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OSA and Cardiovascular Risk in Pediatrics
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OSA occurs in approximately 1% to 5% of children in the United States. Long-term

cardiovascular risks associated with OSA in the adult population are well documented.

Although changes in BP regulation occur in children with OSA, the pathways leading to chronic

cardiovascular risks of OSA in children are less clear. Risk factors associated with cardiovascular

disease in adult populations could carry the same future risk for children. It is imperative to

determine whether known mechanisms of cardiovascular diseases in adults are like those that

lead to pediatric disease. Early pathophysiologic changes may lead to a lifetime burden of

cardiovascular disease and early mortality. With this perspective in mind, our review discusses

pathways leading to cardiovascular pathology in children with OSA and provides a compre-

hensive overview of recent research findings related to cardiovascular sequelae in the pediatric

population. CHEST 2019; 156(2):402-413
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The prevalence of OSA in children varies
with the severity of the disorder.1 In a
population of 5- to 12-year-old children, the
prevalence of mild OSA (an obstructive
apnea-hypopnea index [OAHI] between one
and five events per hour) reaches 25%. The
prevalence of moderate OSA (an OAHI > 5
and < 10 events per hour2) is approximately
1.2%. Pediatric OSA was first recognized as a
serious clinical diagnosis following
publication of several case reports describing
children with severe pulmonary
hypertension and irregular breathing during
sleep.3,4 The improvement in nocturnal
breathing patterns and pulmonary
hypertension, as well as their
cardiopulmonary health, following
tracheostomy represented the first link of
upper airway obstruction during sleep to
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omnography; PTT = pulse transit time
ision of Pediatric Otolaryngology-Head
and Division of Pulmonary and Sleep
min), Cincinnati Children’s Hospital
H; and Department of Otolaryngology-

Head and Ne
of Medicine, C
CORRESPOND

and Sleep M
Burnet Ave, C
Copyright � 2
Elsevier Inc. A
DOI: https://d

in Sleep Medicine
cardiopulmonary disease in the pediatric
population.3 Due to the relatively early
diagnosis of OSA in children, the clinical
presentation, including pulmonary
hypertension and cardiac dysfunction, is not
routinely encountered in today’s practice.

The change in the clinical phenotype of
children presenting with OSA to one that
lacks an overt manifestation of
cardiovascular disease leads to the important
question of whether OSA in children still
poses a cardiovascular risk. To address this
question, the prevalence of known risk
factors leading to cardiovascular disease in
adults is being evaluated in children with
OSA. This approach assumes that risk
factors associated with cardiovascular
disease in adult populations carry the same
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future risk for children. However, it is important to
recognize that numerous childhood cohorts studied
over the last several decades were created to determine
the association between cardiovascular risk factors
identified during childhood and adult cardiovascular
diseases5,6; this goal has not yet been completely
achieved. One important reason for this delay is the
dynamic change in these risk factors over the span of
several decades. Specifically, the incidence of
cardiovascular disease during adulthood may depend
on whether a certain risk factor is sustained from
childhood to adulthood or whether it waxes and wanes
over time.

Notwithstanding our inability to describe the continuum
of cardiovascular health throughout life, there is strong
evidence that some cardiovascular risk factors may
continue from childhood into adulthood. For example,
in a longitudinal study of 493 boys and girls aged 5 to 18
years, elevated systolic BP during childhood was
associated with hypertension and metabolic syndrome
as adults.5 It is therefore imperative to determine
whether known mechanisms of adult cardiovascular
diseases are also important for the development of
pediatric disease. With these issues in mind, the present
review discusses pathways leading to cardiovascular
pathology in children with OSA. Tables 1 through 4
summarize some of the major studies described in this
review.5-24
BP Dysregulation
As a result of defining BP $ 95th percentile,25 the
diagnosis of childhood hypertension has been made
more frequently over the last several decades.26,27

Hypertension and BP dysregulation, well-known risk
factors for cardiovascular diseases, have been
investigated in both cross-sectional and longitudinal
studies of children with OSA. Many of these studies
examined BP in healthy normotensive children without
comorbid conditions. Fewer studies examined the
prevalence of OSA in children with hypertension.
However, it is important to recognize that the
American Academy of Pediatrics revised its definition
of pediatric prehypertension in 2017,25 and the
prevalence of prehypertension and/or hypertension in
children with OSA may change accordingly. In
addition, it is important to note that variability in
cardiovascular outcomes in children can be influenced
by the age of study participants. Phenotypic changes in
preschool-aged children are not as marked as changes
in older children, and this factor may be related to the
chestjournal.org
length of time children are exposed to untreated
disease.

