Skip to main content
. 2021 Mar 3;13(2):867–885. doi: 10.1007/s12652-021-02979-3

Table 1.

Summary of different methodologies used for SER

No. Dataset Methodology Results (accuracy) Author
1 IVR customer care domain, database from WoZ data collectiona SVM 79%, 75% Polzehl et al. (2011)
2 IEMOCAP corpusb RNN 63.5% Mirsamadi et al. (2017)
3 EMO-DB, VAM, and TUM AVIC SVM 51.6% Deng et al. (2013)
4 Berlin EmoDB and IEMOCAP CNN, LSTM 95.33%, 95.89% on Berlin EmoDB; 89.16%, 52.14% on IEMOCAP Zhao et al. (2019)
5 EMO-DB SVM 74.4% Deb and Dandapat (2016)
6 EMO-DB and IEMOCAP Bidirectional LSTM and CNN 82.35% Pandey et al. (2019)
7 (UMSSEDc) and (RAVDESSd) Four models for binary classification 64.29% Zhang et al. (2016)
8 RAVDESS CNN 66.41%. Jannat et al. (2018)
9 RAVDESS SVM, NN 78.75%, 89.16% Tomba et al. (2018)
10 RAVDESS SVM 75.69% Bhavan et al. (2019)
11 GeWEC Universum AE 59.3% Deng et al. (2018)
12 GeWEC SSAE 51.6% Deng et al. (2017)
13 SAVEE SVM, DSM, AE 69.84%, 68.25%, 73.01% Aouani and Ben Ayed (2018)