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Abstract

Background: Rare variants in PLCG2 (p.P522R), ABI3 (p.S209F), and TREM2 (p.R47H, 

p.R62H) have been associated with late onset Alzheimer’s disease (LOAD) risk in Caucasians. 

After the initial report, several studies have found positive results in cohorts of different ethnic 

background and with different phenotype.

Objective: In this study, we aim to evaluate the association of rare coding variants in PLCG2, 

ABI3, and TREM2 with LOAD risk and their effect at different time points of the disease.

Methods: We used a European American cohort to assess the association of the variants prior 

onset (using CSF Aβ42, tau, and pTau levels, and amyloid imaging as endophenotypes) and after 

onset (measured as rate of memory decline).

Results: We confirm the association with LOAD risk of TREM2 p.R47H, p.R62H and ABI3 
p.S209F variants, and the protective effect of PLCG2 p.P522R. In addition, ABI3 and TREM2 
gene-sets showed significant association with LOAD risk. TREM2 p.R47H and PLCG2 p.P522R 

variants were also statistically associated with increase of amyloid imaging and AD progression, 

respectively. We did not observe any association of ABI3 p.S209F with any of the other AD 

endophenotypes.
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Conclusion: The results of this study highlight the importance of including biomarkers and 

alternative phenotypes to better understand the role of novel candidate genes with the disease.

Keywords

ABI3; endophenotypes; late onset Alzheimer’s disease; PLCG2; progression; TREM2

INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly and there is 

not a known effective method to treat or prevent it. About 95% of all AD cases are 

considered sporadic, of which approximately 90% have a late-onset (LOAD) of the disease 

[1]. People affected with AD start presenting symptoms at the age of 65–70, 15 to 20 years 

after the etiology of this disease starts [2]. Apolipoprotein E (APOE) ε4 allele was the first 

locus discovered to be significantly associated with LOAD risk [3, 4]. Up until today, 

genome-wide association studies (GWAs) have identified 29 independent risk loci for AD, 

most of them tagged by common variants (minor allele frequency (MAF) >5%) with very 

small risk effects [4–9]. Only ~31% of the heritability of this trait can be explained by the 

known common variants identified by GWAs [10]. Thus, this high missing heritability is 

currently being searched within rare variants that have moderate to high effect on disease 

risk [10–13]. Back in 2013, rare variants in TREM2 (p.R47H, p.R62H among others) were 

associated with LOAD [14, 15] not only in European Americans but also in African 

Americans [16]. Recently, Sims et al. reported the genome-wide association with LOAD of 

four rare coding variants: two risk variants in TREM2 (p.R62H, OR = 1.67; p.R47H, OR = 

2.46), a protective variant in PLCG2 (p.P522R, OR = 0.68), and a risk variant in ABI3 
(p.S209F, OR = 1.43) [17].

Recent studies have replicated the association of those variants in different ethnicities. 

Dalmasso et al. reported the significant association with AD of TREM2 p.R47H (p = 0.02, 

OR = 2.29) and PLCG2 p.P522R (p = 0.05, OR = 0.60) in 905 Argentinian individuals with 

European ancestry [18]. Similarly, Lancaster et al. reported the association of TREM2 
p.R62H, PLCG2 p.P522R, and ABI3 p.S209F with increased AD risk in early life of 766 

young healthy European Americans [19]. Their results suggest that the association of 

TREM2 p.R62H variant and PLCG2 p.P522R variant with volumetric reductions in basal 

ganglia may be linked with LOAD susceptibility [19]. PLCG2 p.P522R variant has also 

been associated with reduced AD risk and increased likelihood to reach the age of 90 years 

[20]. Other groups have replicated the association with AD of p.R47H and p.P522R variants 

in an Argentinian cohort [18], and p.P522R and p.S209F variants in African American 

subjects [16, 21]. Due to the heterogeneity of populations, replication of GWAs findings in 

independent cohorts with the same ancestry as the original finding is necessary to provide 

evidence for the impact that novel genetic components have in the same population for a 

complex trait like AD.

