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Abstract

An individual’s susceptibility to atherosclerotic cardiovascular disease (ASCVD) is influenced by 

numerous clinical and lifestyle factors, motivating the multifaceted approaches that are currently 

endorsed for primary and secondary ASCVD prevention. With growing knowledge of the genetic 

basis of ASCVD – in particular, coronary artery disease (CAD) – and its contribution to disease 

risk, there is increased interest in understanding the potential clinical utility of a genetic predictor 

that might further refine the assessment and management of ASCVD risk. Rapid scientific and 

technological advances have enabled widespread genotyping efforts and dynamic research in the 

field of CAD genetic risk prediction. In this review, we describe how genomic analyses of CAD 

have been leveraged to create polygenic risk scores (PRS). We then discuss evaluations of the 

clinical utility of these scores, pertinent mechanistic insights gleaned, and practical considerations 

relevant to PRS implementation in the health care setting.
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FOUNDATIONAL THEORIES – THE GENETIC ARCHITECTURE OF 

CORONARY ARTERY DISEASE

Heritability of coronary atherosclerosis

The heritability of atherosclerotic cardiovascular disease (ASCVD) has long been postulated 

given the observed aggregation of coronary artery disease (CAD) and its sequelae of 

myocardial infarction (MI) in families, particularly when disease onset occurs early in life.
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1–4 In the Framingham Heart Study Offspring Cohort, a parental history of premature CAD 

was associated with roughly two-fold odds of incident cardiovascular disease after 

adjustment for traditional clinical risk factors, suggesting an independent heritable basis for 

cardiovascular disease susceptibility.5 While familial aggregation may imply enrichment of 

shared deleterious DNA sequence variants or non-genetic factors (e.g. health-related 

behaviors, food access, parental income, and neighborhood), studies of high-risk families 

and twin populations have since approximated the heritability of CAD – defined specifically 

as the total proportion of phenotypic variation explained by genetic factors – at 40% to 60%.
6 At the individual level, the relative contribution of inherited over acquired risk factors is 

likely greatest among individuals in whom CAD arises prematurely.6, 7

Monogenic (Mendelian) determinants of CAD

Investigations into the genetic determinants of CAD have uncovered distinct models of 

inheritance that speak to a complex genetic architecture. For some individuals and families, 

genetic risk follows an apparent, classical Mendelian inheritance pattern, with disease 

manifesting at a relatively young age and with a smaller contribution from environmental 

risk factors.8 In such cases, risk may be mediated by a rare (minor allele frequency [MAF] < 

0.5%), high-impact mutation in a single gene (“monogenic”) that results most commonly in 

familial hypercholesterolemia (FH) – a clinical syndrome characterized by marked 

elevations in plasma concentrations of low-density lipoprotein cholesterol (LDL-C) and 

occasionally associated physical stigmata such as corneal arcus and tendon xanthomas. FH 

follows an autosomal incomplete dominant pattern of inheritance, where the number of 

abnormal alleles inherited (0, 1, or 2) correlates directly with the severity of the FH 

phenotype.9 Candidate gene studies and linkage analyses of patients with FH have localized 

the causative defects to pathogenic mutations in genes encoding the LDL receptor (LDLR), 

apolipoprotein B (APOB) and the proprotein convertase subtilisin/kexin type 9 (PCSK9), all 

of which directly or indirectly interfere with LDL receptor-mediated uptake of cellular LDL-

C particles from the bloodstream.10–14 However, the prevalence of heterozygous FH is 

approximately 1 in 300–500 individuals. And despite an abundance of clinical criteria for 

FH, most individuals do not have pathogenic mutations in the aforementioned FH genes. 
15, 16 The residual etiologies are likely a combination of: (1) novel undetected genes 

responsible for FH, (2) alternative heritable mechanisms, which will be discussed below, and 

(3) phenocopy, or non-genetic mechanisms (e.g., maladaptive health-related behaviors). FH 

may often be suspected in the setting of severe hypercholesterolemia and retrospective 

analyses imply a strongly favorable clinical effect of early statins.17 As such, current 

guidelines recommend early statin preventive therapy regardless of other risk factors when 

FH is apparent.18, 19

Autosomal recessive Mendelian hypercholesterolemia syndromes are much rarer and are 

typically assessed in most clinical FH genetic panel tests. Homozygous genotypes of 

pathogenic mutations in LDLRAP1 may lead to an FH phenotype. Furthermore, 

sitosterolemia is a condition that leads to plant sterol accumulation in the blood and tissues 

(due to homozygous genotypes of pathogenic mutations in ABCG5 or ABCG8) and may 

also lead to a similar phenotype. The aggregate prevalence of these genotypes is 1 in 

5,000,000.9
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Polygenic determinants of CAD and genome-wide association studies

While monogenic CAD risk has provided key mechanistic insights for CAD, it does not 

explain the more common familial aggregation of CAD in the population. For most of the 

population, inherited CAD risk is the product of many common (MAF > 5%) genetic 

variants of small effect sizes (“polygenic”) working in aggregate and alongside 

environmental and lifestyle factors.20 CAD-associated common genetic variants have been 

identified through increasingly large, population-based genome-wide association studies 

(GWAS), enabled by marked scientific and technological advancements over the past two 

decades. Specifically, the completion of the Human Genome Project and the systematic 

classification of millions of single nucleotide polymorphisms (SNPs; i.e. through the 

International HapMap project) have prompted corresponding developments in high-

throughput, low-cost DNA microarrays to assay pre-specified genotypes, as well as 

imputation strategies to statistically infer unknown genotypes from known ones.21–23 

Parallel computational innovations have facilitated pipelines to interrogate the large amounts 

of human genetic data generated, permitting efficient, population genetic analyses of CAD 

and many other traits and diseases.

Fundamentally, a disease-specific GWAS compares the DNA profiles of disease cases and 

disease-free control participants to detect statistically significant enrichment or depletion of 

assayed alleles among cases versus controls. Due to the simultaneous assessment of a 

million or more independent SNPs for association with a disease or trait, correction for 

multiple-testing yields a stringent P-value threshold of less than 5×10−8 to achieve “genome-

wide” statistical significance.24 To minimize detecting spurious associations driven by the 

ascertainment of cases and controls, genetic ancestry differences (i.e., population 

stratification) is accounted for in analyses and independent consistent replication is typically 

pursued. Therefore, GWAS of CAD and other diseases have relied upon the formation of 

global, disease-specific consortia to recruit sufficient individuals with and without the 

disease of interest to both maximize power and limit false discoveries.

