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Abstract

Multiple sclerosis (MS) is a neuroinflammatory disorder characterized by autoimmune-mediated 

inflammatory lesions in CNS leading to myelin damage and axonal loss. MS is a heterogenous 

disease with variable and unpredictable disease course. Due to its complex nature, MS is difficult 

to diagnose and responses to specific treatments may vary between individuals. Therefore, there is 

an indisputable need for biomarkers for early diagnosis, prediction of disease exacerbations, 

monitoring the progression of disease and for measuring responses to therapy. Genomic and 

proteomic studies have sought to understand the molecular basis of MS and find biomarker 

candidates. Advances in next-generation sequencing and mass-spectrometry techniques have 

yielded an unprecedented amount of genomic and proteomic data; yet, translation of the results 

into the clinic has been underwhelming. This has prompted the development of novel data science 

techniques for these large datasets to identify biologically relevant relationships and ultimately 

point towards useful biomarkers. Herein we discuss optimization of omics study designs, advances 

in the generation of omics data, and systems biology approaches aimed at improving biomarker 

discovery and translation to the clinic for MS.
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1. Introduction

Multiple sclerosis (MS) is an autoimmune neuroinflammatory disorder that affects nearly 

one million Americans and 2.5 million individuals worldwide [1, 2]. MS is characterized by 

the occurrence of histopathological lesions in the central nervous system (CNS) detected by 
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MRI [3]. Histopathologically, these lesions are composed of inflammatory cells, including 

infiltrating myelin reactive T cells, B cells/plasma cells, macrophages, and dendritic cells 

(DC) that release inflammatory cytokines, chemokines and antibodies [4]. Accordingly, 

there is a consensus in the field that MS is driven primarily by T cells with important 

contributions of B cells and innate immune cells [5, 6]. Furthermore, CNS resident cells, 

including astrocytes and microglia also contribute to disease pathology by sustaining a 

proinflammatory milieu. The focal areas of inflammation in the CNS cause myelin 

degradation and axonal loss that manifests itself clinically in individuals by an array of 

symptoms, including numbness, fatigue, visual and emotional disturbance, and paralysis [7].

While MS etiology is still not resolved, several genetic and environmental factors are known 

to influence susceptibility. Over 200 genes have been associated with MS susceptibility, the 

most strongly implicated being HLA types with HLA-DR2 (DRB1*15:01) showing the 

strongest correlation with occurrence of disease [8, 9]. Environmental factors such as 

geographic location (i.e. distance from the equator), smoking, salt intake, and infections 

have also been linked to MS incidence, which implies that the disease risk of an individual is 

most likely the result of several genetic risk factors and environmental influences [10, 11].

MS is a heterogenous clinical condition whose diagnosis is broadly classified into three 

types based on disease presentation: relapsing remitting MS (RRMS), primary progressive 

MS (PPMS) and secondary progressive MS (SPMS) [12]. The diagnosis of MS typically 

begins with an initial finding of clinically isolated syndrome (CIS) or radiologically isolated 

syndrome (RIS), and definitive diagnosis of MS requires evidence of dissemination of 

lesions in the CNS in space and time as well as exclusion of other potential disorders [13]. 

The foremost guideline for diagnosis, the McDonald criteria, has undergone several 

revisions [14–16]. These iterations reflect the challenge of diagnosing MS without a 

definitive laboratory test. Once the diagnosis of MS is established, the task of monitoring the 

disease is equally extensive and includes MRI and disability measures such as the Expanded 

Disability Status Scale (EDSS) [17–19]. However, MRI and clinical measures of disease 

state and progression are limited in terms of defining the underlying pathology nor are they 

predictive for recurrence or progression. Therefore, disease prognosis is currently limited by 

a lack of definitive molecular biomarkers to monitor disease activity and progression.

Disease-modifying therapies for MS have been effective in managing acute exacerbations 

and slowing the progression of the disease [20]. Unfortunately, responses to treatments are 

variable between patients and there are few biomarkers to measure the efficacy of 

therapeutics in individuals [21]. Importantly, while disease-modifying therapies may slow 

progression of RRMS to SPMS, there are currently no therapies that can completely prevent 

it, which is also hampered by a lack of understanding of the mechanisms that drive 

progressive disease and a lack of biomarkers to monitor progression [22, 23]. Furthermore, 

MS lacks definitive markers to measure drug responses precisely and quickly in patients.

Taken together, there is an urgent need to develop biomarkers for MS at key stages in the 

disease process: MS diagnosis, prediction of relapses in RRMS, predicting the progression 

of RRMS to SPMS, monitoring the progression of PPMS and SPMS as well as for 

measuring drug efficacy. We posit that the large genomic and proteomic data sets generated 
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in the search of trying to better understand the pathogenesis of MS provide an invaluable 

resource that can be explored for the discovery of novel biomarkers. However, as of now, the 

potential of these large datasets to yield novel biomarkers for diagnosis or prognosis of MS 

has yet to be fully realized in clinical practice.

The biomarker pipeline entails an initial discovery phase consisting of large omics studies 

that can be mined for promising candidate molecules that are then selected for preclinical 

validation, and ultimately for clinical validation and assay development [24–26]. Major 

bottlenecks in this process are present at each stage, beginning during preclinical validation. 

Along this line, there is less market incentive for the development of commercial biomarkers 

than there is for drug development which necessitates streamlined and efficient methods of 

biomarker discovery and commercialization [27]. Nonetheless, identifying surrogate 

endpoint biomarkers for drug efficacy may allow to significantly shorten the time and money 

spent on clinical trials and thus allow faster transition to drug production [27].

Herein, we will discuss different approaches and pipelines for generation and analysis of 

large omics data sets to assist with biomarker discovery and with translating these markers 

to the clinic, as summarized in Figure 1. We posit that improved discovery and subsequent 

analysis methods using modern data science tools as well as animal models can facilitate 

overcoming these bottlenecks and help deliver more robust biomarker candidates for clinical 

validation.

