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Abstract Tea is one of the most popular beverage with

distinct flavor consumed worldwide. It is of significance to

establish evaluation method for tea quality controlling. In

this work, electronic nose (E-nose) was applied to assess

tea quality grades by detecting the volatile components of

tea leaves and tea infusion samples. The ‘‘35th s value’’,

‘‘70th s value’’ and ‘‘average differential value’’ were

extracted as features from E-nose responding signals.

Three data reduction methods including principle compo-

nent analysis (PCA), multi-dimensional scaling (MDS) and

linear discriminant analysis (LDA) were introduced to

improve the efficiency of E-nose analysis. Logistic

regression (LR) and support vector machine (SVM) were

applied to set up qualitative classification models. The

results indicated that LDA outperformed original data,

PCA and MDS in both LR and SVM models. SVM had an

advantage over LR in developing classification models.

The classification accuracy of SVM based on the data

processed by LDA for tea infusion samples was 100%.

Quantitative analysis was conducted to predict the contents

of volatile compounds in tea samples based on E-nose

signals. The prediction results of SVM based on the data

processed by LDA for linalool (training set: R2 = 0.9523;

testing set: R2 = 0.9343), nonanal (training set:

R2 = 0.9617; testing set: R2 = 0.8980) and geraniol

(training set: R2 = 0.9576; testing set: R2 = 0.9315) were

satisfactory. The research manifested the feasibility of

E-nose for qualitatively and quantitatively analyzing tea

quality grades.

Keywords Tea quality � Electronic nose � Data reduction �
Linear discriminant analysis � Support vector machine

Introduction

Tea is one of the most popular beverages consumed across

the world with attractive flavor and abundant health-benefit

compounds such as theanine and polyphenols (Krstic et al.

2015). The differences in tea quality grades possesses

different external flavor quality and internal health-benefit

components. Tea quality is affected by various factors,

such as plucking season, soil, climate and processing

techniques (Unachukwu et al. 2010). Usually, teas with

superior quality were planted in good environment condi-

tion and plucked at certain time, as well as processed with

specific technique. Therefore, the supply of superior tea

was limited by these factors above. Meanwhile, higher

grades of tea quality usually means higher prices in market.

Hence, some merchants intentionally sell inferior tea

products as superior ones for making benefits, which dis-

rupts the stability of tea markets and impairs the interest of

consumers. Moreover, it is difficult for ordinary consumer

to discriminate the tea products with different quality

grades. Hence, it is necessary to establish efficient method

for precisely estimating tea quality.

Tea aroma is an important sensory attribute in evaluat-

ing tea quality. Human olfactory system consists of a large

number of receptors cells that could respond to different

types of volatile components, therefore tea aroma is usually

assessed by human sensory evaluation (Chen et al. 2010).

Professional evaluators are required to describe properties
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of tea aroma with terminology that hard for consumers to

understand and then grade tea quality according to the

characteristics of tea aroma. The professional evaluators

take an important role in the whole evaluation process.

Hence, the result is subjective and difficult to reproduce

since it is easily influenced by physiological and psycho-

logical condition of evaluators or other personal issues.

Physico-chemical analysis and modern instruments like gas

chromatography-mass spectrometer (GC–MS) and high

performance liquid chromatography (HPLC) are also

applied in evaluating tea quality (Wang et al. 2014; Lin

et al. 2012; Rawat et al. 2007; Qin et al. 2013). Although

the results provided by these methods are objective, they

are time-consuming and need complicated pretreatments

for tea samples.

Electronic nose (E-nose) is developed to mimic human

olfactory system for the detection of complex odors in the

headspace of samples. The E-nose mainly consists of a

sensor array and a pattern recognition system. Sensor array

acts as receptors cells of human to receive and react with

volatile components and then a characteristic fingerprint is

generated from the reaction of volatile components and

sensors. The pattern recognition system works as human

brain to distinguish samples with different fingerprints. A lot

of applications have been found in existing researches of

using E-nose to assess the volatile profile of meat (Tian et al.

2013; Kodogiannis 2017), fruits (Guohua et al. 2013; Wu

et al. 2017), juices (Huang et al. 2015; Qiu et al. 2017; Qiu

and Wang 2017), vegetables (Yao et al. 2015), nuts (Xu et al.