The first common genetic variants associated with CAD at a level of genome-wide 

significance were identified by three independent groups in 2007 within a 58-kb interval in 

chromosome 9p21.25–27 Subsequent GWAS and meta-analyses have involved international 

collaboratives such as the Myocardial Infarction Genetics Consortium (MIGen), the 

Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) 

consortium, and the Coronary Artery Disease Genetics Consortium (C4D). The merging of 

the CARDIoGRAM and C4D collaboratives in 2013 yielded CARDIoGRAMplusC4D, 

which has since served as the leading international consortium for CAD discovery genetics.
28–31 These collaborative efforts have largely been predicated on the amalgamation of 

distinct case-control studies to augment power for genetic discovery and evaluate for 

consistent associations across cohorts. The advent of the United Kingdom (UK) Biobank – a 

population-based biobank of 500,000 genotyped individuals with linked health registry data 

– provided another rich source of CAD cases and controls and ensuing genetic association 

analyses incorporating data from the UK Biobank have further expanded our understanding 

of the polygenic basis of CAD.3233–36 Collectively to-date, discovery genetic analyses over 
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the past 13 years have identified 164 common genetic loci associated with CAD at levels of 

genome-wide significance (Figure 1).37

The successful identification of many genetic risk loci for CAD has also lent credence to the 

“common disease-common variant” hypothesis for CAD heritability.38–42 For example, a 

GWAS led by the CARDIoGRAMplusC4D consortia in 2015 leveraged data from the 1000 

Genomes Project, permitting the analysis of lower frequency (MAF = 0.5 – 5%) genetic 

variants in addition to common genetic variants. While the study uncovered both known and 

novel susceptibility loci for CAD, nearly all association signals reaching genome-wide 

significance were among the common genetic variants tested, further suggesting that low-

frequency variants do not contribute substantially to the population-level heritability of 

CAD.43 Nevertheless, associated low-frequency variants, typically with larger effects than 

observed for associated common variants and more often in coding sequences, have yielded 

important mechanistic insights into the pathogenesis of CAD.44, 45

POLYGENIC RISK SCORES – BASIC PRINCIPLES and METHODS

The liability threshold model for binary traits

The results of GWAS have therefore affirmed both statistical and evolutionary theories 

surrounding the genetics of complex traits – namely, that the genetic architecture of complex 

diseases (like CAD) comprises a preponderance of common, low-impact genetic variants, 

with more modest contribution from rare variants of large effect.41, 42 In aggregate, the 

associated risk conferred by these (largely common) genetic polymorphisms aligns with the 

well-established “liability threshold model” of disease, which proposes a continuous and 

normal risk distribution for binary outcomes arising from numerous genetic and non-genetic 

factors, and the existence of a theoretical risk threshold above which a given disease or 

phenotype typically manifests.46, 47

Genetic factors contributing to an individuals’ predilection for a complex trait can be 

represented by a polygenic score, a single, normally-distributed quantitative factor that 

captures the aggregate genetic influences of many common genetic variants. When the 

genetic predisposition captured by a polygenic score applies to a binary disease outcome, the 

term “polygenic risk score” (PRS) may be used, reflecting the net susceptibility to disease 

(“risk”) conferred by the numerous common genetic variants accounted for. In this review, 

we focus on polygenic scoring for binary disease outcomes – in particular, PRS for CAD. 

While the predictive accuracy of any PRS is bounded by the underlying heritability of a 

disease, several factors significantly influence PRS performance – i.e. the precision of 

common variant association estimates from GWAS; the specific populations in which the 

PRS is developed and applied; as well as various methodologic considerations when 

assembling a PRS.

Methods for PRS construction

In their current form, PRS are primarily derived from GWAS estimates of individual SNP-

trait associations. More specifically, the output of a GWAS is a set of “summary statistics” 

for the association between each of the (often millions of) genotyped or imputed SNPs 
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assessed and a given trait or disease (Figure 2). For each genetic variant, summary statistics 

typically include: a variant identifier, its position in the genome, classification of risk 

(“effect”) versus protective (“non-effect”) alleles, the effect size of the per-effect allele 

association with the trait, a measure of confidence in the effect size estimate (i.e. standard 

error), and the statistical p-value. Given differences in allelic references across genotyping 

platforms, effect allele frequencies are often used to harmonize discovery genotyping 

platforms with the testing genotyping platforms. Summary statistics of GWAS have been 

made publicly available by many GWAS consortia, including the CARDIoGRAMplusC4D 

consortium for CAD, enabling PRS method development, calculation, and evaluation by the 

broad scientific community.43, 48

At the most basic level, an “unweighted” PRS sums the total number of risk alleles within an 

individual’s genome across a set of SNPs known to be significantly associated with the 

disease of interest. For example, an unweighted PRS comprising 10 common SNPs that are 

highly associated with disease yields a distribution of total scores in the general population 

that can range anywhere from 0 (no risk alleles) to 20 (two copies of the risk allele at each 

SNP). An unweighted PRS – variably termed an “unweighted allele score” – therefore 

assumes that all incorporated genetic variants have equivalent effect sizes.49 However, as the 

genetic architectures of most complex traits include unequal variant effects, this somewhat 

simplistic assumption limits the performance of unweighted PRS models.50, 51

More commonly, PRS incorporate the distinct effect sizes (or “weights”) of common variant 

associations with the disease of interest. Mathematically, a “weighted” PRS ϕ for each study 

participant j, is represented by the number of risk alleles x at each variant i, multiplied by the 

respective, per-allele effect size β  (derived from GWAS summary statistics) and summed 

across M variants: ϕj = ∑i = 1
M β i × xij. The resultant raw scores of a weighted, common 

variant PRS also tend to approximate a normal distribution at the population level. As 

expected, weighted PRS generally exhibit improved predictive accuracy as compared to their 

unweighted counterparts.50

Several other methodologic factors must be considered when calculating a PRS, including: 

(1) the selection of an optimal p-value threshold to guide variant inclusion; (2) the 

appropriate handling of linkage disequilibrium (LD), the correlation between SNPs located 

in the same region of the genome that may be inherited together due to lower rates of 

recombination; and (3) the prior probability of a SNP being causal for the outcome (as 

opposed to being correlated with the causal SNP(s)).52, 53

A selected p-value threshold determines the total number of SNPs incorporated into a PRS 

model. For example, a threshold of genome-wide significance denotes that only SNPs with 

GWAS association p-value < 5×10−8 are included in PRS calculation, and all remaining 

SNPs are excluded. A stringent p-value cutoff (such as genome-wide significance) yields a 

higher proportion of causal variants at a lower false positive rate, whereas a more lenient 

threshold yields a greater total number of genetic variants, albeit with less trait specificity. 

Achieving an optimal p-value threshold (often used as a “tuning parameter”) in a training 

dataset is therefore meant to balance the signal-to-noise ratio associated with using either a 

smaller number of highly-significant SNPs with more precise effect estimates, or a larger set 
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of SNPs that more comprehensively account for trait heritability, but where the average, per-

SNP effect estimates are less precise.