Prevalence of OSA in Children With
Hypertension
The prevalence of OSA in adults with resistant
hypertension is as high as 80%, with approximately
50% having moderate to severe OSA.28 However, there
are few data on the prevalence of OSA in children with
hypertension. A recent retrospective study29 that
examined 446 children aged 10 to 17 years referred to a
hypertension clinic reported a snoring prevalence of
23%. In a subset of children with snoring who
underwent polysomnography (PSG), 55% had OSA.
Fifty-two percent of children with severe OSA (an
apnea-hypopnea index [AHI] $ 10 events per hour2)
had stage 2 hypertension based on in-office BP
measurements.

BP in Normotensive Children
There are several commonly used approaches to study
BP control in children with OSA. These include
measurements of in-office BP, 24-h ambulatory BP
(AMBP) measurements, and pulse transit time (PTT) as
a surrogate marker of BP.7 However, some previous
studies also used continuous BP recordings from
overnight PSG. In addition to measuring BP during
wakefulness and sleep, studies examined BP variability
and nocturnal dipping. Marcus et al,9 for example, first
published the results of BP recording during overnight
PSG and reported an increase in diastolic BP during
both wakefulness and sleep. In children aged 2 to 12
years, systolic and diastolic BPs were associated with the
severity of OSA. Additional studies of 24-h AMBP in
school-aged and adolescent children showed an increase
in diastolic and/or systolic BPs.10-13 In one study of 24-h
AMBP,10 BP load (defined as the number of
measurements exceeding the 95th percentile) was
positively correlated with the severity of OSA. Similarly,
children with OSA had a higher morning BP surge also
associated with the severity of OSA, as measured by
using OAHI. In almost all case-control studies that
examined BP control, children with OSA had a
significantly higher BMI compared with control subjects.
As a result, the relative contribution of obesity vs OSA to
24-h AMBP findings was examined. The results revealed
that OSA and BMI have similar effects on diurnal
systolic BP, diastolic BP, and sleep systolic BP. However,
OSA had a significantly greater effect on nocturnal
diastolic BP than BMI. Evidence supports the
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association between OSA and changes in BP in the
pediatric population (Table 1).7-13

Because children with OSA have higher BMIs compared
with control subjects,10 and obesity significantly affects
the cardiovascular system, some studies were designed
to distinguish the effects of OSA vs obesity. In a study of
children aged 8 to 18 years, BP and PTT were evaluated
in normal weight and obese control subjects and those
with OSA. In this study, BMI exhibited combined and
independent effects on BP in those with OSA.8 Other
studies have co-varied for BMI,30-34 all showing that
OSA and obesity are independently associated with
adverse cardiovascular outcomes. In a 35-year
longitudinal study of preadolescent children without
OSA, participants who were overweight at the initial
visit were significantly more likely to develop OSA in
middle age,6 highlighting the significance of childhood
obesity on the development of OSA in adulthood.
Although additive effects of obesity and OSA on the
cardiovascular system are difficult to distinguish,
improvement of cardiovascular sequelae in children with
OSA also requires control of obesity.

