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Abstract: Nonalcoholic fatty liver disease (NAFLD) is among the leading causes of end-stage liver
disease. The impaired hepatic lipid metabolism in NAFLD is exhibited by dysregulated PPARα
and SREBP-1c signaling pathways, which are central transcription factors associated with lipid
degradation and de novo lipogenesis. Despite the growing prevalence of this disease, current
pharmacological treatment options are unsatisfactory. Genistein, a soy isoflavone, has beneficial
effects on lipid metabolism and may be a candidate for NAFLD treatment. In an in vitro model of
hepatic steatosis, primary human hepatocytes (PHHs) were incubated with free fatty acids (FFAs)
and different doses of genistein. Lipid accumulation and the cytotoxic effects of FFAs and genistein
treatment were evaluated by colorimetric and enzymatic assays. Changes in lipid homeostasis were
examined by RT-qPCR and Western blot analyses. PPARα protein expression was induced in steatotic
PHHs, accompanied by an increase in CPT1L and ACSL1 mRNA. Genistein treatment increased
PPARα protein expression only in control PHHs, while CPTL1 and ACSL1 were unchanged and
PPARαmRNA was reduced. In steatotic PHHs, genistein reversed the increase in activated SREBP-1c
protein. The model realistically reflected the molecular changes in hepatic steatosis. Genistein
suppressed the activation of SREBP-1c in steatotic hepatocytes, but the genistein-mediated effects on
PPARαwere abolished by high hepatic lipid levels.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver
disease worldwide, with a global prevalence of approximately 25% [1,2]. It is considered
the hepatic manifestation of metabolic syndrome and comprises a wide spectrum of liver
impairments, starting with hepatic steatosis, which can progress to more severe liver
damage, e.g., steatohepatitis (NASH), fibrosis and cirrhosis [3]. Predictably, NAFLD is
becoming one of the leading indications for liver transplantation in the United States and
in Europe [4,5]. Moreover, the growing incidence of hepatic steatosis in donor organs
aggravates the problem of organ shortage [6].

Hepatic steatosis, the first stage of NAFLD, is marked by intracellular accumulation
of triglycerides due to increased uptake of free fatty acids (FFAs), augmented de novo lipo-
genesis and impaired fatty acid β-oxidation [7–9]. The underlying molecular mechanisms
are not fully understood but are currently being extensively studied, with the goal of a
possible drug target to enable pharmacological NAFLD treatment [10].

One key player in hepatic lipid metabolism is peroxisome proliferator-activated re-
ceptor alpha (PPARα), a ligand-activated transcription factor that is highly expressed in
the liver [11]. The binding of FFAs to PPARα induces the transcription of several genes

Molecules 2021, 26, 1156. https://doi.org/10.3390/molecules26041156 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-1531-7735
https://orcid.org/0000-0002-2104-8076
https://doi.org/10.3390/molecules26041156
https://doi.org/10.3390/molecules26041156
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26041156
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/26/4/1156?type=check_update&version=2


Molecules 2021, 26, 1156 2 of 18

involved in mitochondrial FFA β-oxidation and FFA transport [12]. Intracellular processing
of long-chain fatty acids has to be preceded by their activation to acyl-coenzyme A (acyl-
CoA) via long-chain acyl-CoA synthetases (ACSL). ACSL1 is the predominant isoform in
the liver and a target gene of PPARα [13,14]. After esterification by ACSL1, long-chain acyl-
CoA can enter β-oxidation via active transport into the mitochondria. The rate-limiting
step of this process is transport through the outer mitochondrial membrane by carnitine
palmitoyltransferase 1L (CPT1L), another transcription product of PPARα [14,15].

Sterol regulatory element-binding protein 1c (SREBP-1c) is a central transcriptional
regulator of hepatic de novo lipogenesis [9]. Insulin induces the expression of an inactive
SREBP-1c precursor bound to the endoplasmic reticulum (ER) and likewise promotes its
activation by proteolytic cleavage [16]. SREBP-1c then induces the expression of enzymes
synthesizing fatty acids, i.e., acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN),
which together catalyze the synthesis of palmitic acid [9,17].

Liver biopsies of NAFLD patients have shown increased expression of SREBP-1c and
its target genes and decreased expression of PPARα and CPT1L [18,19]. To compensate
for the reduced mitochondrial β-oxidation, the upregulated gene expression of enzymes
engaged in peroxisomal β-oxidation and microsomalω-oxidation was observed [19]. These
pathways are less effective in breaking down fatty acids and lead to an accumulation of
reactive oxygen species (ROS) as byproducts [20]. Oxidative stress likely plays a crucial role
in inflammation and hepatocyte damage observed in NAFLD [21]. This proinflammatory
situation may be even more enhanced by the inhibition of PPARα, a known negative
regulator of inflammation and acute phase response, thus paving the way for disease
progression from hepatic steatosis to steatohepatitis [22,23].

To date, no drug for NAFLD therapy is available. NAFLD management consists of a
multimodal approach, similar to the treatment for metabolic syndrome, mainly focusing on
lifestyle changes, i.e., improving diet and physical activity. Pharmacological treatments aim
for the amelioration of associated metabolic disorders, such as hypertriglyceridemia [24].

Soy isoflavones, so-called phytoestrogens, have recently gained interest because of
their beneficial effects on menopausal complaints and have also been proposed to posi-
tively affect metabolic syndrome and associated diseases due to their antioxidative and
hypolipidemic properties [25–27]. An 8-week oral supplementation with genistein, the
most abundant isoflavone of soybean, reduced oxidative and inflammatory indices along-
side improvements in fat metabolism in NAFLD patients [28]. Genistein treatment further
attenuated the development of steatosis in rodent in vitro and in vivo models [29–31].
This improvement was accompanied by a reversal of the FFA-induced downregulation of
PPARα and its downstream targets, such as CPT1L [29,31].