2. Biological samples for candidate biomarker discovery

2.1. Post-mortem tissue

Investigations of MS genomes and proteomes for the purpose of biomarker discovery have 

varied widely in use of source materials, such as MS patient post-mortem tissues, 

cerebrospinal fluid (CSF), patient serum, and tissue samples generated in mouse models 

such as EAE [28, 29]. Several studies have utilized MS post-mortem tissue to investigate the 

genome and proteome of lesions, identifying molecular signatures of lesions and pointing to 

potential therapeutic targets [30–32]. Though CNS tissue sampling is generally not feasible 

in MS patients, discovery using CNS-derived or associated materials (e.g. CSF) can offer 

important insights into disease mechanisms as pathogenesis occurs in the CNS and thus may 

eventually lead to biomarkers detectable in the blood by virtue of the increased permeability 

of the blood-brain barrier (BBB) in MS [33, 34]. Utilizing approaches such imaging mass 

spectrometry of CNS tissue may permit brain regional discrimination of proteins [35]. 

Similarly, slide sequencing allows for high resolution spatial RNA-Sequencing (RNA-Seq) 

of brain regions and may be useful for investigation of CNS regional transcriptional changes, 

though this has yet to be realized in MS biomarker research [32].

2.2. Cerebrospinal fluid

Many biomarker discovery studies have focused on CSF because it is a direct reflection of 

the disease processes in the CNS [36]. The most prominent MS molecular biomarker 

historically is the presence of oligoclonal bands (OCB) in the CSF as seen by isoelectric 

focusing [37, 38]. OCB consist of immunoglobulins, predominantly IgG secreted by plasma 
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cells in the CNS, and their presence is indicative of CNS inflammation and is predictive of 

conversion of CIS to MS [39–41]. One of the recent and clinically more advanced potential 

MS biomarkers, neurofilament light (NfL), a marker of neuronal damage and disease 

activity, is also detected in the CSF [42]. In addition, genomic studies of the CSF have 

sequenced the B cell receptor (BCR) and T cell receptor (TCR) repertoires in the CSF of MS 

patients [43, 44]. Although the CSF has proven to be a prolific source for biomarker 

discovery, CSF sampling is invasive and for clinical purposes other body fluids are 

preferable.

2.3. Blood

Blood is a reflection of all tissues and cell types and it is an ideal source for routine 

monitoring of biomarkers in patients because obtaining it is minimally invasive [45]. Blood 

consists of a cellular component, such as leukocytes and red blood cells, and the liquid 

plasma component comprised of proteins, salts, lipids, amino acids, vitamins and 

carbohydrates [46]. Blood from patients is readily accessible and several research groups 

have searched for biomarkers and disease protein fingerprints in the serum [47, 48]. The 

BBB is more permeable in MS patients than healthy controls and its permeability correlates 

with relapses [34]. Leakage proteins from the CNS can be detected in the blood potentially 

because of altered glial-lymphatic clearance in MS patients [49, 50]. For instance, NfL can 

be detected in blood, and its blood levels correlate with CNS levels thus providing a more 

feasible alternative to obtaining CSF for sampling [51, 52].

Genomic studies in the blood have focused on whole blood profiling as well as profiling 

individual cells to identify differentially expressed transcripts in MS and unique T cell/B cell 

gene expression signatures in MS patients [53, 54]. Furthermore, single-cell RNA-Seq 

(scRNA-Seq) analysis of immune cells in blood and CSF of MS patients identified changes 

in gene signatures and pathways in T cells of MS patients [55]. Moreover, MS blood was 

reported to contain exosomes which originated in the CNS, in which their content correlates 

to disease activity [56]. The utility of these genes and pathways as biomarkers for disease 

will need further investigation, but nonetheless the blood might be a useful and important 

tissue to investigate genomic biomarkers.

The presence of highly abundant proteins (e.g. albumin, globulins, and apolipoprotein B) in 

the blood presents a challenge for mass spectrometry proteomic investigations. For example, 

albumin and immunoglobulins account for about 75% of the total protein mass, and together 

with about 20 additional proteins, accounts for approximately 99% of the total blood 

proteome. Thus, low-abundant proteins such as tissue-specific and leakage proteins 

correspond to only 1% of all blood proteins [57]. This phenomenon leads to what is termed 

as “masking” of lower abundance proteins in proteomic methods such as in LC-MS/MS. 

This challenge prompted the development of depletion methods to remove the top abundant 

proteins from blood; however, masking remains a difficult challenge even after utilizing 

depletion methods [58]. With advances in quantitation and separation techniques as well as 

higher sensitivity mass spectrometry, low abundance proteins can be detected without 

fractionation, but whether these technologies can yield clinically relevant disease-specific 

biomarkers has yet to be conclusively determined [59].
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2.4. Alternative body fluids

Though less frequently represented as source materials in the literature, urine, tears and 

saliva can be obtained with minimally invasive procedures and are relatively easy to store 

[28, 29, 60]. Oligoclonal bands are present in the tears of MS patients, indicative of cross 

talk between blood plasma, from which lacrimal glands produce tears, and the CNS [61, 62]. 

Vesicles in tears were shown to be derived from microglia and neurons as further evidence 

of the information exchange between the CNS and tears as well as pointing towards the 

potential use of tears in diagnostic tests [63]. Similarly, MBP-like molecules as identified by 

cross reactivity with MBP peptides are detectable in urine and correlate with increased CNS 

lesion load [64]. Proteomic profiling showed that the saliva proteome in MS patients is 

distinct from healthy controls [65]. The omics field has not prioritized discovery of these 

fluids as of yet, but they are a potential source for discovery and validation of biomarkers.

2.5. Considerations for the use of human samples in biomarker discovery

Beyond the selection of tissues for biomarker discovery, the patient populations from which 

patient samples are obtained for biomarker discovery is an area that requires careful 

consideration. The selection of patient samples for MS omic studies is often driven by 

availability, and standardization and comparison of samples within studies and between 

studies can be challenging. Many groups apply their own criteria and methods of inclusion/

exclusion of patient samples from studies, but they vary widely between studies and are less 

standardized for biomarker studies than for clinical trials [66]. One acceptable method 

employed is the use of longitudinal, prospective studies following patients over time, but 

they often are limited by high demand for precious patient samples, small sample size, short 

collection periods, high rate of drop outs and variability in therapies of the patients [67, 68]. 