2017; Jiang et al. 2017), dairy products (Yang et al. 2015;

Majcher et al. 2015) and honey (Dymerski et al. 2014).

In recent years, E-nose has also been applied in tea

related researches, including the origin identification of

green tea, the detection of optimum fermentation time for

black tea and the evaluation of different green tea quality

(Pasquini et al. 2016; Bhattacharyya et al. 2007). To obtain

a satisfactory result of evaluating tea quality grades, some

researches compared the performance of different experi-

mental subjects, different data reductions and different

classification algorithms, indicating the importance of

those elements in applying E-nose to identify tea quality

(Yu et al. 2009; Dai et al. 2015; Chen et al. 2011; Pławiak

and Maziarz 2014). However, these researches only par-

tially contributed to the selection of appropriate data pro-

cessing and modelling methods. Hardly any research has

been reported on systematically investigating the perfor-

mance improving methods to detect tea quality by E-nose

based on different data extractions and reductions and

classification algorithms. Furthermore, the existed resear-

ches scarcely explored the efficiency of data reduction

methods in building regression model and probed the

potential correlation between E-nose signals and the con-

tents of volatile components in tea samples.

The current research mainly apply E-nose to identify tea

quality of different grades and mine the correlation rela-

tionship between E-nose signals and the content of volatile

components. Data reductions were introduced to improve

the efficacy of classification and correlation models. The

main objectives are as follows: (1) by using PCA and MDS

as unsupervised data reduction methods and LDA as a

supervised data reduction method to process the original

data and comparing the performance of their efficiency; (2)

to set up classification models severally for identifying tea

leaf and tea infusion samples based on different data

extraction and data reduction methods and different clas-

sifiers, and to compare the classification results of these

models; (3) to analyze the volatile components in tea leaf

and tea infusion by using GC–MS, and to investigate the

potential correlation between E-nose signals and the con-

tents of volatile components in different tea grades by

applying E-nose signals to build regression models for

predicting the content main volatile components in tea

samples.

Material and methods

Preparation of tea samples

Longjing tea were used as experimental samples in the

research. The tea samples were picked from Longjing

village (30�130, 120�060, Hangzhou city, Zhejiang pro-

vince, China), which is an appropriate place for tea plant

with good growing condition. All tea leaves were plucked

during March to May in 2017 and processed by skilled

workers with same method. The tea grade of Longjing tea

is related to plucking time. Usually, tea leaves picked

earlier means a higher price and higher tea grade. Six tea

groups with different quality grades were applied in this

study. There were 32 samples in each group and 5 g tea

leaf for each sample. These samples were packed in alu-

minum foil and stored in 4 �C before testing. The six tea

grades including their prices and plucking time were as

follows: Grade 1 (1000 ¥/500 g, March 28), Grade 2 (800

¥/500 g, April 2), Grade 3 (600 ¥/500 g, April 10), Grade 4

(400 ¥/500 g, April 18), Grade 5 (200 ¥/500 g, April 28),

Grade 6 (100 ¥/500 g, May 3).

Electronic nose setup

The E-nose (PEN3, Airsense Corporation, Germany) used

in this research are equipped with a metal oxide semicon-

ductor (MOS) sensor array which composed of 10 different

MOS sensors. The details of the sensor array were shown

in Table 1.
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A tea leaf sample was prepared by placing 5 g tea leaves

in a 500 mL beaker and was sealed with plastic wrap. In

order to generate headspace gas, the sample was kept still

for 60 min. Afterwards, the headspace gas was pumped

into the gas sensor chamber at a constant rate of

200 mL min-1 and then reacted with the MOS sensors

leading to the change of electric conductivity in sensors. In

measuring stage, the ratio of conductance was measured as

response signal of each sensor to tea sample. The mea-

surement time was 70 s for each sample and a signal was

recorded per second. After the measurement stage, the gas

sensors chamber was cleaned for 70 s by cleaning air to

ensure the response signal back to baseline. All the mea-

suring signals were properly stored for later analyzing. 192

tea leaf samples (6 groups and 32 samples for each group)

were detected by E-nose. The temperature during the

detection was kept at 25 ± 1 �C.