AD-endophenotypes can help to provide a biological interpretation of the genes identified in 

genetic studies. Levels of tau, phosphorylated tau (pTau), and amyloid-β42 (Aβ42) 

biomarkers in cerebrospinal fluid (CSF) change before clinical symptoms of AD can be 
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observed [2]. CSF Aβ42 and higher CSF tau and pTau, decrease with progression of the 

disease whereas CSF levels of tau and pTau, are associated with AD status. Amyloid 

imaging allows the measurement of in vivo Aβ42 deposition in the brain, is one of the most 

reliable current biomarkers for AD at this moment, and increases as the disease progresses 

[22, 23]. Both measures complement each other and can be used as intermediate phenotypes 

that can link genetic variation caused by these variants, to disease-predisposing factors [2, 

24, 25]. Finally, rate of dementia progression over time provides longitudinal data also 

useful to complete the understanding of the association of a genotype with AD [8].

Our study aims to replicate, in an independent European American cohort, the association 

with AD of the TREM2 variants (p.R62H, p.R47H [14, 15]) as well as the two novel genes/

variants reported by Sims et al. (PLCG2 p.P522R and ABI3 p.S209F). In addition, here we 

aim to expand the knowledge on the effects these variants have on AD prior and after 

diagnosis. We study the effects of the variants on endophenotypes measurable prior to 

disease (amyloid imaging and CSF levels of tau, pTau, and Aβ42 [2]) and rate memory 

decline after disease onset.

MATERIALS AND METHODS

Ethics statement

The Institutional Review Boards of all participating institutions approved the study and 

research was carried out in accordance with the approved protocols. Written informed 

consent was obtained from participants or their family members. The IRB approval number 

for this study is 201104178.

Cohorts descriptions

For this study, we aimed to generate a large dataset of European American unrelated 

individuals combining data from the Knight-Alzheimer’s Disease Research Center (Knight 

ADRC) [26], the National Institute on Aging Genetics Initiative for Late-Onset Alzheimer’s 

Disease (NIA-LOAD) [27], and the Alzheimer Disease Sequencing Project (ADSP - 

pht003392.v7.p4) (Table 1). A description of the Knight-ADRC and the NIA-LOAD 

datasets has been previously reported [26, 27]. The ADSP data is available to qualified 

researchers through the database of Genotypes and Phenotypes (https://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/dataset.cgi?

studyid=phs000572.v8.p4&pht=3392).

We used GWAs and whole exome sequencing (WES) data from the previous studies as well 

as CSF (Aβ42, tau, and pTau), amyloid imaging and AD progression data, to perform the 

analyses in this study (Supplementary Table 1). Neuropathology autopsy information and 

clinical diagnosis using Clinical Dementia Rating (CDR) [28] were used to define the 

phenotype status of the subjects included in our analyses. People with dementia caused by 

neurological diseases other than AD or younger than 65 years old were not included in the 

analyses.
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Genetic data

The generation and quality control (QC) of the GWAs and WES data was performed as 

previously described [29, 30]. Principal Component Analysis (PCA) was performed using 

HapMap reference panel to select European ancestry subjects. We used Identity-by-

Descendent (IBD) estimations to identify and remove duplicated samples across cohorts and 

to evaluate relatedness. Unrelated samples (Pihat <0.2) and one sample from every pair of 

related individuals were included in the analyses, prioritizing the selection of older controls 

and younger cases. From the NIA-LOAD dataset there was GWAs and WES data available 

for 928 and 279 unrelated European American samples, respectively. From the Knight-

ADRC dataset, there was GWAs and WES data available for 1,218 and 416 unrelated 

European American samples, respectively. We also included 9,621 unrelated European 

American samples with WES data from the ADSP study (Supplementary Table 1). There 

were 90 overlapping samples between the NIA-LOAD and the ADSP dataset; we examined 

each pair and kept the sample with better genotyping rate. Our final dataset included 7,000 

cases (5,791 with WES data and 1,209 with GWAs data) and 5,462 controls (4,525 with 

WES data and 937 with GWAs data; Supplementary Table 1).