For disease prediction, the central goal is less about the discovery of associated variants and 

more about explaining phenotypic variation. Accordingly, recent evidence suggests that 

including more genetic variants (through the use of liberal significance cutoffs) leads to 

improved PRS performance for most complex diseases.54–56 Nonetheless, there is no single 

p-value threshold that maximizes PRS performance in all circumstances, as the optimal set 

of parameters is highly dependent on the genetic architecture of the disease, the specific 

attributes of the GWAS summary data from which the input variants are drawn (i.e. sample 

size, density of genotyping and imputation) and any differences between the discovery 

cohort and the target population. Therefore, it is now customary as part of PRS development 

to calculate and test many scores of varying sizes employing a range of p-value thresholds – 

from genome-wide significant (p < 5×10−8) to all independent SNPs (p < 1) – within a 

training dataset to arrive at the optimal parameters for a specific PRS.52, 57

A related, and equally important consideration, is accounting for the correlation between 

SNPs that are in close proximity (linkage disequilibrium). Failure to do so may result in the 

overrepresentation of genetic variants within regions of high LD, and marked reductions in 

PRS performance. There are two fundamental approaches to handling LD in the context of 

PRS generation. The first involves removing one SNP from a pair in high LD, either at 

random (“pruning”) or by preferentially preserving the SNP more highly associated with the 

outcome (“clumping”).52 This process retains a set of SNPs that are largely independent of 

one another, although it requires the somewhat arbitrary selection of a correlation threshold 

to nominate SNPs as being in LD.58 The second approach is to permit the inclusion of 

correlated SNPs, but to adjust (or “shrink”) effect estimates based on their correlation 

structure – for example, two correlated SNPs would both be preserved in a PRS model, but 

their respective effect estimates would be downsized commensurate with the degree of 

correlation. The former approach is typically employed alongside p-value thresholding, 

where SNPs are input into a PRS assuming they meet specified thresholds for both genetic 

correlation (and are therefore conditionally independent) and statistical significance – so-

called “clumping and thresholding” scores.59 The latter approach is pertinent to expanded – 

i.e. “genome-wide” – PRS with more relaxed or no p-value thresholds, permitting 

incorporation of a larger number of genetic variants that may require adjustments for LD. 

The development of novel computational tools to better account for LD, including LDpred 

and Lassosum, have enabled more widespread generation and testing of expanded PRS 

(Table).60, 61

Evaluation of PRS performance

The product of PRS calculation and training is a defined set of genetic variants and 

associated effect sizes that can be applied to an independent validation dataset – one not 

included in the input GWAS or the training of PRS parameters – to evaluate score 

performance. Standard epidemiologic measures are employed to assess the association 

between PRS and outcomes. For binary diseases, it is conventional to report odds ratios 

(OR) or hazards ratios (HR) per standard deviation (SD) change in the PRS, the proportion 
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of phenotypic variation explained (R2 or pseudo-R2), area under the receiver operating 

characteristic curve (AUC) or C-statistic, and the association P-value. Assuming a 

statistically significant P-value, the AUC and C-statistic typically convey the ability of the 

PRS to discriminate between diseased and non-diseased individuals, as bounded by the 

heritability of the disease. However, while AUC, C-statistic and related metrics – i.e. net 

reclassification index and integrated discrimination index – have been historically 

emphasized and may provide adequate population-level assessments of model 

discrimination, they do not inform tangibly on the prognosis of an individual or subgroup. 

Prognosis is perhaps most relevant for guiding clinical management, and may be better 

captured by abovementioned effect estimates of disease risk (such as the odds or hazards 

ratios).62–65 Moreover, to translate PRS clinically requires concurrent, disease-specific 

consideration of traditional risk factors, a rubric to define “high genetic risk” with 

corresponding strategies for risk modification, and an appropriate framework for integrating 

PRS-based risk stratification into routine clinical management.66

UTILITY OF POLYGENIC RISK SCORES FOR THE PREDICTION AND 

PREVENTION OF ASCVD

Prediction of clinical ASCVD by initial CAD PRS

The original assessment of CAD polygenic risk prediction predated most early genetic 

discovery efforts for CAD, and involved an unweighted PRS comprising 9 SNPs associated 

with LDL or HDL cholesterol at levels of genome-wide significance. This unweighted, 

“lipid allele score” associated with incident cardiovascular events – myocardial infarction, 

stroke, and cardiovascular death – in the Malmo Diet and Cancer Study (MDCS) after 

adjustment for traditional risk factors such as baseline lipid levels, but did not improve risk 

discrimination when added to these clinical predictors.67 Following the identification of 

CAD risk loci by initial GWAS, an analysis of a weighted PRS comprising 13 genome-wide 

significant CAD-associated SNPs in the prospective MDCS and FINRISK cohorts 

demonstrated a strong association with incident CAD – a hazard ratio of 1.66 comparing 

those in the highest versus lowest quintile of the PRS after adjusting for clinical covariates; 

although, the CAD PRS did not improve risk discrimination beyond these traditional risk 

factors and family history.68

Ensuing analyses of unweighted and weighted CAD PRS utilizing anywhere between 11 and 

50 distinct, genome-wide significant CAD-associated SNPs yielded varying levels of 

association with prevalent and incident CAD.69–75 Notably, a study by Tada et al. in MDCS 

showed that the association between a CAD PRS of 50 genome-wide significant SNPs and 

incident CAD was robust to adjustments for self-reported family history, and that addition of 

this PRS to family history and other clinical risk factors improved model discrimination and 

reclassification, albeit modestly. Importantly, this study also demonstrated the predictive 

advantage of a 50-variant PRS over a 27-variant PRS (including only genome-wide 

significant SNPs in both cases) as evidenced by a steeper gradient of risk when comparing 

the highest and lowest quintiles of the PRS (HR = 1.92 and 1.70, respectively, with 50-SNP 

and 27-SNP PRS).76
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Studies have since shown the predictive benefit of expanding CAD PRS to include SNPs that 

fall below the threshold of genome-wide significance, likely due to better capture of CAD 

heritability. For example, an assessment of CAD risk prediction in the Rotterdam Study 

showed a slight discriminative advantage when using a more permissive 152-SNP PRS (49 

genome-wide significant CAD SNPs and an additional 103 uncorrelated, suggestive CAD 

SNPs with false discovery rate < 5%) over a PRS limited to 49 genome-wide significant 

CAD SNPs.77 Abraham et al. subsequently performed iterative training of PRS models 

based on differing correlation (R2) thresholds for LD and arrived at an optimal PRS 

comprising 49,310 independent SNPs. This expanded PRS was tested in multiple 

prospective cohorts from FINRISK and the Framingham Heart Study, and showed marked 

predictive and discriminative improvement over CAD PRS models limited to genome-wide 

significant or suggestive SNPs, and beyond established clinical risk scores (i.e. the 