A tea infusion sample was prepared by pouring 250 mL

freshly boiled water into a 500 mL beaker with 5 g tea

leaves and brewing for 5 min. After that, the tea leaves

were filtered with a sieve and the tea infusion sample was

cooled down to room temperature. All the tea leaf samples

were brewed into tea infusion according to the brewing

method above. Hence, there were 192 tea infusion samples

for E-nose detection. The detection procedure and param-

eters for tea infusion samples were totally the same with

those for tea leaf samples.

Gas chromatography-mass spectrometer

A HS-SPME (Head space-solid phase microextraction)

method with a CVR/ DVB/PDMS fiber (65 lm film

thickness, Supelco, Bellafonte, PA, USA) was applied to

extract the volatile components of tea leaf and tea infusion

samples. For the preparation of tea leaf samples, 2 g tea

leaf were placed in a 50 mL glass vial sealed with a PTFE-

coated septum (Beijing Bomex Co., China). For tea infu-

sion samples, 15 mL tea infusion was placed in a 50 mL

glass vial and ethyl caprate was added in tea infusion as

internal standard. Before extraction, both of tea leaf and tea

infusion samples need equilibration for 5 min in a bath at

60 �C. For each sample extraction, the fiber was inserted in

the sample for 60 min. Then, the SPME fiber was desorbed

in the injection port (240 �C) of the GC–MS for 5 min.

After the desorption, the volatile components were entered

into Agilent 7890A gas chromatograph and then analyzed

with a mass selective detector (Agilent 5975C, Agilent,

USA). Temperature programming was as follows: the

temperature in the GC oven was initially kept at 40 �C for

2 min, then heated to 70 �C at 3 �C /min, heated to 110 �C
at 2 �C /min, then increased to 200 �C at 5 �C /min, and

retained for 5 min at 200 �C. Helium was applied as carrier

gas (purity[ 99.99%) and the flow velocity was constant

at 1 mL min-1. The mass spectrometer conditions were:

ionization mode, EI; electron energy, 70 eV; interface

temperature, 280 �C; ion source temperature, 230 �C; mass

scan range, 47–401 u. The retention times for n-alkanes

(C8-C20; Sigma. Aldrich [Shanghai] Trading Co., Ltd.,

Shanghai, China) were determined to calculate the reten-

tion indices (RI) of volatile components in tea samples. MS

fragmented patterns with the National Institute of Stan-

dards and Technology (NIST) 11.0 database (NIST 11.0,

USA) and published data were applied to identify volatile

components. When the compounds were identified by

NIST database, peaks with a similarity index more than

80% were the assigned name of corresponding compounds.

The relative amounts of volatile components in tea leaf

were presented as percentages of the total area of volatile

component peaks. The concentration of volatile compo-

nents in tea infusion were calculated in ng/g based on

Table 1 The name and main performance of each sensor in Electronic nose (PEN3)

Number Name Main performance Reference

S1 W1C Aromatic compounds Toluene, 10 ppm

S2 W5S Very sensitive, broad range sensitivity, react on nitrogen oxides, sensitive with negative signal NO2, 1 ppm

S3 W3C Ammonia, used as sensor for aromatic compounds Benzene, 10 ppm

S4 W6S Mainly hydrogen, selectively, (breath gases) H2, 100 ppm

S5 W5C Alkenes, aromatic compounds, less polar compounds Propane, 1 ppm

S6 W1S Sensitive to methane (environment) ca. 10 ppm. Broad range, similar to S8 CH3, 100 ppm

S7 W1W Reacts on sulfur compounds, H2S 0.1 ppm. Otherwise sensitive to many Terrenes and sulfur organic

compounds, which are important for smell, limonene, praline

H2S, 1 ppm

S8 W2S Detects alcohol’s, partially aromatic compounds, broad range CO, 100 ppm

S9 W2W Aromatic compounds, sulfur organic compounds H2S, 1 ppm

S10 W3S Reacts on high concentrations[ 100 ppm, sometimes very selective (methane) CH3, 10 CH3, 100

mg/kg
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internal standard. There were three replicates for each tea

grade detection by GC–MS.