Longitudinal studies of molecular MS biomarkers have generally been implemented with 

limited scope, such as monitoring specific markers such as NfL as opposed to periodic 

sampling for the generation of longitudinal omics data for biomarker discovery [69]. We 

advocate for more standardized sampling protocols and better study design in order to make 

discoveries reproducible and allow to tease out biologically relevant findings in these large 

datasets. These standards should take into consideration time since diagnosis as well as 

therapies applied, and patients should best be stratified by synchronizing starting or end 

points such as specific treatments.

Another consideration in study design concerns the demographics of the population used for 

sampling. The majority of MS studies are conducted in Caucasian populations, whereas MS 

can occur in ethnically diverse populations and there is evidence suggesting that within the 

preponderance of female diagnoses, Hispanic/Latino and African-American females are 

diagnosed with CIS and MS at higher rates than Caucasian females [70–72]. Here, genomic 

and transcriptomic analysis, and conceivably in combination with proteomic studies, may 

allow stratification of large and seemingly diverse data sets using key traits, such as HLA 

haplotypes, to provide novel insights.

In consideration of optimized subject selection for biomarker discovery, monitoring of first-

degree relatives for the purpose of MS onset biomarkers may hold significant potential. First 

degree relatives of MS patients have a 20–40 times greater risk of developing MS than the 
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background population [73, 74]. A longitudinal study has been undertaken to monitor the 

development of MS in first-degree relatives of patients with MS, with its initial finding two 

years into the study showing that first-degree relatives in this cohort exhibit a 30 times 

greater chance of developing MS [75]. Thus, genomic/proteomic analysis of materials 

derived from similarly designed and sufficiently powered studies could be very revealing in 

terms of potential biomarkers for disease onset.

2.6. Animal models

As an alternative to the use of the above-mentioned human tissues and fluids, several studies 

have used animal models, such as experimental autoimmune encephalomyelitis (EAE) in 

rodents [76–82]. The use of animal models allows for investigation of the CNS and other 

tissues during disease and circumvents the difficulties of obtaining human tissues. 

Furthermore, the use of animal models of MS can help discovery as well as verification of 

biomarker candidates by allowing investigation of the omics landscape in the CNS, 

confirming expression in the blood, and permitting correlation of the putative biomarkers 

with immune phenotype, disease pathology, and clinical signs in a controlled environment 

[82–84]. As to whether the EAE omics studies are a faithful reflection of processes in MS it 

is worth noting that most of the advancements in understanding the pathology of MS and 

development of therapeutics have resulted from animal models, and studies in EAE could 

therefore conceivably also yield data relevant to human disease [85]. In addition, the relative 

genetic homogeneity of syngeneic animal models and synchronicity of timed animal studies 

could potentially allow for the teasing out of relevant disease biomarkers that might not be 

seen in tissue samples garnered from genetically diverse and heterogenous human MS 

populations at highly variable disease states and time points.

It is a valid concern that studies in syngeneic mice may miss the mark in terms of the genetic 

diversity observed in humans. Thus, non-human primate (NHP) models of EAE may be 

informative under certain circumstances. Of note, the EAE model was initially characterized 

in NHPs and transitioned to studies primarily in rodents [85, 86]. Moreover, the 

phylogenetic similarity to humans is reflected in their similar immune responses and tissue 

pathology [87]. EAE has been documented in several NHPs and marmosets are of particular 

interest in research studies because of strong clinical and histopathological resemblance to 

MS [88, 89]. However, studies in NHPs are cost prohibitive, fall under extensive regulatory 

guidelines, and raise additional ethical concerns. Nevertheless, biomarker studies in NHPs 

may represent a valid approach under the appropriate circumstances.

Rodent models of EAE, for example using mice, have proven of enormous value for 

unraveling the pathophysiological mechanisms of neuroinflammatory disease. Nonetheless, 

rodent models could benefit from further optimization to more closely reflect the genetic 

diversity seen in humans and thus better translate to the human populations where MS 

occurs [90]. Outbred mouse strains are commercially available and there is evidence to 

suggest that studies using outbred strains of mice may correlate better to human disease as 

they are commonly used in pharmacological studies [90–92]. Alternatively, “humanized” 

mice expressing MS-associated molecules, such as the HLA-DR2 allele and human T cell 

receptors (TCRs) have been used to better approximate human MS in the mouse and they 
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also hold potential for use in biomarker studies [93–95]. Another way in which to align 

mouse studies more closely to human disease is to select EAE models that have clinical 

phenotypes that recapitulate MS phenotypes. SJL mice are commonly used in studies of 

RRMS and NOD mice have been used to study EAE progression [96–98]. Overall, there is 

still room in the field for biomarker studies using novel mouse models that better reflect 

certain key aspects of human MS, such as SPMS.

3. Genomic Approaches For Biomarker Discovery

For as long as tools for DNA analysis have existed, researchers have used them to investigate 

the role that genes play in health and human diseases. The identification of different HLA 

alleles in the 1960s using serological techniques such as microlymphocytotoxicity assays 

quickly ushered in the discovery that the development of MS is strongly correlated with 

certain HLA haplotypes [99, 100]. HLA alleles remain the most important risk factor for MS 

confirmed over the following decades by single nucleotide polymorphism (SNP) genome-

wide association studies (GWAS) using SNP microarrays and more recently with next-

generation sequencing (NGS) [8, 101]. GWAS has provided additional insights into 

susceptibility loci, disease pathogenesis, potential therapeutic targets and putative 

biomarkers [102, 103].

Genomics employs tools to gather genetic data and bioinformatics methodologies to 

interpret these frequently enormous data sets [104]. In MS, genomics has provided 

fundamental insights into disease susceptibility, immune and neurodegenerative mechanisms 

that drive the disease, therapeutic targets and potential biomarkers. These discoveries and 

their basis have been extensively reviewed elsewhere [29, 105–107]. Additionally, each 

methodology requires specific bioinformatic approaches and computation analysis pipelines 

to mitigate intrinsic technical and biological caveats, and these have been discussed in detail 

elsewhere (for both genomic and proteomic methods) [108–112]. Figure 2 outlines general 

pipelines in quantitative genomic and proteomic practices. More detailed pipelines for each 

genomic and proteomic techniques are available through web-based tolls including 

SequencEnG for genomic [113] and ProteoSuite for proteomic [114]. Table 1 summarizes 

the key genomic methods used for biomarker discovery and their relative advantages and 

caveats for biomarker discovery. Here, we will discuss recent advances in genomic methods 

and key genetics targets applicable to MS research and biomarker discovery.