Framingham Risk Score).78

Prediction of clinical ASCVD by genome-wide CAD PRS

As described above, methodologic advances have now enabled the generation of genome-

wide PRS incorporating millions of common genetic variants. In particular, two studies 

focusing on the UK Biobank (N ~ 500,000) have demonstrated the potential of genome-wide 

PRS to enhance CAD risk prediction. Khera et al. leveraged the LDpred algorithm – a 

Bayesian approach to PRS calculation that accounts for patterns of correlation between 

SNPs using a LD reference panel – to generate a CAD PRS comprising 6.6 million common 

genetic variants.60 This genome-wide PRS compared favorably to previously reported CAD 

PRS – i.e. the abovementioned 50-SNP and 49,310-SNP scores – as evidenced by more 

robust p-values and higher, per-SD effect estimates for the association with combined 

prevalent and incident CAD. Notably, this expanded score better identified individuals at the 

extremes of disease risk. Specifically, individuals in the top 1% of the 6.6 million variant 

PRS were at nearly 5-fold odds of developing CAD when compared to the remaining 99% 

of the UK Biobank population; by comparison, membership in the top 1% of the 49,310-

SNP score by Abraham et al. conferred just under 3-fold odds of CAD (Figure 3).79

Subsequently, Inouye et al. constructed a PRS comprising 1.7 million common genetic 

variants reflecting the weighted average of genetic information from three orthogonal CAD 

discovery efforts. Compared to prior scores, this “metaGRS” captured a greater proportion 

of CAD heritability (~27%), and demonstrated marked improvements in risk prediction and 

discrimination, while confirming clinical risk factor-independent associations with incident 

CAD. As tested in the UK Biobank, the discriminative capacity (C-statistic) of the metaGRS 

alone was greater than that of any other, individual clinical risk factor (i.e. hypertension, 

hyperlipidemia, diabetes, body mass index, family history of heart disease, or current 

smoking), and added to the net discrimination of all six conventional risk factors combined. 

In addition, this study rigorously characterized the marked differences in lifetime trajectories 

of CAD risk between strata of the metaGRS (Figure 3). Such age-independent risk 

trajectories would be ascertainable early in life and before the manifestation of other clinical 

risk factors, suggesting that genetic assessments may permit the early identification of 

patients at high lifetime risk of CAD, and the implementation of corresponding prevention 

strategies to mitigate risk.80, 81
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Additional testing of genome-wide PRS in separate cohorts has yielded mixed results, 

although the specific methodologies and outcome measures utilized, and the sample sizes 

assessed have likely influenced the conclusions drawn from each study. An analysis of the 

above two CAD PRS generated by LDpred and metaGRS in a French-Canadian population 

(N ~ 11,000) demonstrated robust associations with prevalent CAD (AUC = 0.72 – 0.89), 

but more modest associations with incident and recurrent events (AUC 0.56 – 0.60). The 

latter observation was thought to be the result of a focus on prevalent CAD in the discovery 

CAD GWAS studies from which each score was derived, as well as a high rate of preventive 

therapies (i.e. 76% statin prescription rate) in the study population, which may have 

influenced incident analyses of primary events.82

In an analysis of the Atherosclerosis Risk in Communities (ARIC) and Multiethnic Study of 

Atherosclerosis (MESA) cohorts (Total N = 7,237), the 6.6 million variant LDpred CAD 

PRS associated strongly with prevalent CAD, and more modestly with incident CAD, but 

did not add significantly to conventional clinical factors including the ACC/AHA Pooled 

Cohort Equations (PCE), as assessed by metrics of model discrimination, calibration and 

risk reclassification. Of note, for analyses in ARIC, the authors required that participants 

complete their fourth study visit without developing CAD in order to be included in incident 

disease analyses, which may have reduced the power of the study to detect meaningful 

changes in the C-statistic. Nonetheless, when evaluated separately, the PRS (plus age and 

sex) achieved a comparable C-statistic to the PCE (which includes age and sex) in both 

ARIC (PRS: 0.669 versus PCE: 0.701) and MESA (PRS: 0.672 versus PCE: 0.660) despite 

marked temporal differences in when each risk score may be ascertained – i.e. the PRS is 

available at the time of birth, before the onset of clinical risk factors required to compute the 

PCE (which has been validated for individuals with a minimum age of 40).83

A similar analysis in the UK Biobank (N = 352,660) examined a genome-wide CAD PRS in 

the context of two clinical risk scores – the PCE and the analogous, UK-recommended 

QRISK3 score. The authors constructed genome-wide PRS using the aforementioned 

lassosum method, which employs a penalized regression model and an external reference 

panel to account for LD.61 The best performing CAD PRS in the independent training set 

comprised 1,037,385 SNPs. Incident event analyses with the best-performing score 

demonstrated equivalent C-statistics between the age/sex-adjusted lassosum CAD PRS 

(0.76) and the PCE (0.76), and a statistically significant but modest increase in the C-

statistic when the two were combined (0.78).84

A third, and separate study, analyzed a genome-wide CAD PRS (6.6 million variant LDpred 

PRS) and the PCE in the UK Biobank and also in MDCS (N ~ 28,000). As above, this 

analysis showed comparable C-statistics between age/sex-adjusted CAD PRS and the PCE, 

and a small increase in the C-statistic when the two were combined. However, within each of 

the four standard PCE risk categories routinely used in the clinical setting (“Low,” 

“Borderline,” “Intermediate,” and “High” risk), incident event rates were markedly different 

based on PRS strata. Specifically, within each PCE subgroup, there was a 2–4-fold higher 

rate of incident CAD among those at high (top 20% of PRS) versus low polygenic risk 

(bottom 20% of PRS) over the 10-year follow-up period, suggesting the ability of the CAD 

PRS to substantially stratify disease risk trajectories within each PCE risk category.85
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The latter findings re-demonstrate the known challenges of relying on metrics of 

discrimination when assessing the incremental prognostic benefit of an added predictor.63 

However, despite somewhat differing study conclusions, these analyses uniformly 

demonstrate the robust predictive power of genome-wide PRS – on par with the widely-used 

PCE across multiple populations – and affirm their role as the “first-risk factor” for CAD, 

with the ability to prognosticate risk from a young age and over an extended time horizon 

(Figure 4).81 Accordingly, the potential utility of CAD PRS among younger individuals is 

typically acknowledged and requires further, prospective testing.