Nocturnal dipping of BP is an important factor that has
a protective effect against cardiovascular disease. In both
children and adults, nondipping is defined as a fall in
less than 10% of the nocturnal (asleep) BP compared
with the daytime (awake) BP. Dipping status, however,
can vary depending on the measured BP index.35 It is
TABLE 1 ] Summary of Studies Discussing General Effects

Study Year Study Type No. of Subjects Age

Nisbet et al7 2013 Prospective 81 children 3-5 y

Horne et al8 2018 Prospective 98 children 8-18 y

Marcus et al9 1998 Prospective 67 children 2-12 y

Amin et al10 2008 Prospective 140 children 7-13 y

Li et al11 2008 Prospective 306 children 6-13 y

Leung et al12 2006 Prospective 96 children 6-15 y

Kang et al13 2016 Prospective 163 children 4-16 y

AMBP ¼ ambulatory BP; HTN ¼ hypertension; PTT ¼ pulse transit time; SDB
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well established that a nondipping pattern of diurnal BP
variation in adults is an independent predictor of
adverse cardiovascular outcomes.36 In fact, in a meta-
analysis of four prospective studies of adults with
hypertension, nocturnal BP was a better predictor of
cardiovascular outcomes than daytime BP.37 Several
mechanisms have been proposed to explain nondipping
of nocturnal BP, including attenuated nocturnal
decreases in systemic vascular resistance, increases in
sympathetic tone, and decreases in baroreflex sensitivity
during sleep.38,39 In adults with OSA, nondipping BP is
well documented and correlates with the severity of the
disease.40-42 Similar observations were made in children
with OSA.14,15 Nondipping nocturnal BP in children 5
to 17 years of age with OSA has been reported in
previous studies.15,16,43 However, in a group of 7- to 13-
year-old Australian children with OSA, BP dipping was
preserved.17 Similarly, preserved nocturnal BP dipping is
seen in children aged 3 to 5 years with OSA even in the
presence of sleep fragmentation.18 Evidence supports a
link between OSA and nondipping BP in children
(Table 2).14-18

Another parameter of BP control is the variability of
diurnal and nocturnal BP. It is evident that the
variability of BP between clinic visits and in 24-h AMBP
in the adult population carries an increased risk of
cardiovascular disease and all-cause mortality.44,45

Increases in BP variability have also been reported in 5-
to 17-year-old children with OSA, and this finding
of OSA on BP

What Is Evaluated Findings

PTT Obstructive events elicit acute
cardiovascular changes in
preschool-aged children

PTT BMI has combined and
independent effects on BP and
heart rate in children with OSA

BP using arm cuff Childhood OSA is associated with
systemic diastolic hypertension

24-h AMBP SDB in children associated with
increase in morning BP surge, BP
load, and 24-h AMBP

24-h AMBP OSA associated with elevated
daytime and nocturnal HTN

24-h AMBP Increased desaturation index is
associated with elevation of
diastolic BP elevation

24-h AMBP Prevalence of nocturnal systolic
HTN higher in children with OSA

¼ sleep-disordered breathing.
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TABLE 2 ] Summary of Studies Discussing Nondipping BP in OSA

Study Year Study Type No. of Subjects Age What Is Evaluated Findings

Horne et al14 2011 Prospective 105 children 7-13 y Continuous
overnight BP

SDB associated with
nondipping BP

Amin et al15 2004 Prospective 60 children 7-14 y Continuous
overnight BP

Nocturnal BP dipping was
predicted by desaturation index

Xu et al16 2013 Prospective 145 children 5-14 y 24-h AMBP Children with OSA had decreased
nocturnal dipping

Horne et al17 2013 Prospective 141 children 7-12 y Continuous
overnight BP

SDB does not alter nocturnal BP
dipping

Nisbet et al18 2014 Prospective 192 children 3-5 y PTT Nocturnal dipping is preserved in
young children with OSA

See Table 1 legend for expansion of abbreviations.
correlated with the severity of OSA.15 The role of
autonomic dysfunction in BP dysregulation in children
with OSA has been explored in several studies. There is
now evidence that a broad range of children (from
toddlers to teenagers) with OSA have heightened
sympathetic tone and decreased baroreceptor
sensitivity.19,20,22,23