3.1. Advanced genomic techniques and methodologies

Next generation sequencing encompasses high-throughput sequencing methods that deliver 

DNA and RNA sequences at the whole genome scale [115]. This is in contrast to the 

foundational sequencing methods, Maxam-Gilbert sequencing and the widely used Sanger 

dideoxy termination sequencing method that reads about 1000bp per experiment [104]. 

Sanger sequencing is the means by which the human genome was sequenced over the course 

of a decade and, at that time, at great expense [116]. Modern NGS platforms can sequence 

an entire human genome in less than a day and at a fraction of the cost [104]. Several NGS 

technologies are available such as sequencing by synthesis (Illumina), Ion semiconductor 

(Ion Torrent), single-nucleotide addition (pyrosequencing), and single-molecule real-time 
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sequencing (Pacific Biosciences) [117]. Each one of these platforms is tailored and more 

suitable for different applications with different types of analysis [118, 119]. Illumina 

platforms contribute to most of the NGS data worldwide due to greater availability of 

bioinformatics tools to analyze these data, base-call quality, high yield and low cost [120, 

121]. The use of NGS has not only confirmed HLA allele susceptibility previously 

determined by other technologies, but it has opened the opportunity for better understanding 

disease pathology and the discovery of biomarkers. Researchers who previously used Sanger 

sequencing to identify an antibody gene signature in B cells predictive of the development of 

MS were able to confirm the same signature using large-scale NGS pyrosequencing [44]. 

They confirmed the fidelity of NGS compared to Sanger and pointed towards a more 

clinically relevant testing technology. Researchers have also been able to use NGS to answer 

very specific questions, for instance, the identification of Vitamin D gene variants and 

changes in Vitamin D signaling pathway in MS patients [122].

The sensitivity of NGS also allows for the characterization of the genome on a single cell 

basis [123]. Single nucleus RNA-Seq (snRNA-Seq) of human post-mortem tissue identified 

differences in oligodendrocyte profiles in MS patients compared with healthy controls, with 

oligodendrocytes showing higher expression of myelin genes and oligodendrocyte 

transcription factor 1 (OLIG1), and snRNA-Seq of different locations of CNS lesions of MS 

patients revealing lineage-specific signatures of stressed oligodendrocytes, reactive 

astrocytes and activated microglia associated with region-specific changes [124, 125]. 

Single-cell RNA-Seq (scRNA-Seq) of leukocytes in the CNS and blood of MS patients 

revealed increased transcriptional diversity of leukocytes and increased cell diversity in the 

CNS [55]. Taken together, these works highlight the potential of different NGS platforms to 

reveal sensitive and disease-related tissue specific changes in MS to uncover novel disease 

processes, and the data sets generated may aid in MS biomarker discovery.

3.2. Investigations of disease etiology and susceptibility

The association between HLA haplotypes and MS has been described in the 1970s using 

serological methods [99, 126]. Single nucleotide polymorphism (SNP) genotyping 

corroborated these and other studies showing that certain HLA haplotypes associate with 

MS, with HLA-DR2 (DRB1*1501) being most strongly correlated with disease incidence 

[8, 127, 128]. HLAs were the only known genetic determinants of MS until GWAS studies 

using data from SNP arrays identified over 200 additional genetic risk loci, including 

polymorphisms in immune-related genes such as CXCR5, TNFRSF1A, IL2RA and IL7RA 
[102, 129]. However, the full spectrum of gene variation cannot be discovered using only 

DNA arrays and advances in NGS techniques have the potential to reveal the entire spectrum 

of sequence variations between MS and healthy patients as well as between different MS 

disease states [130]. Compared with serological haplotyping, NGS has allowed for high-

resolution genotyping of HLA alleles associated with MS and enabled the comparison of 

both coding and non-coding regions of the genes confirming previously known MS-risk 

alleles, permitting the identification of protective alleles, and implicating roles for other 

MHC alleles in MS, including MHC class I alleles such as HLA-B*39:01 and 15:01 [101, 

131]. Higher-resolution measurements have also allowed for the discrimination of alleles 

that were previously indistinguishable, thus resolving controversies as to whether certain 
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alleles are harmful or protective, such as in the case of HLA-DRB1*04 alleles where the 

literature was inconclusive [101]. NGS of haplotypes allowed for four-field allele typing of 

DRB1*04:01:01:01SG and revealed that this allele is associated with susceptibility or 

protection depending on the haplotype with which it is associated and that this allele alone 

confers neither protection or susceptibility [101].

Cancer researchers have made great strides in using NGS technology to characterize tumor-

specific immune landscapes, and we posit MS research will benefit using these approaches. 

Cancer research groups have used NGS RNA-Seq data to characterize the immune landscape 

through sensitive HLA typing and characterization of BCR and TCR repertoires in cancer 

specimens [132–134]. Through this a strong correlation was identified between T cell 

diversity and tumor load and expression of novel tumor antigens [133]. Furthermore, this 

approach revealed novel tumor evasion mechanisms and immunoglobulin heavy chain 

sequences in tumor-infiltrating B cells that could lead to novel immunotherapies [134]. We 

anticipate similar advances using these techniques in the field of MS research.

3.3. Exosomal sequencing and microRNA

Exosomes are membrane-bound vesicles secreted by different cell types that are used for 

cell-to-cell communication and are known to play roles in immune modulation [135]. 

Exosomes contain proteins, lipids and RNA from the cell of origin that not only allow for 

tracing back to their origin, but can also provide insights into physiological and disease 

processes [136–140]. Furthermore, microRNA (miRNA) which are normally located in the 

cytoplasm of cells, can be packaged and exported in exosomes [141]. miRNAs are small 

endogenous RNA that regulate gene expression post-transcriptionally by modulating mRNA 

stability and decay [142]. Blood exosome sequencing has become increasingly prominent in 

genetics studies and biomarker discovery, particularly for tissues with limited access such as 

the CNS [140]. For instance, in MS serum exosomes that diffuse out of the CNS contain 

myelin oligodendrocyte protein (MOG) and these exosomes correlate to disease severity 

[143]. miRNA specifically identified in exosomes in the CNS and serum of patients have 

significant potential as biomarkers [140, 144, 145]. NGS platforms can be used to 

characterize the expression of miRNA [140]. Moreover, NGS platforms have been used to 

characterize miRNA contents in the CSF and serum of MS patients, and miRNA expression 

has been correlated with disease status, pointing towards their potential as prognostic 

biomarkers [140, 144–146]. Along these lines, specific miRNAs such as miR-155 have been 

implicated as indicators of disease and also as putative therapeutic targets [144, 147].