We restricted our analyses to all variants with a 98% genotyping rate, in either the GWAs or 

WES datasets, for the TREM2 (chr.6 : 41,126,244–41,130, 924), PLCG2 (chr.16 : 

81,772,702–81,991,899), and ABI3 (chr.17 : 47,287,589–47300587) genes (chromosomic 

ranges refer to the GRCh37 reference genome). The genotyping rate for the previously 

reported variants (TREM2 p.R47H and p.R62H, PLCG2 p.P522R and ABI3 p.S209F) 

within the GWAs dataset was higher than 98%. In the WES dataset TREM2 and PLCG2 
variants had a genotyping rate higher than 99% but ABI3 p.S209F had a 96% genotyping 

rate, so we had to force its incorporation in the dataset (Supplementary Table 2).

Statistical analyses

AD risk analyses: Single variant—Single variant analysis was conducted to test the 

association of PLCG2 p.P522R, ABI3 p.S209F, and TREM2 p.R62H and p.R47H with AD 

risk. Genotypic information for these variants was obtained by combining all GWAs and 

WES data [30] from the previously mentioned projects. The final analysis was done with 

12,462 subjects from the ADSP, Knight ADRC, and NIA-LOAD cohorts (Supplementary 

Table 1). Given the high and similar genotyping rate in both datasets, we decided to run joint 

analysis for TREM2 and PLCG2 variants using the logistic regression model from 

PLINKv1.9 [23] and correcting by the two first principal components (PCs) and sex. The 

analysis for ABI3 variant also included whether the sample came from the GWAs or the 

WES data as covariate given the different genotyping rate for variants within this gene 

(Supplementary Table 2). Given that there is certain sample overlap between Sims et al. [17] 

and the cohorts used in this analysis, we also performed the single variant analysis 

association after removing the overlapping samples. Bonferroni correction was applied.

Cerebrospinal fluid—CSF levels of tau, pTau, and Aβ42 were measured for individuals in 

the Knight-ADRC cohort. CSF Aβ42 thresholds have been previously determined only for 

this cohort. Individuals with CSF Aβ42 values ≥500 pg/mL were excluded as individuals 

below these thresholds have been shown to have fibrillary Aβ42 deposits in brain [31, 32] 
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whereas those with higher levels are more likely to not have AD. CSF data normalization 

was done as previously described [24, 33].

We used the linear regression model in PLINKv1.9 [23] to assess the association of the 

SNPs of interest with the following AD endophenotypes, employed as the dependent 

variable assuming an additive model: CSF levels of tau (N = 559), pTau (N = 553), and Aβ42 

(N = 558) (Table 1). The two first PCs, sex and age at CSF collection were used as 

covariates for these analyses. Bonferroni correction was applied.

Imaging

Molecular imaging with positron emission tomography (PET) was used to detect Aβ42 

deposition during life. Detailed methods are described in previous reports for Knight-ADRC 

[34]. The analysis of these data was done using only one value of Aβ42 scan for each 

individual, thus we only used the baseline visit for the analysis of individuals with more than 

one Aβ42 scan. After this selection, we included a total of 420 individuals in this analysis 

(Table 1) that was performed using the linear regression model in PLINKv1.9 [23] and 

corrected by the two first PCs and sex. Bonferroni correction was applied.

Memory decline

Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) was used to determine rate of 

memory decline; CDR-SB is a sum of the scores from six tests (boxes) that measure 

different AD dementia symptoms to provide a score in staging dementia severity from 0 

(cognitively normal) to 18 (the most severe dementia). We included only samples with three 

or more clinical assessments and 1.5 years of follow-up and we removed samples with a 

constant 0 or 18 value of CDR-SB over time [8]. Finally, 446 samples from Knight-ADRC 

were included in this analysis (Table 1). The association of the SNPs of interest with AD 

progression was tested by longitudinal regression using the nlme package in R [35]. Change 

of CDR-SB was set as the independent variable with the following covariates:

CDR Sum of Boxes = SNP ∗ time interval

+ CDR baseline ∗ time interval

+ SNP + time interval

+ CDR baseline

+ Sex + Age baseline

+ Education + PC1 + PC2

Gene based

We performed gene-based analysis for the following AD phenotypes: AD risk, CSF Aβ42, 

CSF tau, CSF pTau, and amyloid imaging.