However, the conflicting study conclusions have sparked controversy around the clinical 

utility of CAD PRS in middle-aged adults.86 Given robust evidence around traditional risk 

calculators and their readily-available constituent clinical factors in middle-aged adults, 

these clinical factors should continue to serve as the foundation of CAD risk assessments for 

this age demographic. PRS are also poised to be readily available, and may provide 

complementary information to support clinical decision-making, ideally within a guideline-

supported framework. The aforementioned study in UK Biobank and MDCS is pertinent in 

this regard as it demonstrated a marked gradient in longitudinal risk when considering the 

CAD PRS within guideline-supported categories of clinical risk as defined by the PCE.85 In 

particular, a two- to four-fold risk difference was noted between PRS strata among 

participants at borderline to intermediate clinical risk, a group for whom updated ACC/AHA 

prevention guidelines already endorse the use of CAD “risk-enhancing factors” (i.e. C-

reactive protein, Lipoprotein(a), family history of premature MI) to help guide statin 

initiation.19 Indeed, the extensive literature reviewed above may support the incorporation of 

PRS as yet another risk-enhancer to up-classify risk in scenarios of clinical equipoise. In 

fact, accruing evidence now suggests that a CAD PRS measures risk not otherwise captured 

by well-established prevention algorithms.87 Therefore, the data speak to combining 

complementary genetic and clinical information within guideline-supported frameworks to 

better capture different trajectories of disease risk, and to facilitate earlier prevention 

strategies for higher risk groups. Such individuals may be identified genetically earlier in life 

prior to the onset of traditional risk factors, or in mid-life alongside established clinical risk 

models.

Association of CAD PRS with subclinical ASCVD

The genetic determinants of CAD align with those of subclinical coronary atherosclerosis. A 

discovery genetic effort of coronary artery calcification (CAC) and carotid intima-media 

thickness (CIMT) in over 77,000 individuals from the Cohorts for Heart and Aging Research 

in Genomic Epidemiology (CHARGE) Consortium demonstrated genome-wide significant 

signals at known CAD loci such as at CDKN2B (the 9p21 locus), PHACTR1, APOB, and 

APOE.88 Perhaps unsurprisingly, then, polygenic predictors of CAD have been shown to 

associate with subclinical atherosclerosis in multiple vascular beds. In a study of two 

generations of the Framingham Heart Study, a gradient of risk for high CAC was observed 

across tertiles of an unweighted 13-SNP PRS.71 Separately, a CAD PRS (of 50 weighted, 

genome-wide significant SNPs) was found to associate strongly with CAC as measured in 

the BioImage study.89 In an assessment of CAC from the Coronary Artery Risk 

Development in Young Adults (CARDIA) observational cohort and CIMT from BioImage, a 
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1-SD increase in a CAD PRS (of 57 weighted, genome-wide significant SNPs) associated 

with significantly increased odds of having CAC (OR = 1.32; p = 0.02), and a 9.7% increase 

in carotid plaque burden (p = 0.01); notably, a more restricted 27-SNP PRS did not associate 

with carotid plaque burden in BioImage.90

A relevant clinical application of these genetic associations may be in the use of a PRS to 

guide preventive screening for subclinical coronary or carotid atherosclerosis. In a recent 

study of over 6,000 participants from the MESA observational cohort, a CAD PRS (of 157 

genome-wide significant SNPs) strongly predicted non-zero CAC thereby improving the 

yield of screening cardiovascular computed tomography (CT).91 Accordingly, a CAD PRS 

may facilitate earlier and more targeted, imaging-based assessments of individuals at high 

polygenic risk for CAD, for whom the presence of CAC may inform considerably the timing 

of statin initiation.

Of note, a PRS may also prognosticate risk in the absence of demonstrable, subclinical 

coronary atherosclerosis. In a study of patients undergoing coronary angiography from the 

Penn Medicine Biobank, an expanded, genome-wide CAD PRS comprising over 130,000 

SNPs was associated with the burden and severity of angiographically-confirmed coronary 

stenoses. In addition, high polygenic risk was strongly associated with all-cause mortality, 

and this persisted even among the subset of patients without angiographic CAD.92 These 

findings support that an elevated CAD PRS portends a poorer prognosis, and that this risk 

may, in part, be complementary to that gleaned from anatomical assessments of coronary 

stenoses.

Monogenic versus polygenic risk for CAD

Current national guidelines for the primary prevention of CAD endorse preventive statin 

therapy for individuals harboring a rare monogenic FH mutation, present in 1 in 250 

individuals in the general population and conferring a 3-fold risk of CAD.19, 93 Devising an 

analogous, polygenic risk framework can be challenging due to the continuous spectrum of 

polygenic susceptibility as compared to the dichotomous risk classification of a monogenic 

mutation. One approach involves determining a polygenic risk threshold that confers a 

“monogenic equivalent” level of disease risk. As described above, Khera et al. uncovered 

individuals at the extremes of polygenic risk for CAD in the UK Biobank by applying a 

genome-wide PRS comprising 6.6 million genetic variants as generated by the LDpred 

algorithm. This PRS performed better than prior CAD PRS that comprised more limited sets 

of genetic variants. Notably, individuals in the top 8% of the PRS distribution (~1 in 12 

individuals) were at 3-fold odds of CAD as compared to the rest of the population – a level 

of risk roughly equivalent to harboring a pathogenic FH mutation.93, 94 In addition to being 

more prevalent, individuals at high polygenic risk did not have appreciably different clinical 

risk profiles from the general population, unlike individuals with FH who are often identified 

by severe hypercholesterolemia.79

In a follow-up analysis, the authors pursued whole genome sequencing of the VIRGO 

(Variation in Recovery: Role of Gender on Outcomes of Young AMI Patients) and MESA 

studies to compare the relative prevalence and clinical significance of monogenic and 

polygenic risk with regards to early-onset MI. The analysis included 2,081 hospitalized, 
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premature MI patients from VIRGO and 3,761 population-based controls from MESA, all of 

whom had FH mutation status ascertained and an LDpred, genome-wide CAD PRS 

calculated. A pathogenic FH mutation was present in 1.7% of all patients with premature 

MI, and conferred 3.8-fold increased odds of disease; by comparison, high polygenic risk 

(top 5% of the PRS) was present in 17.3% of these patients and conferred 3.7-fold increased 

odds of disease. Again, patients with a FH mutation demonstrated markedly elevated serum 

LDL-C levels (mean 206 mg/dL) while those at high polygenic risk did not (mean 132 

mg/dL; population mean 122 mg/dL).95 These and other analyses now suggest that an 

elevated CAD PRS may confer risk on par with a pathogenic FH mutation, but that the 

former is at least 10-times more common in the general population and accounts for a larger 

portion of early-onset MI cases.96

However, for eventual clinical implementation, it will be important to consider the combined 

influences of monogenic and polygenic risk on lifelong susceptibility to CAD. As these two 

pathways of risk appear to be independent of one another, it is conceivable that individuals 

inheriting both a pathogenic FH mutation and a high polygenic risk profile for CAD (i.e. a 

large burden of common variant risk alleles) are at substantially elevated risk compared to 

the general population. Conversely, some individuals may harbor a pathogenic mutation for 

FH, but a low-risk polygenic profile, which might offset some of the disease susceptibility 

conferred by the inherited monogenic mutation.