Primary human hepatocytes (PHHs) are still considered the gold standard for the
creation of in vitro liver models [10]. A recent publication has underlined the protective
effects of genistein against NAFLD also in PHHs [32]. However, in the above-mentioned
studies, genistein was administered prior to or throughout a steatotic treatment, thus
underlining its role in NAFLD prevention [29–32]. In our study, we sought to investigate
the effects of genistein on hepatic lipid metabolism after manifestation of steatosis. There-
fore, PHHs were treated with FFAs to induce in vitro steatosis and treated with different
concentrations of genistein. The in vitro steatosis and the effect of genistein on steatotic and
control PHHs were investigated by evaluating lipid storage, cytotoxic effects and changes
in lipid homeostasis. Our results show that our in vitro steatosis model was characterized
by high lipid accumulation accompanied by mild lipotoxic effects and a lipid-related shift
in signaling towards lipid metabolism. Treatment of steatotic and control PHHs with
genistein revealed that a high lipid load eliminated the beneficial effects of genistein on
lipid metabolism, which were clearly visible in control PHHs.
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2. Results
2.1. Incubation of PHHs with Free Fatty Acids Leads to Intracellular Lipid Accumulation

After PHH isolation and initial adherence overnight, steatosis was induced by incuba-
tion with 1 mM FFAs consisting of a mixture of oleate and palmitate in a 2:1 ratio for 24 h.
The intracellular lipid accumulation was determined with the Oil Red O assay normalized
to the protein content measured with the sulforhodamine B (SRB) assay. FFA-treated PHHs
showed a significant accumulation of neutral lipids (Figure 1A) visible in a larger number
and size of intracellular lipid droplets (Figure 1B).
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Figure 1. Amount of neutral lipids in primary human hepatocytes (PHHs) after treatment with free
fatty acids (FFAs). PHHs were treated with 1 mM FFAs for 24 h and lipid levels were quantified
using the Oil Red O assay normalized to the protein amount measured by sulforhodamine B (SRB)
assay. (A) Evaluation of steatosis in FFA-treated PHHs in comparison to control. Data are shown as
the mean + SD, n = 5, paired t-test, p < 0.01 (**). (B) Microscopic evaluation of the lipid accumulation
in representative PHH cultures (magnification 200×), the scale bar is 10 µm.

2.2. The Hepatocellular Steatosis Model Shows Only Mild Lipotoxic Effects

Severe lipid accumulation can lead to lipotoxic effects and cell death. Therefore, we
investigated whether FFA treatment leads to impaired cellular functions and cell loss.
Pathological effects were evaluated by measurement of cell activity using XTT (2,3-bis-
(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilid) assays, the ability to
produce urea and impaired membrane integrity by measurement of LDH (lactate dehydro-
genase) and AST (aspartate transaminase) release (Figure 2). Determination of cell activity
showed no difference between FFA-treated PHHs and control cells, indicating comparable
metabolic activity in both cultures (Figure 2A). Extracellular AST activity was significantly
increased, whereas LDH activity showed an increase only by trend (Figure 2B,C). Deter-
mination of urea production showed no influence on metabolic capacities in the steatotic
hepatocytes (Figure 2D). Taken together, the lipid accumulation in steatotic PHHs led to
mild lipotoxic effects.

2.3. Transcription of PPARα Downstream Signaling Targets Is Increased in Steatosis

NAFLD is characterized by changes in lipid homeostasis resulting in dysregulated
lipid degradation, impaired FFA β-oxidation and augmented de novo lipogenesis [7–9].
In hepatocytes, PPARα is a transcription factor responsible for the expression of target
genes of lipid metabolism [11,12]. In contrast, SREBP-1c is a transcription factor that is
responsible for the expression of lipogenesis genes [9]. Therefore, we analyzed the influence
of in vitro lipid accumulation on key players in lipid homeostasis at the transcript level
using RT-qPCR (Figure 3) and at the protein level using Western blot analyses (Figure 4).
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Figure 2. Evaluation of lipotoxicity on FFA-treated PHHs. PHHs were treated with 1 mM FFAs for 24
h and steatotic and control PHHs were investigated for (A) cell activity measured by the conversion of
XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilid); (B) enzyme activities
of AST (aspartate transaminase) and (C) LDH (lactate dehydrogenase) determined in cell culture
supernatants to evaluate disruptions of cell membrane integrity and (D) metabolic capacity examined
by quantification of their urea production. Data are shown as the mean + SD, n = 5, paired t-test,
p < 0.05 (*).
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Figure 3. Adaption of gene expression of key players of lipid homeostasis in steatotic PHHs. PHHs
were treated with 1 mM FFAs for 24 h and relative mRNA expression levels of gene targets were
determined using RT-qPCR. Investigation of genes centrally involved in lipid catabolism (PPARα,
ACSL1 and CPT1L) and anabolism (SREBP-1c and FASN) in PHHs compared to control. Data are
shown as the mean + SD, n = 5, paired t-test, statistical analyses were conducted on ∆CT values,
p ≤ 0.05 (*), p < 0.01 (**).
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Figure 4. Activation of key signaling pathways in lipid homeostasis in steatotic hepatocytes. PHHs were treated with 1 mM
FFAs for 24 h and protein levels of PPARα and SREBP-1c were investigated. Western blot analyses were performed after
protein extraction from different subcellular fractions of FFA-treated PHHs and control. Densitometric measurements of
(A) cytosolic PPARα normalized to the expression levels of α-tubulin, nucleic PPARα normalized to p84, (B) ER membrane-
bound SREBP-1c normalized to Na+/K+-ATPase and nucleic SREBP-1c normalized to p84 expression. Data are shown as
the mean + SD, n = 5, paired t-test, p ≤ 0.05 (*). (C) Representative Western blot images show the specific bands of PPARα,
α-tubulin, p84, SREBP-1c, and Na+/K+-ATPase in control and steatotic PHHs.