Autonomic balance can also be evaluated by using other
measures such as heart rate variability (HRV).46 Many
studies have used HRV to assess sympathetic tone in
children with OSA. In a study of children with OSA,21

autonomic balance, as determined by HRV from
overnight PSG, correlated with respiratory disturbance
index. In addition, HRV, as a measure of sympathetic
activity of the autonomic nervous system, decreased in
2- to 7-year-old children following treatment of OSA
with adenotonsillectomy.47 Morning urinary
catecholamine levels also seem to be associated with
severity of OSA, indicating that OSA leads to increased
sympathetic tone.19,48 OSA leads to changes in both
sympathetic tone and baroreflex sensitivity in the
pediatric population (Table 3).19-23

Most studies of children with OSA reported increased
systolic and diastolic BPs, increased BP variability, and
decreased BP dipping. It is important to recognize that
not all studies report all three abnormalities in BP. This
lack of agreement between studies highlights the
fundamental question about the genetic predisposition
and gene-environment interactions that lead to a
phenotype with increased cardiovascular risk.

The causal relationship between OSA and elevated BP
level has been explored through longitudinal follow-up
studies of untreated children with OSA and by
examining the change in BP following treatment. In a 4-
year prospective follow-up study of untreated childhood
chestjournal.org
OSA,49 baseline OAHI in 9- and 10-year-old children
was positively associated with follow-up awake and sleep
systolic and diastolic BPs. The change in OAHI was also
positively associated with sleep systolic and diastolic
BPs. The effect of treatment on BP control has also been
reported previously. In multiple cross-sectional studies,
treatment with adenotonsillectomy or CPAP was
associated with a decrease in BP.50-56 These studies
suggest that a causal relationship between elevated BP
and OSA in children might indeed exist. However, these
previous observations have not been confirmed through
more rigorous randomized controlled trials.
The Rationale for Monitoring BP in Children
With OSA
Studies have shown that the BP trajectory from
childhood to young adulthood is closely related to end-
organ structure and function. In a 23-year longitudinal
study of BP in children without OSA recruited between
the ages of 5 and 16 years,24 BP could be successfully
tracked into adulthood. The study also showed that the
trajectory of systolic BP was a significant predictor of
both carotid intimal thickness and left ventricular mass
index (Table 4).5,6,24 Furthermore, studies that examined
left ventricular geometry in prehypertensive and
hypertensive children between the ages of 5 and 19 years
found that both groups had increased left ventricular
remodeling and mass compared with normotensive
children and that the change in left ventricular geometry
increased with increasing BP.57,58 Left ventricular
remodeling and hypertrophy have been described in 5-
to 12-year-old children with OSA59 and were also
associated with increasing BP.10 Although most children
are normotensive based on the American Academy of
Pediatrics guidelines that precede the 2017 report,25

observing the BP trajectory of children with OSA is
405
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TABLE 3 ] Summary of Studies Discussing Changes in Sympathetic Tone and Baroreflex Sensitivity in OSA

Category Study Year Study Type
No. of
Subjects Age What is Evaluated Findings

Sympathetic
tone

O’Driscoll
et al19

2011 Prospective 96 children 3-12 y Overnight
urinary
catecholamine
levels

Overnight urinary
noradrenaline
(sympathetic tone)
related to severity
of OSA

Montesano
et al20

2010 Prospective 50 children 7-12 y Ewing test
battery

Increase in basal
sympathetic activity
during wakefulness,
dependent on
severity of OSA

Baharav
et al21

1999 Prospective 20 children 3-14 y Heart rate
fluctuation in
PSG

Children with OSA
exhibit enhanced
sympathetic activity

Baroreflex
sensitivity

Chaicharn
et al22

2009 Prospective 20 children 7-14 y Baroreflex gain Vagal modulation
remains normal in
children with OSA,
but baseline
sympathetic activity
is elevated

McConnell
et al23

2009 Prospective 169
children

7-12 y Baroreflex gain OSA associated with
decrease in
nocturnal
baroreflex gain and
increase in BP
variability

PSG ¼ polysomnography.
essential to identifying those at risk for developing
clinically significant elevated BP later in life.
OSA and Endothelial Dysfunction
Vascular tone, platelet activity, leukocyte adhesion, and
angiogenesis are regulated by the vascular endothelium.
TABLE 4 ] Summary of Several Longitudinal Studies

