 200 mM and
incubated overnight at 65 °C to reverse formaldehyde crosslinks, followed by
treatment with 20 µg proteinase K. DNA fragments were recovered using phenol/
chloroform extraction followed by ethanol precipitation and re-dissolved in TE
buffer. DNA fragments were size-selected (80-600 bp) by agarose gel electro-
phoresis (2% gel, BluePippin) and used for barcoded library preparation with the
NEBNext Ultra II DNA kit, according to the manufacturer’s instructions (New
England Biolabs). Final libraries were size-selected (200-600 bp, BluePippin) and
analyzed on Bioanalyzer High Sensitivity DNA chips (Agilent) to confirm 200 to
400 bp fragment size range. Single-end 150 bp sequencing of pooled barcoded
libraries was carried out on the Illumina HiSeq 4000 platform by the Genomics
Core facility at the University of Colorado Anschutz.

ChIP-seq data analysis. ChIP-seq data yield was ~52-93 × 106 raw reads and ~19-
46 × 106 final mapped reads per sample. Data quality was assessed using FASTQC
(v0.11.5) and FastQ Screen (v0.11.0). Trimming and filtering of low-quality reads
were performed using FASTQ-MCF from EAUtils (v1.05). Alignment to the
human reference genome (GRCh37/hg19) was carried out using Bowtie2 (v2.2.9)66

in --sensitive –-end-to-end mode with a GRCh37/hg19 index, and alignments were
sorted and filtered for mapping quality (MAPQ > 10) using Samtools (v1.5)57.
Alignments were then coordinate sorted, and duplicates were marked using Picard
(v2.9.4). Quality assessment of final mapped reads was conducted using RSeQC
(v2.6.4)64.

The Homer suite (version 4.3)59 was used for the identification of peak regions,
annotation, and motif enrichment analysis. HIF1A peaks were called using the
findPeaks module in factor mode with input genomic DNA controls, a local fold-
change threshold of 3 (-L 3) and a false-discovery rate threshold of 0.1% (-fdr
0.001). The total number of normalized sequencing tags associated with peaks
common to all four lines were used to control for cell line-specific IP efficiencies
(tags in common peaks) by adjusting the global fold-change over control threshold
for the called peaks accordingly (-F 7 (HCT116), -F 6 (RKO), -F 13 (A549), -F 14
(H460)). Peak enrichment signals were obtained using the annotatePeaks.pl
module (-size given). Enrichment of both known and de novo identified sequence
motifs was analyzed with the findMotifsGenome.pl module. Peak to TSS distances
were calculated with the annotatePeaks.pl module and the gUtils (v0.2.0) and
GenomicRanges (v1.36.0) R packages. For direct comparison of peak signals across
cell types, MAnorm (v1.1.4)67 was used to normalize and quantify read densities at
all peak loci (default settings). Third party ChIP-seq data (ENCODE) were
downloaded raw and processed as described above.

To associate proximal HIF1A peaks with putative target genes while minimizing
false positives and negatives, we used the approach of Ouyang et al.68, scoring peaks
according to their enrichment signal and their distance from TSS regions. Peak
association factors (AF) were calculated according to the following formula: AF=
pnrd*edc/d0 where pnrd is peak normalized read density, dc is peak center distance
from the TSS and d0 is a constant (500 bp). HIF1A peak-to-gene relationships with
AF > 0.1 were assigned as high-confidence promoter/TSS-proximal peaks. Lower-
confidence peaks ≥5 kb ≤50 from the nearest promoter/TSS were assigned as distal,
and peaks >50 kbp as intergenic (remaining peaks as other). Genome browser
snapshots were generated from bedGraph files using IGV (v2.8)60.

HIF1A ChIP-seq data for HCT116, RKO, A549, and H460 are available under
GEO accession GSE145157.

GSEA and IPA analyses. Gene set enrichment analysis (GSEA)69 was carried out
using the GSEAPreranked module on the GenePattern server (https://cloud.
genepattern.org), using log2-transformed PRO-seq gene body fold changes as the

ranking metric. Putative regulators of differentially expressed genes were predicted
using the Upstream Regulator Analysis module within the Ingenuity Pathway
Analysis (IPA) suite (http://www.ingenuity.com). Functional enrichment analysis
was carried out for the specified gene lists using Metascape (https://metascape.org).

DepMap data analysis. Corrected CERES gene effect scores from DepMap public
release 19Q3 were downloaded from https://depmap.org/portal/download/ (Oct 10
2019)37,70. Pairwise Spearman correlation scores and p-values were calculated for
gene effect scores of all genes against HIF1A followed by Benjamini-Hochberg
correction to control for false-discovery rate, using a custom R script (R v3.6.1/
RStudio v1.1.453)71. Correlations for each gene with HIF1A were ranked and
visualized using the tidyverse and ggplot2 packages (v1.2.1 and v3.1.1).

TCGA data analysis. Curated, standardized clinical outcome data for TCGA
patients were obtained as Supplementary Table 1 from Liu et al.42. Normalized RSEM
RNA-seq expression data for TCGA samples were downloaded (Oct 11, 2019) from
the Broad GDAC (https://gdac.broadinstitute.org/) using the firehose_get tool. Ana-
lyses were carried out using custom R scripts (R v3.6.1 / RStudio v1.1.453). For each
cancer type, genes not detected in at least 50% of samples were removed.

Acute Hypoxia Signature scoring. Z-scores were first calculated from RSEM
expression values for each gene within each cancer type. Acute hypoxia scores were
calculated as the sum of Z-scores of acute upregulated hypoxia genes (ProRna Up)
in each sample.

Iterative Kaplan–Meier log-rank testing. To find the optimal stratification of tumor
samples into high and low groups, we adopted an iterative approach similar to that
described in72, using either Acute Hypoxia Score or RSEM expression values. For
each high vs. low stratification starting from the 10th vs. 90th percentiles and
proceeding in one percentile steps, log-rank tests for differences in progression-free
survival (PFI) were carried out using the survminer (v0.4.6), survival (v2.44-1.1),
and purrr (0.3.3) packages in R. Only tests with unique sample partitions and at
least 10 events in either high or low groups were considered. Benjamini-Hochberg
correction was applied to control for false-discovery rate and the partition with the
lowest p-value was retained. To visualize Kaplan–Meier survival curves, plots were
generated using the survminer (v0.4.6) package.

Cox regression analysis. To estimate the prognostic value, or change in hazard,
associated with increasing expression of each gene as a continuous value and to
permit adjustment for additional variables, univariate and multivariate Cox
regression analysis was carried out for each detected gene within each cancer type,
using the finalfit (0.9.5), furrr (0.1.0), and purrr (0.3.3) packages in R, with
progression-free survival as the dependent variable, RSEM expression value as the
explanatory variable of interest. For multivariate analysis, age, sex, and stage were
included as additional explanatory when available. Only model fits satisfying the
proportional hazards assumption were considered further. Hazard ratio plots were
generated using a modified version of the hr_plot function from the finalfit
package.

Quantification and statistical analysis. Statistical methods and analysis details
are described in figure legends and in the Results and Methods sections of the
manuscript.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this work are available from the corresponding authors upon
reasonable request. The genomic data sets generated during this study are available at
Gene Expression Omnibus database under accessions GSE145567, GSE145108, and
GSE145157. Previously generated RNA-seq data are available under accession GSE68297.
ENCODE data are available at https://www.encodeproject.org (accessions
ENCSR000EUT, ENCSR494CCN, ENCSR000FCP, ENCSR000DTQ, ENCSR000ENM,
ENCSR000EUU). Source data are provided with this paper.
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