The transcription factor PPARα is a major mediator of fatty acid degradation. It
induces the transcription of ACSL1 and CPT1L, two enzymes that catalyze necessary
steps prior to fatty acid β-oxidation. FFA-treated hepatocytes showed increased mRNA
levels of ACSL1 and CPT1L, while PPARα mRNA showed only a slight tendency to
increase (Figure 3). SREBP-1c and its transcription target FASN, both involved in fatty acid
synthesis, did not show any statistically significant transcriptional changes. Thus, steatotic
hepatocytes showed an adaption of lipid homeostasis towards catabolism, while promoters
of de novo lipogenesis did not adjust to the increased lipid load.

2.4. Steatotic Treatment Increases the Level of Cytosolic PPARα

For validation of the transcript data at the protein level, we performed Western blot
analyses. Additionally, we investigated whether increased levels of key signaling proteins
correlate with a higher activation of these mediators. Therefore, the protein levels of the
activated forms of PPARα and SREBP-1c were measured.

PPARα shuttles between the cytosol and nucleus, and its concentration in the latter is
crucial for its action as a transcription factor [33]. After FFA treatment, the protein levels
of PPARα in both cellular compartments were determined relative to untreated PHHs. In
both compartments, PPARα showed higher levels in steatotic hepatocytes, but this increase
was only significant for cytosolic PPARα (Figure 4A).

The precursor form of SREBP-1c is bound to the endoplasmic reticulum (ER) mem-
brane. Activation occurs through proteolytic cleavage. Cleaved SREBP-1c then translocates
to the nucleus [34]. The protein levels of ER membrane-bound or nucleic SREBP-1c did
not differ between the vehicle-treated and FFA-treated PHH groups (Figure 4B). Taken
together, the protein data confirmed the transcript data. Additionally, we observed hints of
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increased activation of the metabolic pathway by activation of PPARα and expression of its
downstream targets.

2.5. Genistein Administration Causes Hepatotoxicity Only in High Doses

Genistein is a natural compound in soybean and is described as a PPARα agonist [35].
Therefore, it can decrease hepatic lipid content by increasing lipid metabolism [29]. For
evaluation of the toxic effects of genistein, it was administered to FFA- or vehicle-treated
PHHs at different concentrations (0, 1, 5, 10, 50, and 100 µM). The cytotoxic effects of the
substance were investigated by measuring cellular metabolic activity reflecting cell viability
using the XTT assay and by analyzing LDH activity reflecting a decrease in membrane
integrity due to cytotoxic effects. Genistein treatment demonstrated impaired cell viability
in PHHs independent of FFA treatment at the highest administered genistein concentra-
tion of 100 µM (Figure 5A). Nonetheless, the addition of genistein did not augment the
release of LDH into the cell culture supernatant, as happens in necrosis or late apoptosis
(Figure 5B). However, the induction of apoptosis at high concentrations could not be
excluded, indicating that further results for 100 µM genistein should be discussed critically.
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Figure 5. Evaluation of the cytotoxic effect of different concentrations of the soy isoflavone genistein on FFA-treated and
control PHHs. PHHs were treated with 1 mM FFAs for 24 h, followed by 24 h of treatment with genistein (0, 1, 5, 10,
50, and 100 µM). Toxicity was measured by evaluation of (A) cell activity determined with the XTT (2,3-bis-(2-methoxy-
4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilid) assay and (B) LDH (lactate dehydrogenase) release as a marker
for impaired cell integrity. Data are shown as the mean + SD, n = 3, two-way ANOVA and post hoc Tukey or Sidak
test, p ≤ 0.05 (*), p < 0.01 (**). Selected comparisons are shown; for details on the statistical evaluation, see Table S1A,
Supplementary Materials.