Data analysis

Principal component analysis

Principal component analysis (PCA) is a widely used

unsupervised method for linear dimensionality reduction

analysis, which aims at mapping high dimensional vari-

ables in a low dimensional space via a linear projection and

maximization of variance in the low dimensions (Lai and

Teoh 2016). The main procedure for linear dimensionality

reduction analysis using PCA is the computation of

covariance matrix of original variables. Afterwards,

eigenvalues and eigenvectors are obtained by decomposing

the covariance matrix and the eigenvectors are sorted

according to descending order of the eigenvalues. The first

eigenvector contains the highest variance of the original

variables as well as the variances of succeeding eigen-

vectors are correspondingly decreasing in turn (Qiu et al.

2017).

Multi-dimensional scaling

Multi-dimensional scaling (MDS) mainly aims to place

samples in N-dimensional space and ensure that the sam-

ple-between distance in K-dimensional space (K[N)

could be preserved as well as possible. D= dij
� �

presents the

distance matrix in K-dimensional space, where dij is the

distance between the coordinates of ith sample and jth

sample. In order to find the corresponding embedding

matrix in N-dimensional space, another matrix B= bij
� �

is

computed with D. where

bij ¼ � 1

2
d2
ij �

1

N

XN

k¼1

d2
kj �

1

N

XN

k¼1

d2
ik þ

1

N2

XN

k¼1

XN

l¼1

d2
kl

" #

:

Afterwards, eigenvalues ki and corresponding eigenvec-

tors ci ¼ cij
� �

are computed by the decomposition of B

matrix. the eigenvectors of the q-largest eigenvalues form

the embedding matrix in N-dimensional space (Torgerson

1952; Kramer 2016).

Linear discriminant analysis

Linear discriminant analysis (LDA) is a supervised method

for linear dimensionality reduction analysis and has been

successfully applied in gas identification and classification

(Akbar et al. 2016; Choi et al. 2017). For the purpose of

extracting classified information and reducing the dimen-

sions of variables, high dimensional variables are projected

into a low dimensional vector space based on Fisher dis-

criminant criterion by minimizing within-class variance

and maximizing between-class variance in the low

dimensional vector space, which ensures the variables in

different classes are separated as far as possible.

Logistic regression

Logistic regression (LR) with multinomial is a supervised

classification model with a discrete random variable set of

{1, 2, 3…K}, in which K is the number of categories.

Multinomial logistic regression is an Extension of binomial

logistic regression in which the independent variable is

either 0 or 1 (Prabhakar et al. 2015). Maximum likelihood

method is applied to estimate parameters in LR model. The

problem of model building turn to find optimal solution of

likelihood function by usually using quasi-newton method

or gradient descent method.

Support vector machine

Support vector machine (SVM) is a supervised learning

method for both classification and regression. It was pro-

posed by Cortesand Vapnik based on statistical learning

theory (SLT) and worked as a linear machine in the high

dimensional feature space formed by the non-linear map-

ping of the n-dimensional input vector into a K-dimen-

sional feature space (K[ n) with a function (Cortes and

Vapnik 1995). The construction of a hyper plane and the

maximization of interval between adjacent categories in the

K-dimensional feature space are significant targets for

SVM model. The specialized learning procedure make

SVM working as a trained network with good generaliza-

tion (Brudzewski et al. 2004).

The python sklearn library (python 3.6.3) was intro-

duced to complete PCA, MDS, LDA, LR and SVM

process.

Results and discussion

E-nose sensor responses and data extractions

The conductance ratio (G/G0) was chosen as responding

signal, where G was the sensor conductivity when sensor

exposed to sample gas and G0 was the conductivity when

sensor exposed to the zero gas. Figure 1 showed the typical

E-nose responses for a typical tea leaf and a tea infusion

sample. The x-axis represented detection time and the

y-axis represented the changes of G/G0 values of E-nose

sensors. Changes of G/G0 values for tea leaf sample with

the increasing of detection time was shown in Fig. 1a,

where only S2 had a significant change while the other
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sensors exhibited few variations. In Fig. 1b, the responding

signals of S2 and S9 changed notably during the whole

detection process for tea infusion sample.

Different data extractions including 70th s value, 35th s

value and average differential value (ADV) were applied to

extract characterizing information from original signals

and to help in obtaining a model with good generalization

and learning capacity. 35th s value represented the signal

of each sensor at the half of the detection. 70th s value

represented the signal of each sensor at the end of the

detection. The formula for average differential value was

SADV =

R 70

1

Dx
Dtdt

70
.