3.4. Epigenetics

Only a subset of individuals with MS-related genes develop MS and the field of epigenetics 

may therefore hold the potential for adding to our understanding of the mechanisms by 

which environmental factors drive the development of disease. DNA methylation and 

histone modifications are epigenetic factors that do not influence the sequence of DNA, but 

still exert an effect on phenotype [148, 149]. The prominent risk gene, HLA DRB1*15:01 is 

hypomethylated in MS patients, and hypermethylation resulting in an overall decreased 

expression of the gene is believed to be protective [150]. In addition, risk factors associated 

with the occurrence of MS such as vitamin D deficiency and Epstein-Barr virus infection are 
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known to promote epigenetic changes [151, 152]. It is also known that aberrant DNA 

methylation can exacerbate inflammation in MS [153]. Potentially, new methods for the 

analysis of epigenetic changes on the background of genetic susceptibility genes may 

provide inroads to development of biomarkers for disease progression and serve to develop 

new drugs and determine their efficacy.

In summary, genomic studies have been mostly geared towards identifying susceptibility 

alleles and pathogenic mechanisms in MS. However, these datasets may also be useful to 

identify prognostic and diagnostic markers of MS. For instance, it was reported that SNPs in 

HLA and non-HLA genes are predictive of MS occurrence and of clinical outcomes [154]. 

Similarly, sequencing of miRNA provided proof-of-concept that transcripts can serve as 

biomarkers for disease activity [144, 145]. We posit that a better understanding of 

mechanisms of disease as elucidated by genomics will point to potential biomarkers of 

disease, particularly when combined with proteomic data and analysis using modern data 

science techniques.

4. Proteomic Approaches For Biomarker Discovery

Although genomic tools have been extensively used in research due to their high sensitivity 

and breadth/depth of information, proteomic methods hold great promise for biomarker 

discovery supported by an increasing number of tools for protein identification and 

quantification [24]. A culmination of advancements in instrumentation and data acquisition 

have allowed for methods with increased sensitivity and specificity, thereby leading to large 

proteomic data sets which are becoming more similar in scope to genomic data [155, 156]. 

Shown in Table 1 are key proteomic methods and their benefits and weaknesses for 

biomarker discovery.

4.1. Technology and Instrumentation

Early attempts at understanding the changes in the proteome during MS used 2-dimensional 

gel electrophoresis (2DE) separation for the identification and comparison of specific targets 

within samples [157, 158]. As technology progressed, 2DE separation was used in tandem 

with mass spectrometry yielding more comprehensive and reproducible insights into 

proteome changes occurring in MS [159–161]. Driven by further advancements in 

technology such as the development of the Orbitrap and improvement in time-of-flight 

(TOF) mass spectrometers, researchers have favored more high throughput shotgun 

proteomic approaches [162, 163]. Shotgun proteomics is the evaluation of complex mixtures 

of proteins digested into peptides using a combination of high performance liquid 

chromatography combined with mass spectrometry [162]. In the search for differentially 

expressed proteins shotgun proteomics has been combined with various quantitation 

techniques.

4.2. Quantitation

Quantitative proteomics has allowed for novel statistical and bioinformatics approaches for 

the identification of clinically relevant proteins and disease pathways [164]. Tandem mass 

tags (TMT) and isobaric tags for relative and absolute quantification (iTRAQ) are now 
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widely used in MS studies [165, 166]. Using iTRAQ labels, researchers identified 

differentially expressed proteins in rat EAE spinal cords that are most likely upregulated due 

to inflammatory infiltration and microglial activation [77]. iTRAQ labelling of human serum 

identified a panel of proteins enriched in patients with aggressive MS as well as a panel of 

proteins enriched in asymptomatic MS [48]. TMT labeling of mouse EAE brains allowed for 

the identification of a panel of CNS proteins predictive of the onset of clinical EAE 

symptoms that was subsequently validated by their serum concentrations [82]. TMT labeling 

of five separate EAE brain regions and spinal cord revealed that the spinal cord showed the 

highest level of differentially expressed protein expression compared to naïve CNS with the 

altered proteins representing predominantly inflammatory processes [81].

Label-free absolute quantification has also gained momentum, though not as widely 

implemented, in investigations of MS and in other diseases [167]. Datasets generated by 

these quantitative approaches have revealed many potential biomarkers; yet, molecular 

biomarkers have been slow to reach the clinic and establish their utility. The enormous size 

of the generated datasets, both by proteomics and genomics, have presented a veritable 

challenge in developing analysis techniques that yield candidate markers that are 

biologically and clinically relevant.

4.3. Single-cell mass cytometry

Another field that is emerging in MS research is single-cell cytometry by time-of-flight mass 

spectrometry (CyTOF). In CyTOF, cells are labelled with antibody (Ab)-conjugated isotope 

reporters. In contrast to fluorophores their detection is not limited by spectral overlap, 

allowing for the detection of dozens of cellular features by each individual cell and 

specifically allowing for high-dimensional immunophenotyping of individual cells [168, 

169]. For example, a comparison of myeloid cells in CNS of EAE mice identified 

differences in signaling molecules and cytokine production within myeloid populations as 

compared with naïve animals [170]. Moreover, CyTOF profiling of peripheral blood 

mononuclear cells and CSF cells in MS patients identified a T helper cell subset 

characterized by high expression of granulocyte-macrophage colony-stimulating Factor 

(GM-CSF) and C-X-C motif chemokine receptor 4 (CXCR4), and this population was 

reduced following disease-modifying therapy, thus pointing to these cells as markers of drug 

response [171]. Though CyTOF is considered a high-throughput method, the markers which 

can be measured are finite and depend on the availability of Ab-conjugates. Until the time 

that single cell proteomics is firmly established, CyTOF can provide semi high-throughput 

insights into protein expression on cells that can identify mechanisms, therapeutic targets 

and biomarkers of disease [172].