Initial observations have supported these theories through simultaneous interrogation of 

monogenic and polygenic influences on CAD risk and/or intermediate risk factors. For 

example, in the abovementioned whole genome sequencing analysis of early-onset MI, 

patients with both a FH mutation and a high CAD PRS had greater LDL-C levels than those 

with either high monogenic or polygenic risk only.95 Similarly, two studies have shown that 

CAD PRS strongly predict incident cardiovascular disease among patients with FH, 

suggesting that a polygenic background may significantly modulate the penetrance of a 

pathogenic FH mutation.78, 97

A more recent analysis utilizing newly-available exome sequencing data from the UK 

Biobank investigated the interaction between rare, monogenic FH variants and polygenic 

CAD risk as assessed by a genome-wide PRS. While carriers of a monogenic FH mutation 

had a collective 3-fold odds of developing CAD compared to non-carriers, there was a 

marked gradient of risk among mutation carriers that depended on their respective polygenic 

backgrounds. Specifically, as compared to non-carriers, the odds of CAD among FH 

mutation carriers ranged from 1.30-fold for those in the lowest quintile of the PRS 

distribution to 12.59-fold for those in the highest PRS quintile. Models to estimate the odds 

of developing disease by age 75 yielded probabilities ranging from 4.8% (FH mutation non-

carriers in the lowest PRS strata) to 77.7% (FH mutation carriers in the highest PRS strata).
98 These observations provide robust evidence for the interplay between monogenic and 

polygenic determinants of CAD risk, and emphasize the importance of jointly considering 

these two genetic risk profiles when prognosticating disease risk in the clinical setting.

Aragam and Natarajan Page 12

Circ Res. Author manuscript; available in PMC 2021 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mitigation of polygenic CAD risk through favorable lifestyle and medications

The clinical utility of any risk prognostication tool is dependent both on its predictive 

accuracy and its potential actionability. Indeed, recent studies have attested to the 

actionability of polygenic risk for CAD, namely the ability to modify risk through both non-

pharmacologic and pharmacologic strategies.

In an observational study across four independent cohorts (N = 55,685), a CAD PRS (of 50 

genome-wide significant SNPs) strongly associated with clinical and subclinical CAD, but 

genetic risk was uniformly attenuated by adherence to a healthy lifestyle, defined as 

engaging in at least three out of four healthy lifestyle behaviors (no smoking, no obesity, 

healthy diet, and regular physical activity). Specifically, individuals in the highest quintile of 

polygenic risk who were adherent to a healthy lifestyle achieved a consistent ~50% 

reduction in disease risk as well as significant reductions in CAC as compared to individuals 

at high genetic risk who did not commit to a favorable lifestyle. Notably, the high PRS/

favorable lifestyle subgroup achieved a level of disease risk on par with (or below) those at 

low genetic risk but with unfavorable lifestyle habits.89 A similar analysis in the UK 

Biobank (N= 339,003) yielded concordant findings including the observed log-additive 

effect of genetic risk and healthy behaviors on the odds of developing incident 

cardiovascular diseases, affirming the value of lifestyle modification for the population at-

large, while also emphasizing its particular importance for those with a marked genetic 

predisposition for cardiovascular disease.99

In their aforementioned assessment of the UK Biobank, Inouye et al. demonstrated 

attenuation of polygenic CAD risk among individuals who self-reported statin therapy.80 

This observation is well supported by post-hoc genetic analyses of clinical trial cohorts that 

have demonstrated the marked benefit of lipid-lowering therapies to reduce incident 

cardiovascular events in those at high polygenic risk. In an analysis of the JUPITER 

(Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating 

Rosuvastatin) and ASCOT (Anglo-Scandinavian Cardiac Outcomes Trial) primary 

prevention statin trials, Mega et al. observed a strong association between CAD PRS (27 

weighted genome-wide significant SNPs) and incident cardiovascular events independent of 

traditional risk factors. Furthermore, a graded increase in statin benefit was noted moving 

from low (bottom 20% of PRS), to intermediate (middle 60% of PRS) and high (top 20% of 

PRS) polygenic risk strata, as evidenced by greater absolute and relative risk reductions 

among those at high polygenic risk, and a corresponding decrease in the number needed to 

treat.100 A similar phenomenon was observed in a genetic analysis of the WOSCOPS (West 

of Scotland Coronary Prevention Study) primary prevention statin trial, where a CAD PRS 

(57 weighted genome-wide significant SNPs) was associated with cardiovascular outcomes, 

and risk reductions with statin therapy were most pronounced among those at high polygenic 

risk for CAD (top 20% of PRS). A study-level meta-analysis of the three primary prevention 

trials – JUPITER, ASCOT, and WOSCOPS – indicated an absolute risk reduction in those at 

high polygenic risk of 3.6% versus 1.3% in all others, and a corresponding relative risk 

reduction of 46% in the high polygenic risk subgroup versus 26% in all others.90 These 

findings suggest the utility of CAD PRS to identify patients most likely to respond to 
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primary prevention statin therapy, thereby reducing the number needed to treat to achieve 

population-wide treatment benefit.

Polygenic prediction and prevention of secondary cardiovascular events

Prior studies of CAD PRS have shown variable performance with regards to the prediction 

of recurrent cardiovascular events.35, 69, 82 Secondary prevention clinical trials facilitate 

rigorous assessments of recurrent event prediction and response to therapy through the 

interrogation of well-phenotyped study populations with meticulous event adjudication. In 

the above analysis by Mega et al., the 27-SNP CAD PRS was also assessed in the context of 

two secondary prevention trials – CARE and PROVE-IT TIMI 22 – investigating the clinical 

benefit of statin therapy in patients who had suffered an acute coronary syndrome. 

Compared to the low genetic risk subgroup, the multivariable-adjusted hazards for recurrent 

coronary artery disease were 1.65 (p = 0.0030) for those at intermediate polygenic risk, and 

1.81 (p = 0.0029) for those at high polygenic risk. Absolute and relative risk reductions were 

again graded across genetic risk strata, with those at high polygenic risk deriving the largest 

benefit from secondary prevention statin therapy.100

More recently, a genetic substudy of the FOURIER trial (Further Cardiovascular Outcomes 

Research With PCSK9 Inhibition in Subjects With Elevated Risk) assessed the same 27-SNP 

CAD PRS in a population with established ASCVD (prior history of MI, nonhemorrhagic 

stroke, or symptomatic peripheral artery disease) randomized to PCSK-9 inhibitor therapy or 

placebo on top of baseline statin therapy. The CAD PRS associated with incident major 

vascular and coronary events in the placebo arm of this secondary prevention population 

after adjustment for clinical risk factors, with those at intermediate (middle 60% of PRS) 

and high (top 20% of PRS) polygenic risk demonstrating progressively greater hazards of 

disease as compared to the low genetic risk subgroup. Importantly, the CAD PRS 

successfully stratified the population by treatment effect, with those at high polygenic risk 

deriving 2-fold greater benefit from PCSK-9 inhibitor therapy as compared to the overall 

trial population. Notably, PCSK-9 inhibitor therapy appeared to offset the risk conferred by a 

polygenic susceptibility to CAD – in contrast to the placebo arm, cardiovascular event rates 

in the treatment arm were comparable between those at high and low polygenic risk.101 

Although follow-up studies are required, these initial investigations of secondary prevention 

clinical trial populations attest to a potential role for polygenic risk assessments to identify 

high risk patients likely to benefit from tailored secondary prevention strategies.