The results of data reduction

PCA is a commonly used unsupervised method to project

data into a low dimensional space by orthogonal transfor-

mation. Nine principle components (PCs) were selected for

PCA model in the following research to retain the most of

original information. As shown in Fig. 2, the first two PCs

were chosen with PC1 as x-axis and PC2 as y-axis to

visualize the distribution of samples. Figure 2a1–a3 pre-

sented the distribution of tea leaf samples based on the

three data extractions, in which groups of Grade 1, Grade 2,

Grade 3 and Grade 4 were overlapped, and the groups of

Grade 4, Grade 5 and Grade 6 were overlapped. Fig-

ure 2a4–a6 presented the distribution of tea infusion sam-

ples based on the three data extractions. Figure 2a4, a6

exhibited that the tea infusion groups of Grade 1, Grade 2,

Grade 3 and Grade 6 were overlapped, and the groups of

Grade 3, Grade 4 and Grade 5 could not be classified

clearly. By comparing the distribution of tea leaf samples

with that of tea infusion samples, it could be found that the

distances between groups for tea infusion samples were

slightly greater than those for tea leaf samples, manifesting

that the PCA distribution for tea infusion samples were

slightly better than those for tea leaf samples, although

both of the results were not satisfactory.

MDS is also an unsupervised method to project data into

a low dimension by keeping the distances between samples

in new data space the same as they are in original space. In

order to retain most of the data information, nine principle

components were extracted for classification analysis.

Figure 2b1–b6 presented the 2-dimensional distribution of

all the samples by using the first two principle components

of MDS projection. The MDS distribution for tea leaf

samples were shown in Fig. 2b1–b3, in which all the

samples overlapped with each other. As shown in

Fig. 2b4–b6, for tea infusion samples, the similar results

were obtained as for tea leaf samples that all of the tea

infusion samples overlapped with each other and dis-

tributed disorderly, indicating the inefficiency of using the

first two principle components of MDS projection in sep-

arating samples of different tea grades.

As unsupervised methods like PCA and MDS could not

achieve satisfactory results in distributing tea samples,

LDA was applied as a frequently-used supervised method

for data reduction. LDA mainly concentrates on finding a

proper project axes that samples from the same group can

be distributed closely while samples from different groups

can be distributed separately. The data dimension size after

LDA processing should be less than the number of groups.

In order to retain most of the original information, original

data with ten-dimension were reduced to five-dimension.

Two-dimensional plots (shown in Fig. 2c1–c6) were pre-

sented to visualize the distribution of samples in different

groups. The distribution plots for tea leaf samples on the

basis of 70th s value and 35th s value were shown in

Fig. 2c1, c2. In the two plots, Grade 3 could be clearly

discriminated from the other groups, and Grade 1 and

Grade 2 were partially overlapped and were far away from

Fig. 1 Responding curves of ten E-nose sensors to a tea leaf and b tea infusion
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Grade 4, Grade 5 and Grade 6 in which Grade 6 respec-

tively overlapped with Grade 4 and Grade 5. When ADV

used as data extraction, the distribution of samples in dif-

ferent tea leaf groups were similar to that based on the

other two data extractions except that two samples in Grade

4 were mistakenly classified into Grade 2 and Grade 3. For

tea infusion samples, when based on 70th s value as data

extraction (Fig. 2c4), samples in Grade 4, Grade 5 and

Grade 6 could be severally separated, while Grade 2

overlapped with Grade 1 as well as partially overlapped

with Grade 3. The distribution of samples based on 35th s

value (Fig. 2c5) was similar to that based on 70th s value

(Fig. 2c4) except that Grade 5 was closer to Grade 3 in

Fig. 2c5. In Fig. 2c6, only Grade 6 was clearly classified

and almost all the other groups overlapped with one

another. By comparing the LDA distribution results sev-

erally from tea leaf with those from tea infusion samples,

tea infusion slightly outperformed tea leaves in distributing

tea samples of different quality grades. It was also found

that data extraction of 70th s value for tea infusion

exhibited the best result in expressing differences of tea

grades compared with the other data extractions. In com-

parison the two-dimension distribution plots based on PCA

and MDS with those based on LDA, LDA provided

superior performance in separating samples than PCA and

MDS did. The reason might ascribe to the labels infor-

mation only consisted in the LDA models.