4.4. Post-translational modifications

Adding to the diversity of proteomic data, an important field of inquiry is the role of post-

translational modifications (PTMs) in MS pathogenesis and investigation of modified 

proteins as potential biomarkers. PTMs encompass numerous covalent modifications of 

proteins after biosynthesis, including glycosylation, methylation, phosphorylation and 

citrullination, the presence of which can be detected through Western blotting, modification-

specific ELISAs and mass spectrometry by virtue of their effect on amino acid residue and 
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protein mass [173, 174]. Investigations in EAE have implicated PTMs of self-antigens in the 

etiopathogenesis of MS and other autoimmune diseases, as they change recognition of T cell 

epitopes when they occur on residues that contact the TCR and could contribute to the 

breakdown of peripheral tolerance [175–177].

PTMs of myelin basic protein (MBP) have been studied extensively, revealing MBP PTMs 

that correlate with MS disease severity including methylated Arg107, and overall increase in 

deamination and reduction in phosphorylation compared with healthy controls [178]. 

Citrullination of Arginine in MBP also has implications in MS pathogenesis, with the ratio 

of citrullinated MBP to MBP much higher in MS patients, thus affecting the overall structure 

and function of MBP [179]. Citrullination of Arginine has been implicated in several 

autoimmune diseases and modification of citrullination has been proposed as a potential 

therapeutic target [180, 181].

Beyond modifications of MBP, very few PTMs of other CNS targets have been investigated. 

In EAE, PTMs in proteins regulating signal transduction and axonal integrity have been 

observed, with citrullination of Arg27 on glial fibrillary acidic protein (GFAP) contributing 

to pathophysiology of astrocytes [182]. It has also been observed that phosphorylation of the 

protein collapsin response mediator protein-2 (CRMP-2) is abundant in degenerating spinal 

cords in EAE animals, and limiting its phosphorylation is protective [183]. In summary, 

investigation of PTMs in MS is a field that merits more research and the use of quantitation 

techniques and high-resolution proteomics has the potential to yield unique insights into the 

heterogeneity of PTMs in MS and their role in pathogenesis.

In concluding this section we would like to point out that while we have highlighted the 

advantages of genomic and proteomic techniques individually, novel bioinformatic 

approaches are in development to apply these methods in concert to extract biologically 

relevant information in a field known as proteogenomics [184, 185]. Proteogenomics is used 

to integrate genomic and proteomic data using data science methods, and we posit that this 

approach will be useful to discover novel biomarkers [184, 185]. Thus, we suggest the 

integration of multi-omic techniques in parallel to utilizing computation biology methods to 

unravel the complexities of large datasets to aid in biomarker discovery as highlighted next.

5. Improved Analysis Approaches For Biomarker Discovery

Altogether, genomic and proteomic investigations have yielded large quantitative datasets 

encompassing numerous molecules with the potential for elucidating MS susceptibility and 

pathogenesis. These datasets can also be explored to identify novel biomarkers for the 

disease when utilizing data science and system-biology approaches. Currently there are no 

established guidelines on how to approach omics data set analyses in the field of MS 

biomarker discovery. Therefore, herein we highlight some of the major data science analysis 

approaches which may allow the discovery of novel biomarker candidates from large omics 

data. These include single-molecule differential regulation and the utility of systems biology 

approaches.
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A key step in biomarker discovery is narrowing down the number of putative targets from a 

large-omics dataset by identifying differentially regulated molecules [24]. Several different 

statistical approaches can be used in this process, which include both traditional statistics 

(e.g. ANOVA) and systems analysis tool (e.g. network analysis). These approaches are 

mostly complementary to each other and can be used in synergy for a more rigorous analysis 

of biomarker discovery. The role of different statistical methods in approaching biological 

questions has been reviewed elsewhere [186]. Methods include ANOVA with correction for 

false-discovery rate, and different types of regression models, as well as some less-common 

statistical models and novel methods which are exponentially growing [187–189].

5.1. Initial approach: Single molecule(s) with statistically significant expression changes

The most straight forward approach in identifying biomarker candidates from large datasets 

is by investigating expression fold-changes accompanied by high statistical significance. 

This approach together with effect size statistics has been extensively used for MS 

biomarker discovery [29, 82, 190–192]. Along these lines, our group has previously utilized 

this approach to identify potential MS biomarker candidates by investigating the CNS 

proteome during EAE [193, 194]. The concept underlying this approach is that molecules 

with statistically significant expression changes are likely to be disease-related (or treatment-

related) and thus may yield biomarker candidates with high sensitivity. Furthermore, this 

approach allows identification of molecules which have not been previously associated with 

disease mechanisms from omics datasets. Building off this starting point, systems biology 

analyses allows for rigorous analysis to identify disease related mechanisms and processes 

which can further aid in prioritizing biomarker candidates, as well as in identifying 

additional ones, as summarized next.

5.2. Refinement: Utilizing systems biology and data science

Systems biology approaches can aid in biomarker discovery by revealing key molecules in 

an omics database which contribute to different disease-related processes [195]. 

Additionally, these approaches can identify key regulators (e.g. network hubs) independent 

of specific molecule fold-changes or expression change p-values, thus unveiling molecules 

which may drive several disease processes in which their own (the molecule’s) p-value may 

not be significantly altered in the specific dataset. Moreover, this approach may allow 

identification of additional biomarker candidates by revealing an important disease process, 

for example identifying a metabolic pathway that is altered during disease by exploring a 

genomic dataset. However, rather than using the genes in these pathways as biomarkers, one 

can explore metabolites and products of these pathways as potential biomarkers. This 

approach might be particularly useful in proteomic datasets which lack the ability to identify 

and quantify low-abundance proteins [196, 197]. Furthermore, identifying novel related 

pathways associated with clinical features of MS can aid in better understanding of 

pathological processes of the disease and in personalized biomarker discovery for disease 

prognosis or therapeutic responses. We will next highlight and discuss several systems 

analysis methods which are commonly used in biomarker discovery including gene set, 

pathway and network analysis approaches, though other approaches are also available [195, 

198–201].
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5.3. Gene set enrichment analysis (GSEA)