For the AD risk phenotype, we restricted our gene-based analysis to those samples with 

WES data (10,316 individuals from Knight-ADRC, NIA-LOAD, and ADSP). We used 

SnpEff [36] to predict the functional consequence of the observed polymorphisms in 

TREM2, ABI3, and PLCG2 and we restricted our analysis to predicted nonsynonymous, 
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missense and loss-of-function (LOF) variants [37] with MAF<0.01 and we kept for analysis 

those variants with a genotyping rate over 90% across both datasets. The final dataset 

included 211 nonsynonymous variants, 39 variants in TREM2, 136 in PLCG2, and 36 in 

ABI3 (Supplementary Table 3). We performed the gene-based analysis at three levels; one 

that included all non-synonymous variants, one that included all non-synonymous variants 

minus the top leading variant, and one in which only common variants across all cohorts 

were included. We also performed the gene-based analysis stratified per each one of the 

major cohorts to highlight the contribution of each one of these cohorts to the final value 

reported (Supplementary Table 4).

For the AD endophenotypes (CSF Aβ42, tau, pTau, and amyloid imaging), we used the 

variants from the previous subset of rare non-synonymous variants that were present in the 

GWAs and WES samples that had data for these endophenotypes. That included three 

variants for TREM2, five variants for PLCG2 and one variant for ABI3.

To perform gene-based analysis, we used the SKAT-O algorithm in the R-package Sequence 

Kernel Association Test (SKAT) which combines collapsing and variance component tests 

into one Statistical method [38]. We used the SKAT null model and adjust the analysis for 

the two first PCs and sex (for the AD Risk analysis) and we also corrected for age at what 

the CSF sample, or the PET Imaging was taken (for the endophenotype analysis). 

Bonferroni correction was applied.

RESULTS

We performed single variant analysis to assess the association with AD risk of the four 

variants of interest (PLCG2 p.P522R, ABI3 p.S209F, and TREM2 p.R62H and p.R47H) 

followed by a gene-based analysis to test the burden of rare non-synonymous variants in 

each gene. In addition, we conducted AD progression and quantitative trait analyses to 

evaluate the association of the variants with other characteristics of the disease. 

Demographic summary statistics for the samples included in each analysis and the datasets 

used for each analysis are shown in Table 1.

After merging GWAs and WES data from NIA-LOAD, Knight ADRC, and ADSP, 

genotyping data for 12,372 individuals for the variants of interest passed QC. We confirmed 

the previously reported associations and in the same direction for all the SNPs of interest 

[14, 15, 17]; both variants in TREM2 (p.R62H, p = 1.73 × 10−03, OR = 1.49; p.R47H, p = 

2.09 × 10−11, OR = 4.38) and the variant in ABI3 (p.S209F, p = 1.03 × 10−03, OR = 1.59) 

were associated with increased AD risk, while the variant in PLCG2 (p.P522R, p = 2.16 × 

10−03, OR=0.63) confirmed its protective effect in our cohort (Table 2). In order to evaluate 

whether the Knight-ADRC and NIA-LOAD datasets from WASHU are contributing to the 

already reported effect for these variants by the ADSP consortia [41], we performed the 

previous analysis stratified by major cohort (Supplementary Tables 4–6).

Some of the samples in this study were also included in the analysis performed by Sims et 

al. [17]. After excluding overlapping samples (final sample size = 5,972), TREM2 (p.R47H) 
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and PLCG2 (p.P522R) remained nominally significant with similar OR to the analysis 

including all samples (Supplementary Table 7).