The classification results based on Logistic

Regression

Linear model of Logistic Regression (LR) was applied in

this research to set up classification model. Quasi-newton

method was decided to find optimal solution of likelihood

function. The reciprocal value of regular parameter (C) in

LR model was optimized in the range of 10–2–104. 10-fold

cross validation was applied for assessing the stability of

the models. Dataset was randomly divided into two parts

for training and testing model: 156 samples were used as

training set and the rest of 36 samples were used as testing

set. The classification results for tea samples based on

different data extractions and data reductions were sum-

marized in Table 2. For tea leaf samples, a consistent

conclusion could be obviously achieved that PCA and

MDS reduction process contributed no effort to LR models

and LDA improved the classification accuracy rate for

most of the LR models. The LR model based on the 70th s

value and LDA process achieved the best classification

accuracy rate of 0.9444 when compared with the other LR

models for identifying tea leaf samples. For tea infusion

samples, among the three data extractions, the classifica-

tion results based on LDA presented higher accuracy rate

than those based on original data, PCA and MDS process.

The accuracy rates for training set and testing set were

0.9808 and 0.9722 in LR model when based on LDA and

the data extraction of 70th s value.

The classification results based on support vector

machine

The SVM with radial basis function (RBF) was applied to

identify tea leaf and tea infusion samples as a nonlinear

supervised method. Penalty parameter C and kernel

parameter gamma (c) was optimized in SVM models by

using a grid search method to search the best combination

of C and c. The grid search method was applied to search

the best combination of C and c in a range of 10–2–102.

10-fold cross-validation was applied to evaluate the per-

formance of each combination of parameters (C, c).

Table 3 summarized the best combinations of C and c and

classification results of SVM models for tea leaf and tea

infusion samples. As for tea leaf samples, when using

original data as input matrix, the accuracy rates of SVM

models based on data extractions of 70th s value and ADV

were higher than that based on data extraction of 35th s.

The MDS process led to the decrease of accuracy rate for

all the SVM models. The PCA and LDA process increased

the classification accuracy rates of the SVM models by

applying 70th s value and 35th s value as data extraction

methods. Generally, the performance of SVM based on

LDA were better than both PCA, MDS and original data in

this case. For tea infusion samples, when using original

data as input matrix, the accuracy rates of the SVM models

based on data extraction of 70th s value and 35th s value

were higher than those based on data extraction of ADV.

Meanwhile, the LDA process provided higher accuracy

rate in SVM models than PCA, MDS and original data did.

Moreover, the LDA process coupled with SVM model

could achieve the best classification accuracy rates of

100% when based on the data extractions of 70th s value.

Through the comparison of results for tea leaf and tea

infusion samples, the accuracy rates of SVM models in

both training set and testing set for classifying tea infusion

samples were generally higher than those for tea leaf

samples, which may ascribe to the volatile components in

tea infusion better characterize tea samples of different

grades.

bFig. 2 PCA results for tea leaf based on a1 70th s value, a2 35th s

value, a3 ADV, and for tea infusion based on a4 70th s value, b5 35th

s value, a6 ADV; MDS results for tea leaf based on b1 70th s value,

b2 35th s value, b3 ADV, and for tea infusion based on b4 70th s

value, b5 35th s value, b6 ADV; LDA results for tea leaf based on c1
70th s value, c2 35th s value, c3 ADV, and for tea infusion based on

c4 70th s value, c5 35th s value, c6 ADV
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When comparing the classification results of the SVM

models with LR models, although SVM models generally

outperformed LR models, some accordant conclusions

could be obtained. Firstly, the LDA process provided better

classification results than PCA, MDS and original data did.

Secondly, after LDA process, the accuracy rates based on

the models for tea infusion samples were generally superior

than those for tea leaf samples. Thirdly, by applying LDA

as data reduction, both of LR models and SVM models for

tea infusion based on data extraction of 70th s value pro-

vided satisfactory results with accuracy rates of 97.22%

and 100%.