GSEA is an commonly used method which compiles all genes involved in a particular 

process independent of their interactions [202, 203]. Gene sets can be comprised of 

transcriptional-regulation, pathways, ontologies, diseases, cell types, etc. of curated lists 

which share a common biological entity [203]. These gene sets are curated from databases 

with broad scope and are based on multiple types of evidence. There are several databases 

available for GSEA including Molecular Signatures Database (MSigDB) which contains 

curated gene sets of many leading databases, such as Reactome and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) [204–207]. Following GSEA each gene set receives an 

enrichment score and a p-value, which together determine the likelihood of that gene set 

being altered (or significantly enriched) in the dataset. Network analysis and GSEA are 

conceptually related and can sometimes be used interchangeably. Gene sets can be converted 

to networks, and networks can be converted to gene sets [208]. However, unlike networks, 

gene sets can be positively or negatively enriched in a dataset. GSEA has been used for an 

array of purposes such as the discovery of the MS susceptibility risk loci CD6, IRF8 and 

TNFRSF1A [209]. Other applications included the identification of profiles distinguishing 

myelin-reactive T cells in MS and healthy controls and identifying transcriptional profiles 

predictive of fingolimod therapy responsiveness [54, 210].

These analysis methodologies represent largely untapped resources for better understanding 

genetic and proteomic alterations in MS. Tools for such analysis are rapidly evolving and 

include the ability to integrate regulatory pathways into differential network analysis of gene 

expression data [211, 212]. Importantly, MS studies can utilize these tools to integrate both 

genomic and proteomic datasets to elucidate biologically relevant alterations that might 

reveal biomarkers that could be useful in the diagnosis and care of MS patients.

5.4. Pathway analysis

Pathway analysis applies lists of altered genes to biological pathways and attempts to 

integrate multiple gene/protein alterations in concert to yield lists of altered pathway 

activities [213]. Pathways can be analyzed both as networks and as gene sets. Other types of 

analyses are also available to determine pathway enrichment [214]. Along these lines, in 

MS, pathway analysis has been used on SNP array data to look broadly at the landscape of 

pathways in MS, which yielded for example information on the upregulation of the JAK-

STAT and TCR signaling pathways [215]. Pathway analysis has also been used to investigate 

specific processes, such as the transcriptional changes in oligodendrocytes during 

remyelination in the cuprizone model, revealing that cholesterol-synthesis pathways are 

upregulated [216]. Others have identified the IFN-γ signaling pathway to be most 

significantly dysregulated in transcriptomic datasets of healthy controls versus RRMS, 

SPMS or PPMS [217].

5.5. Network analysis

Network analysis groups proteins that share similar functionality and indicate dependency 

between molecules, though not necessarily in a linear pathway [218]. For instance, a 

network can be a group of proteins which are up- or down-regulated in a cell or tissue upon 

exposure to treatment. A network can also be a group of molecules which share a less 
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defined relationship, for example a “neurological disorder” network which encompasses 

many different genes and proteins which were shown to be differently regulated in such 

diseases. Some of the most common types of networks include protein-protein interactions, 

metabolic networks, and transcriptional regulatory networks [208, 213]. Thus, it is important 

to carefully select the networks that are applied to the dataset for biomarker discovery, for 

instance, using a protein interaction network in a genomic dataset may not yield robust and 

genuinely relevant candidates. There are different statistical approaches to determine if a 

network is affected in a dataset, which has been comprehensively reviewed elsewhere [208]. 

Generally, the higher the coverage of a network, the more likely the network is affected. 

Network analysis has been used to gauge the general genetic landscape of MS using SNP 

array data and has also revealed heterogeneity of MS-risk networks between cell types 

within the same individual [219, 220]. Network comparisons have also revealed shared gene 

expression networks between MS and ischemic stroke [221].

In summary, systems biology analysis and integration of large multi-layer omics datasets 

may facilitate discovery of conserved networks and pathways across studies.

5.6. Opportunities for Future Advancements in Methodologies

Integrating pathway and network analysis as well as other computational methods provides a 

number of advantages for biomarker discovery. For instance, integration of different analysis 

approaches, such as pathways, allows focusing on fewer hits in large datasets during the 

discovery and validation phases (e.g. a single pathway which is altered rather than 10s or 

100s of molecules of that pathway) [222]. Moreover, pathway and network analysis results 

are non-redundant and can minimize variation when analyzing datasets from large patient 

cohorts, for instance a single molecule can vary largely across individuals; however a 

signaling pathway will remain constantly altered, and therefore will yield more robust 

biomarker candidates. This is also true, when using single cell data analysis, for example a 

specific subset of cells might be altered in many patients (e.g. inflammatory monocytes); 

however, on the gene level there might be significant variations across a population. 

Furthermore, pathway analysis can lead to faster biological hypothesis generation and point 

to novel biomarkers which may not have been obvious in the raw database due to technical 

challenges, such as ‘protein masking’ or low read depth. Furthermore, the integration of 

equitable and unbiased bioinformatic and computational biology approaches to explore 

proteomics and genomic datasets will allow researchers to better understand MS disease 

mechanisms, and consequently assist development of novel therapeutics and sensitive 

biomarkers. Along these lines, mutations (genetic changes which may impact protein 

function such as missense or frame-shift mutations; not polymorphisms) have been mostly 

ignored as biomarkers for MS; however improved computational algorithms and genomic 

techniques (such as whole-exome sequencing (WGS)) may yield information on mutations 

associated with MS [223]. This could potentially lead to identification of novel genetic links 

associated with MS pathogenesis and progression, as well as provide novel targets and 

biomarkers for drug responses. Along these lines, a recent study that performed WGS 

analysis across multi-incident MS families identified several rare mutations associated with 

MS susceptibility in these families [224]. Using pathway analysis, this group identified 

several immune-related pathways which were “enriched” in mutated genes including in Wnt 
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signaling, complement, and inflammasomes [224]. However, these mutations need to be 

further corroborated in larger cohorts and in different tissues of MS patients. Additionally, 

the functional effects of these mutations need to be evaluated. It would be interesting to 

investigate de novo mutations within specific CNS resident cells (e.g. astrocytes) or immune 

cells (e.g. T cells) which may exist in MS patients. Moreover, using advanced data science 

tools and proteogenomic can further aid in identifying those genetic alterations which 

directly affect the proteomic landscape of patients [225].