2.6. Genistein Induces PPARα Activation Only in Control PHHs

Genistein acts as a PPARα agonist [35]. Therefore, we tested the ability of genistein to
influence lipid-associated signaling pathways. Treatment of control PHHs with genistein
led to a concentration-dependent decrease in PPARαmRNA expression, while no change
in PPARα expression in steatotic PHHs was observable (Figure 6Ai). Both PHH groups
featured no further change in the mRNA levels of the transcriptional targets of PPARα
(Figure S1, Supplementary Materials). Only the highest genistein concentration of 100 µM,
which had shown cytotoxic effects in the XTT assay (Figure 5A), led to a decrease in
ACSL1 mRNA (Figure S1B). A concentration-dependent increase in PPARα activation
was observable in an increase in cytosolic and nuclear PPARα protein in control PHHs
(Figure 6Aii,Aiii). In contrast, PPARα activation in steatotic PHHs was initially increased
and showed no further rise that was dependent on the genistein dose.
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Figure 6. Transcriptional and translational response of genistein-treated steatotic PHHs on
(A) PPARα and (B) SREBP-1c, two central regulators of hepatic lipid homeostasis. PHHs were
treated with 1 mM FFAs for 24 h, followed by 24 h of additive treatment with genistein (0, 1, 5,
10, 50, and 100 µM). (Ai) PPARα mRNA levels were determined by RT-qPCR; (Aii) cytosolic and;
(Aiii) nucleic PPARα protein levels were assessed by Western blot (α-tubulin and p84 served as
the respective reference proteins). (Bi) Relative mRNA expression levels of SREBP-1c as measured
by RT-qPCR; (Bii) densitometric measurements of ER membrane-bound SREBP-1c normalized to
Na+/K+-ATPase and (Biii) nucleic SREBP-1c normalized to p84 expression. Data are shown as the
mean + SD, n = 5 for RT-qPCR data, n = 4 for Western blot measurements, two-way ANOVA with
Tukey or Sidak post hoc test. p ≤ 0.05 (*), p < 0.01 (**). Selected comparisons are shown; for details on
the statistical evaluation, see Table S1B, Supplementary Materials. (C) Representative Western blot
images show the specific bands of PPARα, α-tubulin, p84, SREBP-1c, and Na+/K+-ATPase in control
and steatotic PHHs after genistein treatment.
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In regard to SREBP-1c mRNA and its downstream target FASN, no changes in its
expression were observable due to genistein treatment (Figure 6Bi and Figure S1C). Notably,
the concentration-dependent rise in the variation in the protein level of membrane-bound
SREBP-1c suggests a highly donor-dependent effect on SREBP-1c expression (Figure 6Bii).
However, SREBP-1c activity was decreased in genistein-treated steatotic hepatocytes, with
a significant result for 10 µM genistein (Figure 6Biii).

In summary, the PPARα agonistic and thus steatosis-counteracting properties of genis-
tein were only observed in control PHHs at the protein level. In contrast, a downregulation
of fatty acid synthesis mediating SREBP-1c was only seen in steatotic PHHs, although only
after treatment with 10 µM genistein

3. Discussion

To date, the growing global disease burden of NAFLD has not been remedied by an
adequate pharmaceutical treatment [36]. Complex mechanisms, including dyslipidemia,
hyperinsulinemia and inflammation, drive the development of hepatic steatosis and fuel
its progression up to the point of cirrhosis and end-stage liver disease [37]. Drugs currently
used in NAFLD management only treat individual etiological factors that contribute to its
onset and progression [24]. In addition, some of them, such as PPARα agonistic fibrates,
have been reported to exert hepatotoxicity themselves, which is a major drawback in
NAFLD treatment [38]. The phytoestrogen genistein is a natural compound contained in
soybean and has been described as a PPARα agonist [35]. Epidemiological data conclude
that a higher soy food intake is associated with a lower prevalence of NAFLD [39].

Therefore, this study aimed to investigate the potential of genistein as a therapeutic
treatment to improve steatosis in humans.

3.1. Induction of Steatosis Is Accompanied by Mild Lipotoxic Effects

The applied in vitro model, using oleate and palmitate in a 2:1 ratio, aims at the
imitation of benign chronic steatosis [40]. As intended, treatment of PHHs with FFAs led
to considerable intracellular lipid accumulation, which is in line with findings of our group
and others [40,41]. This increased intracellular lipid content did not lead to substantial
lipotoxic effects. Only one of the four different parameters that we evaluated as indicators
of cell viability showed a significant response. The extracellular enzymatic activity of AST
was slightly increased in steatotic hepatocytes. Transaminase measurements are a common
way to assess liver injury in clinical and experimental settings. As this readout shows
primarily a disturbance in membrane integrity very sensitively, a slight elevation in the
context of cell viability has to be interpreted carefully. Instead, the determination of further
hepatic viability parameters, such as metabolic competency via urea measurement and of
cell activity via the tetrazolium salt assay, has been shown to yield a more comprehensive
result for cell viability [42]. Induction of steatosis did not lead to alterations in those two
parameters, as was already reported by our group [41].

3.2. FFA-Treated PHHs Exhibit Changes in Lipid Catabolism and Anabolism Pathways Analogous
to the First Stages of NAFLD

The nuclear transcription factor PPARα is a key regulator of hepatic lipid degradation.
It is activated by diverse exogenous and endogenous ligands, i.e., dietary fatty acids such
as oleate and palmitate [12,43]. Other cell culture experiments conducted with PHHs or
hepatic cell lines revealed an upregulation of PPARα or its transcription target CPT1L
after 24 h of FFA treatment [44,45]. Our study confirms that FFA treatment of PHHs
resulted in PPARα activation, as seen by an increase in the cytosolic protein and the PPARα
transcription targets ACSL1 and CPT1L. This effect was even more enhanced 24 h later,
when the steatotic hepatocytes without genistein treatment also showed a significant
increase in the nucleic PPARα protein (Figure 6Aiii). ACSL1 and CPT1L encode proteins
involved in the preliminary steps of FFA breakdown by mitochondrial β-oxidation [15].
These processes reflect the hepatocytes’ intention to reduce the escalated intracellular
lipid load.
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A further physiological requirement to limit lipid storage is the downregulation of de
novo lipogenesis. Unsaturated fatty acids regulate SREBP-1c, a major transcription factor
in lipid synthesis, not only at the transcriptional level but also by accelerating its mRNA
turnover and restricting the proteolytic processing of the protein. Proteolytic cleavage of
the ER membrane-bound precursor is suppressed, thus reducing the release of the active
nuclear SREBP-1c isoform and diminishing its transcriptional activity [46]. After 24 h
of FFA treatment, we observed a slight but insignificant decrease in the mRNA levels
of SREBP-1c and FASN in the steatotic PHHs compared to the control. In contrast to
the decrease in SREBP-1c mRNA, we observed an insignificant increase in the activated
SREBP-1c protein, which became significant 24 h later in steatotic hepatocytes that were not
supplemented with genistein (Figure 6Biii). An insignificant increase in FASN transcription
is in line with SREBP-1c activation but vanishes with donor variances. Investigations on
HepG2 cells incubated under comparable conditions of FFA treatment, although for 14 h,
resulted in similar SREBP-1c and FASN expressions to those observed by us, thus indicating
a gradual change in their trend of expression from short-term to long-term incubation times
as also suggested by us [47]. Studies on human liver biopsies have reported increased
SREBP-1c expression in samples from NAFLD patients [18]. Reduced PPARα expression is
documented in liver biopsies featuring NASH or fibrosis, while those of simple steatotic
livers do not differ from healthy liver tissue [48]. In our model of benign steatosis, we did
not detect changes in PPARαmRNA levels, although a slight decrease in PPARαmRNA
after 48 h was observable. The reasons for the pathologic changes in lipogenic signaling
observed in NAFLD liver samples are not fully understood [48]. A possible explanation
may lie in the stress signaling. FFA overload induces oxidative and ER stress in hepatocytes.
A recently published study by our group has shown that ER stress is even more pronounced
under steatotic conditions [41], which in turn induces cleavage of SREBP-1c [49].

