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ABSTRACT Here, we characterize the fosA genes from three Escherichia coli clinical
isolates recovered from Canadian patients. Each fosA sequence was individually over-
expressed in E. coli BW25113, and antimicrobial susceptibility testing was performed
to assess their role in fosfomycin resistance. The findings from this study identify
and functionally characterize FosA3, FosA8, and novel FosA7 members and highlight
the importance of phenotypic characterization of fosA genes.

KEYWORDS fosfomycin, fosA7, beta-lactamase, Escherichia coli, novel fosA

Escherichia coli is a common urinary tract pathogen. Treatment of infections caused
by extended-spectrum beta-lactamase (ESBL)-producing or multidrug-resistant

(MDR) E. coli can be problematic, as therapeutic options may be limited. Due to the
increasing prevalence of ESBL and MDR E. coli, there has been renewed interest in the
use of fosfomycin (1–4). Fosfomycin is a phosphoenolpyruvate analogue that disrupts
bacterial cell wall synthesis by inhibiting UDP-N-acetylglucosamine-3-enolpyruvyl trans-
ferase (MurA), an enzyme involved in synthesis of N-acetylmuramic acid (5). Resistance
to fosfomycin occurs by three main mechanisms: (i) alteration of fosfomycin drug
uptake transporter genes (glpT and uhpT), (ii) modification or overexpression of murA,
or (iii) acquisition of a fosfomycin-inactivating (fos) enzyme (5). Fos enzymes are of the
greatest concern, since the fos genes that encode them can be found on plasmids,
allowing for their dissemination by horizontal gene transfer (4, 5). In Canada, fosfomy-
cin resistance and fos gene detection among E. coli clinical isolates are rare and have
not been well described to date (6).

In this study, we characterize the fosA genes from three fosfomycin-resistant E. coli
isolates (two from urine and one from blood) from a Canadian collection of clinical
strains and describe a novel FosA7.5 variant within the FosA7 group. We also discuss
the phylogenetic relationships among previously identified FosA1-A12 members.

Whole-genome sequencing of the three Canadian isolates (EC623771 [GenBank
BioSample no. SAMN13659120], EC623772 [GenBank BioSample no. SAMN13659121],
and EC623773 [GenBank BioSample no. SAMN13659122]) was performed on an Illumina
MiSeq system using Nextera XT DNA libraries. Contigs were assembled and annotated
using the IRIDA version 19.09 assembly and annotation pipeline, which combines
Shovill-based assembly and QUAST quality assessment with Prokka annotation (7).
Sequence analysis revealed fosA genes in all three genomes (see Table S1 in the
supplemental material). The E. coli EC623771 fosA gene was 100% identical to fosA3 (8),
and the E. coli EC623773 fosA gene was 100% identical to fosA8 (9) (Fig. 1). The E. coli
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EC623772 fosA gene was not identical to any previously characterized fosA sequence
but demonstrated �99% sequence identity to two publicly deposited sequences, a fosA
gene from a canine isolate of E. coli (WP_094163054.1) and a reference sequence
annotated as fosA7.5 (WP_000941933.1) (Table S2). We decided to name the novel E.
coli EC623772 fosA variant and the E. coli WP_094163054.1 variant fosA7.5, following the
numbering convention that has been previously used for annotating fosA7 genes in the

FIG 1 Phylogenetic and sequence analysis of clinically isolated E. coli FosA sequences and their comparison to previously identified FosA variants. (A)
Phylogenetic analysis of FosA1 to FosA12 protein sequences using the neighbor-joining distance-based method. Branch lengths represent amino acid
differences as distance (scale bar). (B) Phylogenetic comparison of FosA7 family protein sequences using the same method as described in panel A. (C) Multiple
sequence alignment of FosA3, FosA8, and FosA7 protein sequence variants. Blue coloring in the alignment indicates conserved residues identified among FosA1
to 12 family members. Amino acid differences that distinguish the FosA7.5 group from FosA7 are shown in yellow. Differences among FosA7.5 sequences are
highlighted in orange. Arrows indicate active site residues. The alignment was generated using Jalview v2.10.5 (21).
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NCBI Bacterial Antimicrobial Resistance Reference Gene Database. Neighbor-joining
analysis was performed to further investigate the relationship of the FosA variants from
our clinical isolates with previously described FosA1 to FosA12 sequences. (Fig. 1A and
B) (8–17). This confirmed the similarity of the three FosA7.5 sequences.

Relative to FosA7.5 from E. coli WP_000941933.1, FosA7.5 from E. coli EC623772 has
a Q86E change, whereas the FosA7.5 from E. coli WP_094163054.1 shows a W92G
change at a highly conserved amino acid position. Hence, we refer to the “wild-type”
fosA7.5 sequence as fosA7.5WT, the novel E. coli EC623772 fosA variant as fosA7.5Q86E,
and the canine WP_094163054.1 variant as fosA7.5W92G. Despite its name, FosA7.5 is
distinct from the canonical FosA7 sequence and differs from other FosA7 members at
amino acid sites G35, S56, and K62. FosA7 was originally identified in Salmonella
enterica serovar Heidelberg (15), and most closely related variants are associated with
S. enterica, whereas FosA7.5, along with the EC623772 and canine variants, is restricted
to E. coli. These sequences are also distinct from FosA7-like sequences from Klebsiella
spp. and Citrobacter spp. (Fig. S1, Table S2).