For the gene-based analysis, only rare nonsynonymous variants were included. 39 variants in 

TREM2 (including p.R62H and p.R47H), 36 variants in ABI3 (including p.S209F), and 136 

variants in PLCG2 (including p.P522R) across 10,316 individuals from Knight-ADRC, 

NIA-LOAD, and ADSP cohorts went into analysis (Supplementary Table 3). We found a 

significant association with AD risk for TREM2 (p = 9.37 × 10−14) and ABI3 (p = 0.001). 

TREM2 remained significant (p = 1.75 × 10−03) after removing p.R47H and p.R62H from 

analysis. We even still observed a nominal association in the TREM2 gene-based analyses 

event after the p.R47H, p.R62H, p.D87N, and p.H157T were removed (Supplementary Table 

8), indicating that additional variants in TREM2 contribute to AD risk. ABI3 and PLCG2 
were not significant after removing the p.S209F and the p.P522R variant respectively. The 

overall gene direction for ABI3 (OR = 1.21) followed that of the key variants, even when 

these were removed from the analysis (Table 3), suggesting that additional risk variants in 

these genes confer risk for AD. Finally, since some variants were private for each of the 

cohorts included, we performed a gene-based analysis considering only the common variants 

across datasets, to confirm whether the association was driven by any particular cohort. All 

three genes resulted significant when all cohorts were analyzed together (Table 3); a closer 

analysis revealed that significance for TREM2 was driven by the ADSP and Knight-ADRC 

cohorts, PLCG2 was significant for the NIA-LOAD cohort, and ABI3 was significant for the 

ADSP cohort.

After confirming that our study has power to identify significant association with AD risk, 

we analyzed if any of the variants and genes were associated with other AD-related 

phenotypes. TREM2 p.R47H showed a trend toward association with CSF levels of Aβ42 (p 
= 0.041, β = −0.68) and a significant association (after Bonferroni correction) for amyloid 

imaging (p = 0.008; Table 4). TREM2 was also associated at gene-level with the levels of 

amyloid imaging (p = 0.012, Supplementary Table 9). No significant association with this 

phenotype was observed for PLCG2 p.P522R, TREM2 p.R62H, and ABI3 p.S209F. None of 

the variants analyzed showed significant association with CSF levels of tau and pTau (Table 

4). The PLCG2 p.P522R variant showed a trend towards association with change in CDR-

SB (p = 0.028) equivalent to a slower progression of AD dementia (Table 5). TREM2 
p.R62H, pR27H and ABI3 p.S209F variants were not significant in this analysis.

DISCUSSION

GWAs have been instrumental in the field of AD to identify novel loci associated with the 

disease. However, the functional genetic variants are mainly unknown as so is their real 

effect on the pathology of the disease.

In this study, we analyzed the association of TREM2 p.R62H, TREM2 p.R47H, PLCG2 
p.P522R, and ABI3 p.S209F variants previously associated with AD using GWAs and WES 

data of 12,462 individuals. Using single variant analysis, we confirmed the association with 

LOAD status and the direction of effect previously reported for the four variants of interest 

(Table 2). Additionally, we observed that other nonsynonymous rare variants in TREM2 
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contribute to AD risk (gene-based after removing p.R62H and p.R47H variants, p = 1.75 × 
10–03), reinforcing the important role of rare variants in TREM2 towards LOAD 

susceptibility [16, 40]. Particularly, we observe that variant p.D87N (6 : 41129133:C:T, 

rs142232675) is nominally significantly associated with AD risk (Supplementary Table 4). 

Even though this variant has been found in AD cases before [14, 41], this is the first study in 

which a significant association with AD risk is found even in the Sims et al. study [17]. The 

TREM2 variant p.H157Y (6 : 41127543:G:A, rs2234255) also showed a trend to association 

with AD risk (Supplementary Table 4) in our study. This variant has been previously 

reported to be significantly associated with AD in the ADSP cohort [41], in a Chinese cohort 

and in a meta-analysis of Caucasian, Japanese, and African American cohorts [42].