BIOLOGICAL INSIGHTS GLEANED FROM STUDIES OF POLYGENIC 

ARCHITECTURE

Determining mechanistic links between individual common genetic loci and disease

GWAS have identified 164 common genetic loci associated with CAD, furthering our 

understanding of the genetic architecture of CAD, and motivating studies to probe the 

biological pathways linking specific genetic loci to distinct mechanisms of disease. Post-

GWAS analyses seeking to translate GWAS findings to biological function typically begin 

with a range of bioinformatic analyses of lead SNP associations to help choose the genetic 

signals that most warrant detailed experimental follow-up. For example, novel SNPs arising 
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from GWAS are routinely interrogated in available tissue and disease-specific transcriptome 

datasets.102–105 The finding of an association between a risk allele and differences in gene 

expression may suggest a functional effect warranting further experimental investigation.

Both computational and functional approaches have been used to categorize many of the 

uncovered common CAD loci into distinct mechanistic pathways. In one study featuring 

both approaches, Klarin et al. performed a GWAS and meta-analysis of the UK Biobank and 

CARDIoGRAMplusC4D and identified 15 novel loci associated with CAD at a level of 

genome-wide significance. A phenome-wide association study (PheWAS) was then 

performed, where each lead SNP was tested for association with a range of phenotypes to 

better understand the potential spectrum of phenotypic consequences for a given genetic 

variant.106 PheWAS revealed associations between the novel locus CCDC92 and traits of 

insulin resistance and lipodystrophy within adipose tissue, serving as a putative mechanistic 

link to the development of CAD. For the novel locus ARGHEF26, which lacked significant 

PheWAS associations to CAD risk factors or other traits, experimental knock down by small 

interfering RNA led to decreased transendothelial migration and adhesion of leukocytes, 

suggesting a plausible biological pathway by which this genetic locus might mediate 

coronary atherosclerosis.33 Notably, PheWAS have been pursued in other studies of novel 

CAD loci and demonstrated that many loci are associated with one or more known CAD risk 

factors, but for a large portion, the underlying mechanisms remain unknown (Figure 1).
37, 107

Assessments of shared genetic architecture

Beyond assessments of individual loci to understand particular genetic mechanisms 

contributing to disease biology, the aggregate assessment of many disease-associated 

common genetic variants may inform more broadly on shared genetic architectures. PRS – 

i.e. genome-wide scores and other scores comprising many genetic variants – enable such 

assessments as they are more appropriate than individual risk alleles for assessing genetic 

overlap between a disease and related traits.

In one such analysis, Ntalla et al. studied the association between a 300-SNP CAD PRS and 

a range of cardiovascular and non-cardiovascular conditions in the UK Biobank. In 

particular, the authors found strong associations with peripheral artery disease (PAD), stroke, 

and abdominal aortic aneurysm even after the removal of CAD cases suggesting a common 

genetic predisposition among these distinct disease entities.108 Indeed, the noted association 

in prior studies between CAD PRS and subclinical atherosclerosis in multiple vascular beds 

supports the theory that shared processes – with shared genetic determinants – mediate the 

formation of atherosclerotic plaques.71, 88, 90

However, more comprehensive assessments of shared heritability may be best achieved 

through studies of genetic correlation – the genetic relationship between two traits typically 

determined by comparing sets of trait-specific GWAS data.109 The development of 

computational tools such as linkage disequilibrium score regression (LDSC) now permits 

efficient comparisons across many traits through use of readily-available GWAS summary 

statistics.110, 111 LD Hub is a publicly-available server that hosts LDSC calculations of 

genetic correlations for a broad range of published GWAS summary statistics.112

Aragam and Natarajan Page 15

Circ Res. Author manuscript; available in PMC 2021 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The rate-limiting step is therefore the conduct of a GWAS for a trait or disease of interest to 

permit downstream comparisons with summary statistics of other traits. For certain vascular 

conditions outside the coronary circulation, where genetic discovery has been slowed by 

modest case counts, significant progress has been enabled by the Million Veteran Program 

(MVP), a population-based, mega-biobank with genotype data linked to health registry data 

from the United States Department of Veterans Affairs Health System.113 A recent, 

landmark GWAS of PAD combined data from MVP and the UK Biobank (Total N ~ 600,000 

with ~36,000 PAD cases) to identify 19 PAD-associated genetic loci, including 18 loci not 

previously reported.114 Eleven of the 19 reported loci were also associated with disease in 

other vascular beds (coronary and cerebral), including genes related to LDL-C, 

lipoprotein(a), and lipoprotein lipase (LDLR, LPA, LPL). Furthermore, strong genetic 

correlations were observed when comparing summary-level genetic data from this PAD 

analysis with prior GWAS results for CAD (from the CARDIoGRAMplusC4D consortium) 

and large-artery stroke (from the MEGASTROKE consortium) further implicating shared 

pathways that likely mediate arterial atherosclerosis across all three ASCVD phenotypes.
43, 115

An ensuing genetic analysis of venous thromboembolism (VTE) in MVP and UK Biobank 

has provided additional insights into the potential mechanistic overlap between differing 

vascular pathologies. This discovery analysis of ~26,000 cases and ~620,000 controls 

uncovered 22 novel genetic loci associated with VTE. Notably, LDSC analyses revealed 

genetic correlations between VTE and all three of the above ASCVD phenotype (CAD, 

PAD, and large artery stroke). Furthermore, genetic analyses suggested a causal association 

between LDL-C – but not HDL-C or triglycerides – and VTE.116 These assessments of the 

genetic architectures of distinct cardiovascular phenotypes using robust GWAS data suggest 

potential shared biologic pathways between atherosclerotic and venous thrombotic diseases 

that warrant future investigations.

PRACTICAL CONSIDERATIONS AND POTENTIAL CHALLENGES WITH PRS 

IMPLEMENTATION

Implementation studies of polygenic CAD risk disclosure

While additional validation of PRS is required – including prospective outcome studies that 

integrate both clinical and genetic tools for risk prognostication – the evidence to date 

suggests a future role for assessments of polygenic CAD risk to identify and target high-risk 

individuals earlier in life for more aggressive primary and secondary preventive strategies. 