The analysis of volatile components in tea leaf

and tea infusion by GC–MS

The volatile components of both tea leaf and tea infusion

were measured by GC–MS in this research. Table 4 pre-

sented the relative amounts of the identified volatile com-

ponents in tea leaf as percentages of the total area of

volatile components peaks and the contents of volatile

components contained in tea infusion identified with ref-

erence to internal standard. For tea leaf samples, the con-

tent of nonanal was dominate among all the identified

volatile components. When comparing the quantities of

volatile components in tea leaf samples of different grades,

the contents of benzaldehyde, nonanal, a-Terpineol,

decanal and b-cyclociral were decreased with the

decreasing of tea grades, which indicated the positive

contribution of these volatile components to tea grades.

Meanwhile, it is notably found in this research that most of

the volatile components in tea leaf including benzaldehyde,

benzeneacetaldehyde, 1-octanol, nonanal, phenylethyl

alcohol, naphthalene, a-terpineol, methyl salicylate,

decanal, b-cyclociral, (z)-3-hexenyl hexanoate, tetrade-

cane, a-cedrene, a-ionone, geranyl acetone, b-ionone,

cadinene, pentadecane and heptadecane could also be

found in tea infusion. Moreover, in this research, 1-octen-

3-ol, b-myrcene, linalool, safranal, geraniol, citral, indole,

cubebene, jasmone, nerolidol and methyl jasmonate were

only identified in tea infusion might indicate that new

volatile components were generated with the help of boiled

water. In tea infusion, the main constituents of volatile

components were linalool, geraniol and nonanal, which

possessed rose-like or flora impression. Along with the tea

grades decreasing, the contents of linalool and nonanal

presented a descending tendency. Jasmone was only found

in the tea infusion of Grade 1 and Grade 2. Meanwhile,

Table 2 Comparison of LR

results based on different data

extractions and data reductions

for tea samples

Tea samples Data extractions Data reductions Tenfold CV Training set Testing set

Tea leaf 70th s value Original 0.9222 0.9872 0.9167

PCA 0.8944 0.9936 0.8889

MDS 0.8139 0.8718 0.8611

LDA 0.9611 1 0.9444

35th s value Original 0.8389 0.8782 0.8333

PCA 0.9000 0.9615 0.8611

MDS 0.8249 0.9679 0.8889

LDA 0.9361 0.9615 0.8889

ADV Original 0.8806 0.9808 0.8333

PCA 0.8944 0.9744 0.8611

MDS 0.8194 0.9231 0.6667

LDA 0.7750 0.9551 0.8661

Tea infusion 70th s value Original 0.9250 0.9744 0.75

PCA 0.9333 0.9744 0.7778

MDS 0.8972 0.9936 0.75

LDA 0.9444 0.9808 0.9722

35th s value Original 0.9278 0.9615 0.7222

PCA 0.9417 0.9808 0.7778

MDS 0.9083 0.9744 0.8056

LDA 0.9361 0.9551 0.9444

ADV Original 0.9250 0.9744 0.7222

PCA 0.9250 0.9808 0.6944

MDS 0.8722 0.9615 0.6667

LDA 0.9417 0.9744 0.8889
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benzaldehyde, 1-octen-3-ol, b-cyclociral, citral, nerolidol

and methyl jasmonate showed the same changing trend as

linalool and nonanal, revealing the positive influence of

these volatile components to tea aroma. The contents of

benzeneacetaldehyde, phenylethyl alcohol, naphthalene,

methyl salicylate and indole declined as the tea grade going

up, manifesting that these volatile components may had

negative contribution to tea perception. It could be found

that the concentrations of the newly generated volatile

components in tea infusion like indole, jasmone, linalool

and nerolidol were changed with the variation of tea

grades, which manifested that tea infusion might better

characterize the differences among different tea grades

than tea leaf did.