Overall, our data suggest that regulatory mechanisms to adapt metabolism to different
levels of lipid accumulation work on different time scales. A study on mice fed a Western
diet reported that mitochondrial adaptation in hepatocytes of steatotic animals required
several weeks [50]. Since mitochondria are the key site of fatty acid degradation, long-term
negative effects on PPARα-regulated processes are a logical consequence of persistent
substrate overload. When using PHHs, the initial lipid load of the cells, which is dependent
on the pre-existing hepatic steatosis of the donor, also has to be taken into account [41].
As shown by our group, hepatocytes initially containing high lipid levels displayed a
long-ranging decrease in mitochondrial activity. Structural and functional impairments of
mitochondria are proven consequences of hepatic steatotis [51].

3.3. Genistein Shows Hepatotoxic Effects at High Concentrations

Genistein is a naturally occurring isoflavone that has shown beneficial effects on lipid
homeostasis. On the one hand, many of genistein’s positive properties are ascribed to its
antioxidative capacities [27]. On the other hand, it can cause oxidative genetic damage
itself. In colon carcinoma cells, 100 µM genistein induced DNA strand breaks [52]. In our
assessment of genistein-induced hepatotoxicity, we observed a decreased cell viability at
this concentration. Other groups, however, did not observe any impairment in cell viability
after treatment with up to 100 µM in the human hepatoma cell line HepG2 [53,54], possibly
due to a stronger resilience of the immortalized cell line. Another recent publication
reported repeated viability assessments of genistein-treated HepG2 cells [55]. Here, no
cytotoxic effect was seen after incubation with 100 µM for 24 h, but this became obvious
after 48 h of incubation [55].

3.4. Genistein Acts as a PPARα Agonist Only in Nonsteatotic PHHs

Thus far, research on the beneficial effects of genistein in the context of NAFLD has
mainly been conducted as in vivo experiments in rodents [30]. Some clinical data are
available on genistein-treated patients featuring NAFLD or metabolic syndrome, indicating
a balancing effect on lipid metabolism [56].
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Genistein has been shown to be a PPARα agonist [53]. In our analyses, PHH incu-
bation with the isoflavone led to a decrease in PPARα mRNA expression. A study on
high-fat diet-fed mice also reported a tendency towards reduced PPARαmRNA levels after
genistein treatment [57]. In contrast, our investigations showed a dose-dependent induc-
tion of PPARα protein expression. This effect was restricted to control PHHs, suggesting
that FFA-treated PHHs differ in their susceptibility to PPARα stimulation. The steatotic
PHHs already exhibited an upregulation of PPARα protein, which could not be further
ameliorated by the addition of genistein. Asrih et al. made comparable observations
after treatment of HepG2 cells with the metabolic regulator fibroblast growth factor 21
(FGF21) [58]. Individual incubation with either FFAs or FGF21 increased fatty acid oxida-
tion and the mRNA level of the PPARα downstream target CPT1L. Upon simultaneous
administration of FFAs and FGF21, HepG2 cells exhibited a similar response but no further
increase, which was explained by a potential loss of FGF21 action in the presence of FFAs.
The complex mechanisms regulating PPARα activation and turnover are still the subject
of intense research [59]. There is increasing evidence on post-translational regulation of
PPARα by miRNAs, which in turn are dysregulated in steatotic hepatocytes [60]. It was
further shown that PPARα ligands are capable of preventing ubiquitination and subsequent
degradation of the nuclear receptor via the proteasome [61]. Thus, one possible explana-
tion for elevated protein levels despite reduced mRNA levels in the presence of genistein
might be a prolongation of the PPARα protein half-life accompanied by an inhibition of its
ligand-activated transcriptional capacity.

3.5. In Steatotic PHHs, Genistein Leads to the Downregulation of Activated SREBP-1c

Rodent in vitro and in vivo NAFLD models show a reversal of steatosis-induced
SREBP1-c protein upregulation after treatment with genistein [29,62]. Additionally, in
the human hepatoma cell line HepG2, genistein treatment reduces SREBP-1c protein,
whereas its mRNA level is not affected. Since the ratio of mature to immature SREBP-
1c was shown to decline, it was proposed that genistein reduces SREBP-1c proteolytic
cleavage [63]. Our investigations confirm the ability of genistein at a dose of 10 µM to
attenuate the upregulation of cleaved SREBP-1c in steatotic hepatocytes. In the control
PHHs, genistein did not lead to a significant decrease in SREBP-1c protein. Transcription
of FASN was not affected either. In the abovementioned NAFLD models with genistein
administration, isoflavone treatment was conducted in parallel with the induction of
steatosis. In our experimental setting, however, steatosis was first induced and then
genistein was administered on steatotic cells. It might therefore be possible that further
consequences of the treatment become visible after a prolonged observation period.