In addition to using pathway and network analysis to improve biomarker discovery, new 

computational techniques allow to overcome many challenges in biomarker discovery using 

large datasets. For example, the utility of animal models in the discovery phase may not be 

translatable to human datasets, however development and implantation of new 

computational methods, including pathway analysis, fostered genome-wide annotation of 

functional DNA elements and therefore enabled extensive comparison between human and 

mouse genomes, allowing to extrapolate animal model studies into human biomarker 

discovery (e.g. some genes/proteins which exists in mice do not exist in human but the entire 

pathway is altered) [226]. Furthermore, the development and implementation of new 

computational methodologies, including machine learning techniques may allow for more 

rigorous selection of biomarkers and biomarker candidates by applying novel features (i.e. 

biomarker) selection tools which may outperform traditional statistics [188, 227, 228].

Together, these methods of prioritization may ultimately lead to the identification of both 

novel and authentic biomarkers. We postulate that implementation of these approaches holds 

enormous potential for MS biomarker discovery.

6. Conclusions

The development of omics techniques has offered the potential to better understand the 

factors that drive susceptibility to MS as well as provide insights into mechanisms that drive 

the pathogenesis of disease. Importantly, within these omics datasets there is the potential 

for discovering specific and sensitive biomarkers to aid diagnosis and treatment of patients. 

Researchers have generated vast MS-related datasets, but little of this large body of work has 

translated into use in the clinic as diagnostic tools and biomarkers. The ability to analyze 

these large datasets has lagged behind the ability to collect the data. As no single gene is 

causative of MS, it is likely that a systems biology approach that shifts from focusing on 

individual genes and proteins of interest to gene sets, pathways and networks will yield 

greater progress in facilitating clinically relevant findings. Additionally, improved data 

science techniques can allow for standardization in the analysis of disparate datasets 

generated across different platforms and preclinical models. We anticipate that the greater 

utilization of bioinformatics tools for pathway and network analysis will propel forward the 

discovery of clinically useful biomarkers in MS.
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• There is an urgent need to develop biomarkers for key aspects of MS 

diagnosis, prognosis, and treatment.

• Large datasets hold the potential for discovering biomarkers to aid diagnosis 

and treatment.

• The ability to analyze large datasets has lagged behind the ability to generate 

them.

• Data science tools will propel forward the discovery of clinically useful 

biomarkers.
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Fig. 1. 
Study design and analysis methods for biomarker discovery. Discovery is the first stage in 

the pipeline of biomarker development, followed by verification and validation. The 

discovery stage requires careful consideration for the selection of discovery model, 

specimens, biological targets and discovery techniques. After the generation of large omics 

datasets, improved computational biology analysis methods can yield potential candidate 

molecules for the verification and validation stages and clinical testing.
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Fig. 2. 
Pipelines in quantitative genomic and proteomic. Depending on instrumentation and 

platform (1) raw data is generated (2). Raw data is converted (or “translated”) to genomic 

loci or peptide sequences (3) followed by identification using specific genome or proteome 

databases (4), normalization, and quantification (5). Last, data can be investigated using 

computational and statistical tools (6).

Huizar et al. Page 30

Cell Immunol. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Huizar et al. Page 31

Table 1:

Advantages and disadvantages of genomic and proteomic methodologies

Advantages Disadvantages Previous applications

Genomic

DNA SNP microarray 
[102, 129, 229]

Precise, quantitative, and cost 
effective

Not entirely discovery-driven, 
needs specific targets

Used in GWAS to identify HLA and 
other gene variants associated with MS

NGS Whole Genome 
Sequencing [230]

Unbiased full coverage of the 
genome

Large amount of information, 
lack of standardization for 
biomarker discovery

Used to identify genetic variants 
associated with PPMS

NGS Whole Exosome 
sequencing [56, 231]

Finds differences in functional 
genes, cost effective alternative 
to whole genome sequencing

Misses important genetic 
variations that occur outside of 
protein-coding regions

Used to identify genetic biomarkers 
indicative of disease course

Single cell NGS [55, 123, 
232, 233]

High resolution of individual 
cell heterogeneity

High cost and lack of 
standardized computational 
pipelines

Used to identify transcriptional changes 
in blood cells in MS

Single nucleus NGS [124, 
125, 234]

Data from CNS cell types that 
are difficult to isolate for single 
cell analysis

Misses cytosolic information Used to identify lineage-specific 
alterations in transcription during MS

miRNA sequencing [144, 
146, 147]

Offer insight into disease-related 
modification of gene expression. 
miRNA levels are putative 
biomarkers

Difficulty in reaching statistical 
significance in studies

Used to identify several miRNAs as 
markers of MS disease state and severity

Slide sequencing [32] Regional discrimination of gene 
expression

No standardized pipeline for 
using resulting data for 
biomarker discovery

Used to identify spatial differences in 
gene expression in the brain

Epigenetic techniques 
[150, 235]

Insight into links between 
environmental exposures and 
MS occurrence and trajectory

Lack of longitudinal studies that 
definitively link environmentally 
induced epigenetic changes to 
MS disease course

Used to identify modifications 
associated with MS occurrence and 
severity

Proteomic

2DE and 2-DIGE [157, 
158, 236, 237]

Can be used for separation prior 
to mass spectrometry

Displays approximately ~200–
2000 spots, does not detect many 
regulatory molecules

Used for the early characterization of 
IgG in MS patient CSF

Shotgun proteomics [30] Unbiased, high-resolution data Qualitative data only Used to characterize proteins in MS 
lesions

Quantitative shotgun 
proteomics [81, 82, 164, 
167]

Unbiased, high-resolution data 
that allows for statistics and
bioinformatics approaches

No standardize pipeline for 
analyzing the resulting data

Used to identify differentially expressed 
protein in the brain, CSF, and serum 
during MS/EAE

CyTOF [170, 171] Quantitative data on the single 
cell level

Limited by availability of 
labelled antibodies

Used to identify unique cell protein 
signatures in neuroinflammation and 
MS

Imaging mass 
spectrometry [35]

Regional discrimination of 
protein expression

Not quantitative Used to map proteins in brain lesions

Post-translational 
modification methods 
[176]

Adds to diversity of proteomic 
data by identifying differences 
not related to amino acid 
sequence

Large diversity of modifications 
that can be hard to target and 
quantify

Identification of modified epitopes 
potentially contributing to autoimmunity
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