Study Year Study Type No. of Subjects

Sun et al5 2007 Longitudinal
cohort

493 children
into
adulthood

Bazzano et al6 2016 Longitudinal
cohort

844 children
into
adulthood

Hao et al24 2017 Longitudinal
cohort

683 children
into
adulthood

See Table 1 legend for expansion of abbreviation.
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Nitric oxide, along with other regulatory factors, is
essential to preserving endothelial function. A decrease
in nitric oxide bioavailability induces endothelial
inflammation that promotes atherosclerosis.60,61

Therefore, endothelial dysfunction correlates with
cardiovascular disease progression and predicts
cardiovascular events.61-64 In children, several studies
Age What Is Evaluated Findings

5-18 y Standard BP
measurements

Children with
elevated BP at
increased risk of
HTN as adults

7-12 y Anthropometric
measurements

Overweight in
childhood
increases risk for
OSA in middle
age

5-16 y Standard BP
measurements,
echo

Childhood systolic
BP trajectories
are associated
with subclinical
cardiovascular
risk
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described an association between endothelial
dysfunction and OSA.65-68 Treatment of nonobese 6- to
11-year-old children with OSA by using
adenotonsillectomy seems to have a beneficial effect on
endothelial function in a subset of children with no
family history of hypertension.65

Inflammation and OSA in Children
The relationship between inflammatory pathways and
OSA is complex and likely to be bidirectional. There are
multiple facets to the inflammatory response in the
context of OSA. Evidence exists of systemic
inflammation that is quantified by circulating cytokines,
acute-phase reactants, and inflammatory cells. Evidence
also exists of tissue- or organ-specific inflammation that
mediates some of the phenotypic characteristics
OSA / Interm

Circadian
disruption

Cardiovascular

Inflamm

Metabolic and vasc

A
cu

te

ph
ase reactants

Cytokines

Adiposity

-

Figure 1 – Relationship between inflammation and OSA. Systemic and tissu
disturbances that also contribute to the relationship between central adiposi
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observed in children with OSA. Lastly, there is a
potential role of inflammation in the development of
OSA (Fig 1).

Systemic Inflammation

Multiple studies have reported increased levels of plasma
cytokines in children with OSA across many age
groups.69-75 However, fewer studies have examined the
relationship between circulating cytokines and
cardiovascular end points. In children with OSA,
circulating cytokines and/or inflammatory cells were
found to correlate with the degree of endothelial
dysfunction and PTT.66,74,76 Parallel to the increase in
proinflammatory cytokines is an increase in acute-phase
reactants,77-79 such as C-reactive protein (CRP), and
adipokines.74,80 Although the role of acute-phase
ittent hypoxia
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reactants in mediating and or protecting from
cardiovascular injury needs further investigation, some
evidence suggests that acute-phase reactants such as
CRP may play dual roles: one as proinflammatory in the
process of endothelial injury, and the second to protect
from the proinflammatory effects of circulating
cytokines.74

Tissue Inflammation in OSA

Preclinical studies show that intermittent hypoxia
induces endothelial inflammation and dysfunction
through upregulation of the nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-kB), a
transcription factor that upregulates > 200 genes.81-85

The pathways mediating endothelial inflammation and
injury observed in preclinical studies have been tested in
children with OSA. These studies show that the same
inflammatory pathways were closely associated with
endothelial dysfunction.67,86

Adenoid and tonsillar tissue from children with OSA
have characteristic distributions of lymphocyte
subsets.87 There is also high expression of leukotrienes
and their receptors in the adenotonsillar tissues,87-89

which elicit a cellular proliferation of tonsillar tissue.
Demain and Goetz90 showed that long-term use of nasal
corticosteroids in 5- to 11-year-old children could
reduce the size of adenoid tissue and treat isolated nasal
airway obstruction. A similar treatment regimen showed
a significant decrease in obstructive respiratory events in
children aged 1 to 10 years with OSA.91 Several
prospective clinical studies have also reported a
therapeutic role for leukotriene modifiers in pediatric
OSA.92,93 These data suggest that the inflammatory
response observed in children with OSA may also
contribute to further airway obstruction by inducing
hypertrophy of tonsillar and adenoid tissue.