But as these preventive strategies – i.e. favorable lifestyle practices and statin medications – 

rely on sustained behavioral changes to yield meaningful benefit, an important part of 

effective genomic and precision medicine will involve the ability of genetic risk disclosure 

to promote healthy behaviors in the general population.

Initial studies aimed at motivating behavior change through PRS disclosure have yielded 

mixed results. One study showed no adverse effects of PRS disclosure on shared decision 

making and patient satisfaction, while another demonstrated the feasibility of risk disclosure 

in the outpatient setting but found no improvement in patient adherence to preventive 
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regimens.117, 118 In the Myocardial Infarction Genes (MI-GENES) trial, 203 participants at 

intermediate risk for CAD were randomized to the disclosure of clinical risk alone or in 

combination with polygenic risk. At 6 months, behavioral patterns (i.e. diet and exercise) did 

not differ between the two groups, but participants informed of their genetic risk were more 

likely to be initiated on statin therapy by their providers and achieved lower levels of LDL-

C.119

Preliminary data from the GeneRISK study of over 7,300 individuals in Finland suggest that 

combined clinical and genomic risk disclosure may, in fact, motivate behavioral 

modification (i.e. weight loss and smoking cessation), particularly among those at high 

polygenic risk for CAD. However, a key aspect of this study was the communication of risk 

estimates through a web-based interactive tool (KardioKompassi) that allowed participants 

to compare personal risk profiles against the average risk of the total study population, and 

to model changes in personal risk with the adoption of specific lifestyle changes.120 It 

should be noted that difficulties motivating patient behavior after disclosure of high CAD 

risk is not a new phenomenon, and has been observed previously in studies of imaging-based 

risk assessments, i.e. coronary CT and carotid ultrasonography.121–124 Thus, the use of 

digital tools to more effectively interface with patients and communicate risk may prove 

critical to future efforts seeking to harness genomic and clinical risk disclosure to encourage 

healthy lifestyle habits.

PRS standardization and normalization across settings

Standardization of any risk stratification tool is essential for consistent implementation 

across settings. Different versions of the CAD PRS have been utilized in the various studies 

described in this review. As discussed, there are many steps involved in PRS construction 

that may produce differences in scores – i.e. the number of variants included, the per-SNP 

effect estimates based on the particular GWAS summary statistics utilized (which, in turn, 

are influenced by differences in GWAS characteristics), the specific computational method 

used for PRS generation and handling of LD, and the training dataset used to select optimal 

PRS parameters. The use of a standard PRS for a given condition may facilitate clinical 

translation, although differences in PRS performance across genetic ancestries (as described 

below) may challenge the notion of a single PRS that is effective for all individuals, barring 

the development of methods to offset these ancestry-specific variations in score 

performance.125

Furthermore, even with a standardized PRS meant to be employed universally, the 

application of a PRS to different populations presents various logistical considerations. For 

example, depending on the genotyping array and imputation panel used in a particular 

setting, differing numbers of SNPs may overlap with the PRS resulting in differences in raw 

scores. Additional thought must then be given to normalization of score distributions across 

individuals of different genetic ancestries, and across different settings (i.e. in different 

health systems) to designate comparable thresholds of risk, and whether/how an external 

reference PRS distribution might be utilized against which all others are plotted.
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Ancestry-specific differences in PRS performance

To date, the majority of GWAS and imputation reference panels have been in individuals of 

European genetic ancestry, with a resultant bias in developed PRS towards such persons of 

European descent.126–129 This has significantly limited the transferability of PRS derived 

from Eurocentric genetic discovery efforts, which tend to perform less well in individuals of 

non-European ancestries.130–132 Indeed, for CAD, a genome-wide PRS has been 

demonstrated to associate with disease across diverse ancestry groups, although the highest 

predictive accuracy was seen among study participants of European genetic background.95 

Promoting genetic discovery in non-European populations will be a prime component of 

future prediction efforts, as PRS derived from and for specific non-European ancestries have 

been shown to outperform those based on largely European genetic data.133 This lack of 

transethnic transferability is thought to be the result of ancestry-specific differences in LD 

structure as opposed to true, ancestry-specific differences in the genetic architecture of 

disease.129, 134 Accordingly, the generation of many ancestry-specific PRS (requiring 

alignment of an individual to a specific genetic ancestry) and a single pan-ancestry PRS have 

both been proposed as potential paths forward.135–137 Regardless, it will be imperative to 

improve trans-ancestry PRS prediction through a combination of non-European GWAS and 

novel computational methods to permit the clinical implementation of polygenic risk 

prediction in an equitable manner.

CONCLUSIONS AND FUTURE DIRECTIONS

Rapid progress over the past two decades in the understanding of complex trait biology and 

CAD genetics has enabled an improved understanding of disease mechanisms and the 

development of robust polygenic predictors capable of charting lifetime trajectories of CAD 

risk. Coupled with growing evidence on strategies to mitigate this inherited susceptibility, 

and more accessible and affordable array-based genotyping, we are now poised to leverage 

genomic data at a population level to facilitate the early prediction and prevention of CAD. 

However, future studies will be required to further refine PRS methodologies, better 

integrate both genomic and clinical predictors of CAD, and to address other pending 

implementation challenges – including ancestry-specific differences in PRS performance – 

to fully realize the promise of precision cardiovascular care guided by genomic risk 

stratification.
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NON-STANDARD ABBREVIATIONS AND ACRONYMS

ASCVD atherosclerotic cardiovascular disease

CAC coronary artery calcification

CAD coronary artery disease

CIMT carotid intima-media thickness

FH familial hypercholesterolemia

GWAS genome-wide association study

LD linkage disequilibrium

MAF minor allele frequency

PAD peripheral artery disease

PCE Pooled Cohort Equations

PCSK-9 proprotein covertase subtilisin/kexin type 9

PRS polygenic risk score

SNP single nucleotide polymorphism

VTE venous thromboembolism
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Figure 1 –. 
Genome-wide association studies have identified 164 genetic risk loci associated with 

coronary artery disease, with many classified into distinct mechanistic pathways. From 

Erdmann et al. Cardiovascular Research 2018.37
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Figure 2 –. 
Development of polygenic risk scores. Modified from Choi et al. bioRxiv 2018.52
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Figure 3 –. 
Genome-wide polygenic risk scores: (A) identify a marked, inherited predisposition to 

CAD; (B) provide lifetime estimates of risk; and (C) add to the discriminative ability of 

clinical risk factors. Panel (A) from Khera et al. Nature Genetics 2018.78 Panels (B) and (C) 

from Inouye et al. JACC 2018.79
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Figure 4 –. 
Polygenic risk score as the “first risk factor” for coronary artery disease.
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