The correlations between E-nose signals and volatile

components

In order to investigate the potential correlation between the

content of volatile components and E-nose signals,

regression models were set up to quantitatively predict the

content of volatile components. Tea infusion samples

contained more volatile components and could be superi-

orly classified than tea leaf samples did. Therefore, the

regression models were built based on E-nose signals

obtained from tea infusion samples. As shown in Table 4,

the contents of linalool, nonanal and geraniol were related

to tea grades and were the highest among all the detected

volatile components in tea infusion. Hence, the three

volatile components were chosen for the following quan-

titative analysis. SVM was applied to set up regression

models. To obtain the best performance, the radial basis

function (RBF) was chosen as the core function and

10-fold cross validation was applied in SVM. Penalty

parameter C and kernel parameter gamma (c) were opti-

mized by using a grid search method in SVM regression

models to acquire the optimal model. The regression results

were shown in Table 5. Squared correlation coefficient (R2)

as well as root mean square of error (RMSE) were used to

assess the performance of the prediction models. As shown

Table 3 Comparison of SVM results based on different data extractions and data reductions for tea samples

Tea samples Data extractions Data reductions Parameters Tenfold CV Training set Testing set

C c

Tea leaf 70th s value Original 18.4207 22.2299 0.8917 1 0.8333

PCA 39.0694 3.3932 0.8972 0.9872 0.9167

MDS 2.3299 39.0694 0.8611 0.9872 0.75

LDA 4.9417 0.0309 0.9389 0.9744 0.9444

35th s value Original 2.3299 39.0694 0.9361 0.9936 0.6944

PCA 39.0694 15.2642 0.9250 1 0.8333

MDS 1.9307 56.8987 0.9278 0.9936 0.7222

LDA 3.3932 0.0176 0.9499 0.9679 0.9167

ADV Original 56.8987 1.5999 0.8778 0.9744 0.8611

PCA 32.3746 5.9636 0.8806 0.9936 0.8611

MDS 68.6649 4.0949 0.8806 0.9744 0.7778

LDA 1.9307 0.0449 0.9167 0.9487 0.8611

Tea infusion 70th s value Original 7.1968 5.9636 0.9528 1 0.9167

PCA 8.6851 2.8118 0.9583 0.9936 0.9167

MDS 7.1968 12.6486 0.9250 0.993 0.9444

LDA 2.3299 0.0449 0.9667 1 1

35th s value Original 10.4811 1.9307 0.9333 0.9936 0.9444

PCA 7.1969 2.8118 0.9417 0.9936 0.9167

MDS 5.9636 4.0949 0.8972 0.9936 0.8889

LDA 4.9417 0.1151 0.9333 0.9808 0.9722

ADV Original 4.0949 4.0949 0.9278 0.9743 0.8056

PCA 5.9636 2.3299 0.9222 0.9743 0.8333

MDS 10.4811 2.8118 0.9444 0.9872 0.8611

LDA 8.6851 0.0449 0.9639 0.9872 0.9167
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in Table 5, the prediction results based on original data

were not satisfactory for all the three volatile components.

PCA and MDS process had no positive contribution to

increase prediction accuracy. LDA process provided posi-

tive contribution for the prediction accuracy for all the

three volatile components (Linalool: R2 = 0.9343; Non-

anal: R2 = 0.8980; Geraniol: R2 = 0.9315), indicating the

effectiveness of LDA in improving the results of regression

models. The results indicated that the LDA processed

E-nose signals combined with SVM could be effectively

applied for quantitatively predicting the content of volatile

compounds contained in tea samples.

Conclusion

In this research, E-nose was employed to evaluate tea

quality by detecting tea leaf and tea infusion samples. The

volatile components of tea samples were analyzed by GC–

MS as reference. LR and SVM were applied to set up

classification models. The performance of data extractions

including 35th s value, 70th s value and ADV, as well as

data reductions including PCA, MDS and LDA were

compared. The SVM model based on the data extraction of

70th s value combined with LDA reduction achieved sat-

isfactory classification performance with the accuracy of

100%. Meanwhile, good correlations were found between

the contents of main volatile components in tea infusion

including linalool (R2 = 0.9343), nonanal (R2 = 0.8980)

and geraniol (R2 = 0.9315) and the E-nose signals of 70th s

value. The E-nose that composed of 10 metal-oxide based

gas sensors could be successfully employed for qualita-

tively identifying tea quality grades and quantitative ana-

lyzing the content of main volatile compounds with the

changing of tea quality grades. The research manifested the

feasibility of applying E-nose to evaluate tea quality by

characterizing tea aroma with electronic signals.
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