Contribution of Inflammation to OSA
The strong association between obesity and OSA in
children and adults has been repeatedly reported in
multiple studies that have examined the risk factors for
OSA, with central obesity playing an important role in
mediating this relationship. Several explanations for the
potential causal association between obesity and OSA
have also been proposed. Data suggest that the
association between central adiposity and OSA is
mediated through an inflammatory process.80 In this
longitudinal study examining the change in obesity,
OSA, and inflammatory biomarkers from early
childhood to adolescence, changes in CRP were closely
408 Contemporary Reviews in Sleep Medicine
associated with changes in waist circumference and
follow-up OAHI. These results suggest that
inflammation may explain the association between
increasing central obesity and OSA severity. Additional
studies reported that genetic polymorphisms of IL-6,
tumor necrosis factor a, and CRP contribute to
OSA.74,94-97 Based on these observations, it is plausible
that obesity-related inflammation represents one
mechanism of OSA in overweight and obese children.

Insulin Resistance and Glucose Homeostasis in
Pediatric OSA
It is plausible that even in the absence of obesity, OSA
may increase the risk for cardiovascular disease by
inducing insulin resistance. Insulin resistance is directly
associated with an increased risk for atherosclerosis.98

Artificially induced sleep fragmentation is associated
with decreased morning insulin sensitivity,99 and the
degree of sleep disruption is correlated with the level of
insulin resistance.100 Intermittent hypoxia-induced
inflammation led to insulin resistance in a murine model
of OSA.101 Intermittent hypoxia also induces arousal in
mice.102 Furthermore, intermittent hypoxia in healthy
adults decreases insulin sensitivity.103 In a large pediatric
cohort of normal and overweight children aged 5 to 12
years, sleep fragmentation was independently and
positively associated with insulin resistance measures.104

Although obesity is also associated with insulin
resistance, complicating causal relationships between
OSA, obesity, and cardiovascular disease, it is apparent
that sleep fragmentation associated with OSA may play a
role in disrupted homeostasis commonly seen in
children with OSA.

Circadian Misalignment in Pediatric OSA
Advances in research on control of the circadian clock
have expanded our understanding of the impact of
circadian misalignment on human disease.105 Variations
of the endogenous circadian rhythm or misalignment
between the clock and environmental time cues
negatively affect the sleep-wake cycle and can lead to
cardiovascular disease.106,107 Humans have developed an
endogenous clock that follows the light-dark cycle.108

This system is hierarchically organized109,110 and is
composed of the central clock, located in the
hypothalamus,111 and peripheral clocks throughout the
body that contain autonomous oscillators.112-114 This
feedback loop comprises activators and repressors that
orchestrate transcription for thousands of genes in all
cells over the 24-h rhythm.109,115
[ 1 5 6 # 2 CHES T A UGU S T 2 0 1 9 ]



Virtually all cardiovascular and metabolic functions
have a daily rhythm that is regulated by clock genes.
Diurnal changes in BP and heart rate, cardiac
remodeling, and contractility follow a diurnal rhythm.116

Furthermore, glucose homeostasis is dependent on
alignment of the circadian rhythm of multiple
organs.117-119 Sleep fragmentation in adolescents with
sleep disorders led to clock gene dysregulation and
decreased glucose tolerance, showing the role of
circadian rhythm disturbances in carbohydrate
metabolic dysfunction.120 Cytokines that mediate
cardiovascular end-organ damage also follow a diurnal
rhythm.121-123 Given the number of cardiac, metabolic,
and immunologic functions that exhibit circadian
rhythmicity, it is possible that circadian misalignment is
closely affiliated with other mechanisms which are
associated with cardiovascular disease in children with
OSA.