3.6. In Steatotic Hepatocytes, Genistein Suppresses De Novo Lipogenesis, While
Genistein-Mediated Induction of Hepatic Lipid Degradation Is Abrogated

In summary, our data show that the in vitro model utilizing PHHs serves as a realistic
approach for the study of early NAFLD development. FFA treatment activated β-oxidation,
which could be observed by elevated PPARα protein levels and a subsequent increase
in CPT1L and ACSL1 transcription. A similar induction of PPARα protein was also
achieved by genistein treatment, but only in nonsteatotic PHHs. Conversely, the examined
PPARα transcription targets were not influenced by genistein, and PPARα mRNA was
even reduced. Considering the current literature on PPARα, we hypothesize that these
diverging observations might be due to a stabilizing effect of the PPARα ligand genistein
on the protein while simultaneously interfering with its ligand-activated transcription
capacity. These responses were only present in nonsteatotic PHHs. Former FFA treatment
abolished the genistein effect on PPARα. In contrast, abrogation of the de novo lipogenesis
pathway via genistein-mediated suppression of SREBP-1c activation was only seen in
steatotic hepatocytes. Long-term steatotic conditions in vivo lead to aberrations in the
PPARα and SREBP-1c pathways [18,48,64]. Such changes were also confirmed in short-
term in vitro investigations [29,64]. Our current and former observations, however, imply
that the molecular manifestations of hepatic steatosis as seen in PHHs are not as fast-paced
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as those reported for hepatic cell line experiments. We have shown that the rate of lipid
accumulation in PHHs depends on the initial lipid load and subsequently reaches a steady
state [41]. Whether genistein can then interfere with and reverse the downregulation of
PPARαwould be an interesting matter for future studies on PHHs. Overall, we can confirm
that genistein exerts beneficial effects on different levels of hepatic lipid metabolism and
could thus be a promising drug candidate for NAFLD prevention and therapy.

3.7. Limitations

The strengths and limitations of our study are closely intertwined. Among the various
monocellular in vitro models to study liver function and pathologies, PHHs are closest to
the conditions found in reality. However, the cellular response in culture depends on the
former health status of the donor, which is why PHHs do not behave as homogeneously as
immortalized cell lines. In the present study, this circumstance is reflected by the fact that
several results are associated with high standard deviations. Furthermore, the protocol for
hepatocyte isolation requires a sufficiently large liver specimen; thus, sample material from
surgical patients is scarce, and the number of biological replicates is limited.

Aside from that, several of our results suggest a time-dependent effect of the FFA
treatment on the signaling pathways of PPARα and SREBP-1c. Yet, this study was not
designed as a time course experiment and cannot provide sufficient insight into the question
of time dependency. A study focusing on the time course of FFA-induced changes in PPARα
and SREBP-1c signaling will therefore be a future goal of our group.

4. Materials and Methods
4.1. Isolation of Primary Human Hepatocytes

Liver tissues for hepatocyte isolation were obtained after informed consent was ob-
tained from patients undergoing liver surgery at the Department of General, Visceral and
Transplantation Surgery at Charité University Medicine Berlin, Germany. The study was
conducted according to the Declaration of Helsinki and received prior approval from the lo-
cal ethics committee (Charité University Medicine Berlin, registration number EA2/076/09,
date 28 July 2019). Tissue samples were freshly retrieved from macroscopically tumor-free
areas of the resected livers. Samples with infections with hepatitis B virus, hepatitis C virus
or human immunodeficiency virus or higher grades of liver cirrhosis (Child-Pugh class B
or C) were excluded. Isolation of PHHs was performed as previously described [65,66].
In brief, PHHs were isolated in a two-step EGTA/collagenase perfusion technique. After
isolation, PHHs were pooled, washed with phosphate buffered saline (PBS; PAA Labora-
tories, Pasching, Austria) and subjected to density gradient centrifugation for 20 min at
1280 g at 4 ◦C using Percoll (Biochrom AG, Berlin, Germany). The resulting cell pellet was
washed, and the cells were resuspended in PHH culture medium (Williams Medium E,
100 U/100 µM penicillin/streptomycin, 1 mM sodium pyruvate, 15 mM HEPES, 10% fetal
bovine serum (FBS), 1% nonessential amino acids (MEM NEAA; all provided by Gibco
Invitrogen, Karlsruhe, Germany), 1.6 µM dexamethasone (Fortecortin®, Merck, Darmstadt,
Germany), and 1 mM human insulin (Sanofi-Aventis, Frankfurt a.M., Germany)) and
seeded on cell culture plates at a density of 100,000 viable cells/cm2. The cell culture plates
were previously coated with type I collagen that was prepared from rat tails in our own
laboratory according to the protocol of Rajan et al. [67].