TREM2 p.R47H has been associated with AD risk in multiple studies [14, 16, 18, 43–52]. 

This variant increases risk for AD almost three-fold and is the greatest genetic risk factor 

identified for AD after the APOE ε4 allele [14, 15, 53]. TREM2 p.R47H has been 

previously associated with increasing levels of tau and pTau in CSF, without affecting Aβ42 

[43, 49]. In this cohort the TREM2 p.R47H showed the same direction of association but not 

significant in our quantitative trait analysis for tau and pTau; however, we observe a 

significant association with decreasing levels of Aβ42 in CSF (p = 0.041, β = −0.68). In 

addition, we observe a significant association for p.R47H with increased amyloid imaging (p 
= 0.008, β = 0.07). This is the first time, to our knowledge, that TREM2 is associated with 

AD risk, Aβ42 levels in CSF and amyloid imaging at the same time using the same cohort. 

TREM2 p.R62H variant has been previously associated with a faster AD progression (p = 

0.027, β = 0.31) in 1,499 samples from ADNI and Knight-ADRC datasets [8], but it does 

not show association with progression in our 446 samples from Knight-ADRC, probably due 

to the smaller size of our cohort.

In this study we replicate the association of PLCG2 p.P522R with AD risk after removing 

the overlapping samples with Sims et al., which support the role of this variant and gene in 

AD and reinforces the importance of investigating the role of this variant in AD. In addition, 

we also observed that this variant has a “protective” effect on memory decline (p = 0.028, β 
= −1.25) which relates to previous observations that this variant is enriched in a healthy 

centenarians cohort [20]. PLCG2 p.P522R has been seen to modify the generation of the 

PLCγ2 enzyme36,3 [20, 54], opening the venues for novel pharmacological targets that may 

attenuate the progression of this disease.

This study faces some limitations. 48% of the samples used in this study for the AD risk 

analysis have been previously published (e.g., Sims et al. [17] and Kunkle et al. [7]). 

However, the main goal of this study is not to replicate the association of those rare variants 

with AD but to determine if those variants also influence other AD phenotypes such as CSF 

and imaging biomarkers. Another limitation is that we only have WES data for half of the 

samples with endophenotype information available at the Knight-ADRC. WES data is being 

generated for the entire Knight-ADRC cohort; hence, future studies should be able to better 

evaluate the role of rare variants on AD endophenotypes.

In conclusion, we confirmed the association of TREM2 p.R47H, not only with AD risk but 

also with amyloid imaging. Also, other rare variants in this gene participate in disease 
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pathology which deserves further examination. Finally, we confirm the protective effect of 

PLCG2 p.P522R variant, which could exert its role by slowing the rate of memory decline.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 3

Gene based analysis for TREM2, PLCG2, and ABI3 including rare (MAF < 1%) nonsynonymous variants, 

using 10,316 individuals with WES data from ADSP, Knight-ADRC, and NIA-LOAD cohorts

Locus OR 95% CI P N

TREM2 1.99 1.52, 2.62 9.37 × 10−14 39

TREM2* 1.89 1.12, 3.20 2.59 × 10−05 38

TREM2** 1.69 1.50, 2.05 3.91 × 10−12 3

PLCG2 0.91 0.73, 1.12 0.064 136

PLCG2* 1.00 0.79, 1.28 0.683 135

PLCG2** 0.51 0.41,0.54 0.049 6

ABI3 1.44 1.07, 1.95 6.64 × 10−4 36

ABI3* 1.21 0.76, 1.90 0.127 35

ABI3** 2.49 2.07, 3.21 5.02 × 10−5 2

OR, odds ratio; CI, confidence interval; p, p-value; N, number of variants included.

*
gene-based analyses using the same variants but excluding variants of interest.

**
gene-based analyses using only the common variants across all cohorts Significant p-values after Bonferroni correction in bold.
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