Preclinical studies reported increased left ventricular
end-systolic and end-diastolic dimensions and reduced
cardiac contractility in circadian rhythm-disturbed
animals.124,125 In humans, the impact of circadian
misalignment on the cardiovascular system has been
largely investigated in adult shift workers.126 Sleep
restriction and circadian misalignment in adults are
associated with increased CRP levels and insulin
resistance,127 decreases in cortisol levels and changes in
proinflammatory and antiinflammatory cytokines,128

and increases in 24-h systolic and diastolic BPs.129 There
is limited evidence of circadian misalignment in adults
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and children with OSA. One study in adults showed that
OSA has a significant effect on peak serum melatonin
levels and that 3-month CPAP use restores the
physiologic rhythm of melatonin secretion.130 In a large
prospective study of > 13,000 adults, shortened sleep
duration and OSA were independently associated with
major coronary events.131 Interestingly, OSA had an
additive effect to short sleep and shift work hours on the
risk of cardiovascular disease.

Evidence regarding the risks of circadian misalignment
that accompany OSA has been identified from the
change in the diurnal rhythm of mediators of
inflammation and immunity. It has been suggested that
phases of rest vs activity influence the balance between
proinflammatory and antiinflammatory mediators.132

The active phase favors an antiinflammatory state,
whereas rest favors a proinflammatory state. Although
there are no data from adult OSA populations regarding
changes in the diurnal rhythm of inflammatory
mediators, a preliminary study in children showed
changes in cytokine rhythmicity because of OSA.74 In
healthy control subjects, tumor necrosis factor a, IL-6,
and IL-8 levels were higher in the evening (Fig 2).
However, children 6 to 13 years old with OSA exhibited
higher levels in the morning. This reversal of diurnal
rhythmicity occurred in addition to overall higher
cytokine levels in children with OSA compared with
control subjects. Although these data are derived from
one single cross-sectional study, the results may suggest
that the loss of a normal diurnal rhythm of
ild
SA
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lthy participants and children with mild vs severe OSA; data are reported
ars were recruited to the study. All participants underwent overnight
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inflammation in OSA could be a mechanism of
sustained inflammatory response throughout a 24-h
period.

The effects of OSA on the circadian rhythm of hormone
levels could be associated with pathophysiologic
consequences seen with untreated disease. Nocturnal
awakenings seen in OSA lead to alterations in the
hypothalamic-pituitary-adrenal axis and increased
pulsatile cortisol release.133 As the major product of the
hypothalamic-pituitary-adrenal axis, cortisol plays a
significant role in metabolic and BP regulation.134

Although previous large-scale studies have not identified
a difference in cortisol levels in patients with OSA,
demonstration of changes in rhythmicity would require
careful and repeatedly timed measurements.135 Recent
research in mice has shown that flattening of daily
glucocorticoid oscillations (as seen in chronic conditions
that alter glucocorticoid secretion) results in increases in
fat mass and weight gain.136 It is possible that changes in
hormone rhythmicity in the presence of OSA could be
linked to weight gain.
Future Directions
As the prevalence of OSA increases in the pediatric
population, the long-term socioeconomic impact and
burden for patients, families, and the medical
community will only worsen. Much research is now
focused on identification of the novel mechanistic
pathways that lead to pathophysiologic progression of
untreated disease. For example, evaluation of microRNA
profiles and transcriptome profiling in patients with
OSA have uncovered potential target genes for future
medical intervention.137-141 Identification of other
upstream pathways, such as those that regulate the
circadian clock, may lead to the development of new
diagnostic techniques and medical therapies.142
Conclusions
Published literature supports the hypothesis that
children with OSA have cardiovascular and
inflammatory processes such as those associated with
cardiovascular disease in adults. Further research is
needed to determine the causal relationship between
OSA and the presence of cardiovascular risk factors as
well as the reversibility of these processes with adequate
treatment. Furthermore, there is a gap in knowledge
pertaining to factors that determine whether these
processes that begin during childhood translate into
cardiovascular diseases during adulthood.
410 Contemporary Reviews in Sleep Medicine
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