4.2. Cell Culture, In Vitro Induction of Steatosis and Genistein Treatment

PHH adherence was achieved overnight in PHH culture medium at 37 ◦C, and
steatosis was induced according to the in vitro steatosis model described by Gómez-
Lechón et al. [40]. PHH culture medium was replaced by control (Williams Medium
E, 100 U/100 µM penicillin/streptomycin, 1 mM sodium pyruvate, 15 mM HEPES, 5% FBS,
1% MEM NEAA supplemented with 0.3% methanol), or FFA-containing medium (control
medium supplemented with 1 mM oleate/palmitate in a 2:1 ratio (Gibco Invitrogen, Karl-
sruhe, Germany) in methanol (J.T. Baker, Deventer, The Netherlands)) and hepatocytes
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were cultured for 24 h. For genistein treatment, the respective cells were further incubated
with control medium supplemented with 0, 1, 5, 10, 50, or 100 µM genistein (Roth, Karl-
sruhe, Germany) for another 24 h. Genistein was dissolved in dimethyl sulfoxide (DMSO,
Sigma-Aldrich, Steinheim, Germany) and diluted with low FBS-PHH culture medium to
the final concentrations (with a final DMSO concentration of 0.5%).

4.3. Evaluation of Steatosis by Oil Red O and Sulforhodamine B (SRB) Staining

Intracellular lipid accumulation was evaluated by staining with the diazo dye Oil Red
O (Sigma Aldrich, Steinheim, Germany), which stains neutral lipids. Before staining, the
hepatocytes were washed with PBS and fixed for 30 min with 3.7% formaldehyde (Herbeta
Arzneimittel, Berlin, Germany). Cells were incubated with Oil Red O working solution
(8.6 mM Oil Red O in isopropanol, diluted in dH2O in a 3:2 ratio) for at least 20 min.
Unfixed dye was removed by thorough washing with tap water, and cells were dried at
room temperature. Then, Oil Red O dye was dissolved from the cells with isopropanol
(Roth, Karlsruhe, Germany), and the absorbance was measured at 492 nm with a spectral
photometer (Fluostar Optima, BMG, Offenburg, Germany).

To calculate lipid content relative to cell count, SRB (Sigma Aldrich, Steinheim, Ger-
many) protein staining followed the Oil Red O assay. SRB binds to protonated amino
acids. The fixed hepatocytes were washed with PBS and incubated with SRB solution (0.4%
(m/v)) for 30 min. Unbound SRB dye was removed by thorough washing with acetic acid
(1% (v/v), Merck, Darmstadt, Germany). A 10 min incubation with 10 mM Tris solution
dissolved the bound SRB. Absorbance was measured with a spectral photometer at 580 nm.

4.4. XTT Assay

Cell viability was assessed using the Cell Proliferation Kit II (XTT; Roche Diagnostics,
Mannheim, Germany) according to the manufacturer’s instructions. The yellowish tetra-
zolium salt XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilid)
is converted in the mitochondria of viable cells to orange formazan. In brief, XTT labeling
reagent was mixed with XTT electron-coupling reagent in a 50:1 ratio. Fifty microliters of
the mixture were added to each well of a 96-well plate, followed by incubation for 24 h.
Absorbance was measured at 492 nm using a spectral photometer.

4.5. LDH, AST and Urea Assays

Lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) are intracellular
enzymes that are released upon cell membrane damage. To evaluate membrane integrity,
the enzymatic activity of LDH and AST was measured in the cell culture supernatant
utilizing Fluitest® reaction kits (Analyticon, Lichtenfels, Germany).

Urea is the end product of amino acid catabolism and results from the conversion of
toxic ammonia in the urea cycle, which occurs mainly in the liver. Therefore, the metabolic
activity of hepatocytes can be assessed by the amount of urea released into the cell culture
supernatant. The urea concentration was measured with a Fluitest® reaction kit.

All three assays were performed according to the manufacturer’s protocol. Absorbance
was measured at 340 nm with a spectral photometer.

4.6. RT-qPCR Analyses

Messenger RNA expression levels of PPARα, SREBP-1c, ACSL1, CPT1L, and FASN
were analyzed by RT-qPCR. Total RNA was isolated from hepatocytes by Trizol® (Invit-
rogen, Karlsruhe, Germany) extraction according to the manufacturer’s protocol. RNA
concentrations were determined with a spectral photometer (Nanodrop ND-1000, Peqlab,
Erlangen, Germany) after resuspension with 50 µL diethylpyrocarbonate (DEPC) H2O
(Roth, Karlsruhe, Germany). Only samples with an A260/A280 ratio of at least 1.9 were
processed further. If subsequent experiments were not performed immediately, the samples
were stored at −80 ◦C.
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Reverse transcription was conducted with the cDNA Synthesis Kit by Fermentas (St.
Leon-Rot, Germany) adhering to the manufacturer’s protocol. The kit utilizes Oligo(dT)18
primers. For each reaction, 1 µg total RNA was used. The cycling profile used in the Veriti™
96-well thermocycler (Applied Biosystems, Foster City, CA, USA) is detailed in Table 1.
The samples were immediately processed further or stored at −20 ◦C for a maximum of
14 d.

Table 1. Thermocycling profile of the reverse transcription reaction.

Step Temperature ( ◦C) Time (min)

Annealing 65 5
Reverse transcription 37 60

Inactivation 70 5

qPCR was performed with a Step One Plus Real Time PCR Cycler (Applied Biosystems,
Foster City, CA, USA) with 50 ng cDNA used for each reaction. Specific hydrolysis probes
for the PPARα, SREBP-1c, ACSL1, CPT1L, and FASN genes and TaqMan® Gene Expression
Master Mix were purchased from Applied Biosystems (Foster City, CA, USA). The β-actin
gene (ACTB) served as the reference gene. Assay details are listed in Table 2. All samples
were measured in duplicates. The qPCR reaction profile is detailed in Table 3. Relative
gene expression was calculated using the comparative CT method (2−∆∆CT method).

Table 2. TaqMan® gene expression assays (Applied Biosystems, Foster City, CA, USA) applied for qPCR.

Gene Symbol Gene Name Assay ID

PPARA Peroxisome proliferator activated receptor alpha Hs00947539_m1
SREBP-1c Sterol regulatory element binding transcription factor 1 (SREBF1) Hs01088691_m1

CPT1L Carnitine palmitoyltransferase 1A (CPT1A) Hs00912671_m1
ACSL1 Acyl-CoA synthetase long-chain family member 1 Hs00242530_m1
FASN Fatty acid synthase Hs01005622_m1
ACTB Actin beta Hs99999903_m1

Table 3. qPCR thermocycling conditions.

Step Temperature ( ◦C) Time (min:s) Cycles

UNG 1 incubation 50 2:00 1
Polymerase activation 95 10:00 1

Denaturation 95 0:15
40Annealing/extension 60 1:00

1 Uracil-N-glycosylase.

4.7. Western Blot Analyses

Proteins were extracted utilizing the Subcellular Protein Fractionation Kit by Thermo
Scientific (Rockford, IL, USA). To each cell culture dish containing approximately 2.1 × 106

viable PHHs, 200 µL of cytosolic extraction buffer was added. The subsequent steps
followed the manufacturer’s instructions, resulting in distinct fractions of cytoplasmic,
membrane-bound and nuclear soluble protein extractions for each sample. For protein
quantification, the bicinchoninic acid assay (BCA; Interchim, Montelucon, France) was
used according to the manufacturer’s protocol. Samples were adjusted to a protein quantity
of 1.2 µg/µL with dH2O and 20% sample buffer (0.4 M Tris base, 10% SDS, 50% glycerol,
0.025% bromphenol blue and 25% mercaptophenol, all from Sigma-Aldrich, Steinheim,
Germany) and incubated at 100 ◦C for 5 min. For each sample, 30 µg protein was separated
at a continuous voltage of 120 V on an 8% SDS-polyacrylamide gel. Then, protein transfer
to a nitrocellulose membrane (Bio-Rad Laboratories Inc., Munich, Germany) was carried
out with a tank blotting system (Mini Trans-Blot® Cell and Module; Bio-Rad Laboratories
Inc., Munich, Germany) applying an electric current of 340 mA for 60 min. After staining of
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the protein bands with Ponceau S solution (5 g Ponceau S in 75 g trichloroacetic acid (both
by Merck, Darmstadt, Germany) and 75 g sulfosalicyclic acid (Sigma-Aldrich, Steinheim,
Germany) in 250 mL dH2O) and two washing steps with dH2O, the membrane was
blocked with 5% nonfat dry milk (Applichem, Darmstadt, Germany) in TBST (0.1% Tween
20 (Merck, Darmstadt, Germany) in 20% TBS (50 mM Tris base (Sigma-Aldrich, Steinheim,
Germany) and 150 mM sodium chloride (Merck, Darmstadt, Germany) in dH2O at pH
7.5) by continuously shaking for 1 h at room temperature. Afterwards, the membrane
was washed with TBST and incubated with specific primary antibodies against PPARα,
SREBP-1c, α-tubulin, p84, or Na+/K+-ATPase at 4 ◦C. p84 served as a reference protein
for nucleic PPARα or SREBP-1c, α-tubulin as a reference protein for cytosolic PPARα and
Na+/K+-ATPase for ER membrane-bound SREBP-1c. Four washing steps with TBST were
followed by incubation with the secondary antibodies at RT. Antibodies were diluted in
TBST and 1% (v/v) bovine serum albumin (BSA; Sigma-Aldrich, Steinheim, Germany).
Further details on the primary and secondary antibodies are listed in Table 4. Prior to
detection, the membrane was again washed four times with TBST and then incubated
with ECL™ Detection Reagents (Sigma-Aldrich, Steinheim, Germany) according to the
manufacturer’s instructions. Chemiluminescence was detected with a VersaDoc Model
4000 (Bio-Rad Laboratories Inc., Munich, Germany).

Table 4. Antibodies for Western blotting.

Antibody (Manufacturer) Dilution Incubation Time

Mouse PPARα (Dianova, Hamburg, Germany) 1:1000 Overnight
Mouse SREBP-1c (Biozol, Eching, Germany) 1:200 2 h

Mouse α-tubulin (Sigma-Aldrich, Steinheim, Germany) 1:2000 1 h
Mouse p84 (Abcam, Cambridge, UK) 1:2000 1 h

Rabbit Na+/K+-ATPase (Cell Signaling, Danvers, MA, USA) 1:1000 1 h
Sheep anti-mouse (Amersham, Freiburg, Germany) 1:4000 1 h

Donkey anti-rabbit 1:4000 1 h

4.8. Statistical Analyses

Values are expressed as the mean + SD. Each value represents the mean of at least
three biological replicates. GraphPad Prism 7 (San Diego, CA, USA) was employed for
significance analyses and chart design. Significant differences between single values were
analyzed by a paired t-test. For significance testing among multiple groups, a repeated
measures two-way ANOVA (with the two factors of genistein treatment and steatotic
treatment) was employed followed by post hoc tests to correct for multiple comparisons
(Tukey test for the comparison of genistein treatment among steatotic and nonsteatotic
PHHs or Sidak correction for differences between the steatotic and nonsteatotic groups
treated with the same genistein dose). Statistical significance was assumed at p ≤ 0.05.

Supplementary Materials: The following are available online, Figure S1: Evaluation of the effect of
genistein on the transcriptional targets of PPARα and SREBP-1c in steatotic PHHs, Table S1: Details
on statistics for Figure 5, Figure 6 and Figure S1.
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