Twelve FosA variants (FosA1 to FosA12) were previously described in peer-reviewed
publications (8–17). It should be noted that there is currently some inconsistency in the
FosA literature regarding the naming of FosA enzyme variants. Notably, FosA7, FosA8,
FosA9, and FosA10 have each been used twice to describe different variants (9, 15–18).
After the published description of FosA7 in Salmonella Heidelberg, Mathur et al.
described six FosA variants in Klebsiella pneumoniae and named them FosA7 through
FosA12 (referred to in Fig. 1, Table 1, and the following text as FosA7M to FosA12M) (17).
Phylogenetic analysis suggests that FosA7M, FosA8M, and FosA9M may make a distinct
branch of FosA enzymes, but it is unclear if three separate designations are warranted
(Fig. 1A). More recently, E. coli FosA8, FosA9, and FosA10 genes were described in three
papers (9, 16, 18). Based on our phylogenetic and sequence analyses in Fig. 1, FosA10M,
FosA11M, and FosA12M are very similar to one another as well as to FosA5, FosA6, and
the newer FosA9 allele (16). Notably, the original descriptions of FosA5 (13), FosA6 (14),
and FosA9 (16) indicate that they were mobilized to E. coli from Klebsiella. Thus, all of
these alleles may represent a family of genes derived from Klebsiella.

Consistent with previous reports, the fosA3 (EC623771) and fosA8 (EC623773) genes
identified in our isolates are associated with plasmid sequences. The fosA7.5Q86E allele
in EC623772 is flanked on both sides by insertion sequences that confounded our initial
attempts to determine the location of this gene. Available genome assemblies (e.g., E.
coli Ec40743 [CP041919.1] and E. coli 210205630 [CP015912]) suggest that the fosA7.5WT

TABLE 1 Sequences, strains, and plasmids examined in this study

Strains and plasmids Characteristicsa Reference or source

Strains
E. coli EC623771 Fosfomycin-resistant isolate CANWARD
E. coli EC623772 Fosfomycin-resistant isolate CANWARD
E. coli EC623773 Fosfomycin-resistant isolate CANWARD
E. coli BW25113 F–, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), �–, rph-1, Δ(rhaD-rhaB)568, hsdR514 NBRPb

E. coli pMS119EH E. coli BW25113 transformed with pMS119EH This study
E. coli FosA3 E. coli BW25113 transformed with pMS-FosA3 This study
E. coli FosA8 E. coli BW25113 transformed with pMS-FosA8 This study
E. coli FosA7.5WT E. coli BW25113 transformed with pMS-FosA7.5WT This study
E. coli FosA7.5Q86E E. coli BW25113 transformed with pMS-FosA7.5Q86E This study
E. coli FosA7.5W92G E. coli BW25113 transformed with pMS-FosA7.5W92G This study

Plasmids
pMS119EH NruI-NdeI deletion of pJF119EH vector 22
pMS-FosA3 C-terminus His6-tagged fosA3 EC623771 gene cloned in pMS119EH This study
pMS-FosA8 C-terminus His6-tagged fosA8 EC623773 gene cloned in pMS119EH This study
pMS-FosA7.5WT C-terminus His6-tagged fosA7.5 WP_000941933.1 gene cloned in pMS119EH This study
pMS-FosA7.5Q86E C-terminus His6-tagged fosA7.5 EC623772 gene cloned in pMS119EH This study
pMS-FosA7.5W92G C-terminus His6-tagged fosA7.5 WP_094163054.1 gene cloned in pMS119EH This study

aHis6, hexahistidine; C-terminus, carboxy-terminus.
bNational BioResource Project, Keio Collection (23).
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allele is located on the E. coli chromosome. However, resequencing of E. coli EC623772
with a MinION system (Oxford Nanopore Technologies) and assembly with Flye version
2.8.1 (19) revealed that fosA7.5Q86E is located on a 103-kb plasmid. Sequence compar-
ison using publicly available databases shows that the backbone of this 103-kb plasmid,
excluding the fosA7.5Q86E region, is conserved with other plasmids from E. coli, Salmo-
nella, and Klebsiella (e.g., GenBank plasmids CP044142.1, JN983043.1, and MF582638.1).

To verify that the genes from the three Canadian clinical isolates conferred resis-
tance to fosfomycin, fosA3 (EC623771), fosA8 (EC623773), and the three E. coli fosA7.5
sequences were gene synthesized by Bio Basic, Inc. (Canada), and individually cloned
into the low copy expression vector pMS119EH. All fosA genes were cloned with a
C-terminal hexahistidine affinity tag (His6-tag) and then overexpressed in the E. coli K-12
strain BW25113 with isopropyl �-D-1-thiogalactopyranoside (IPTG) induction (Table 1).
Western blotting demonstrated successful FosA protein expression and accumulation
of each E. coli transformant (Fig. S2). Each transformant underwent fosfomycin antimi-
crobial susceptibility testing using agar dilution and disk diffusion according to CLSI
standards and an Etest, and the results are shown in Table 2. The fosA3, fosA8, and
fosA7.5Q86E genes cloned from the Canadian clinical isolates, as well as the wild-type
fosA7.5WT allele, all conferred resistance to fosfomycin (MIC values of �512 �g/ml and
�1,024 �g/ml for agar dilution and Etest, respectively). The only exception was E. coli
transformed with the fosA7.5W92G variant, which remained susceptible to fosfomycin at
MIC values of 32 �g/ml and 2 �g/ml using the agar dilution and Etest methods,
respectively.

As we noted key amino acid differences between FosA7.5 members, we generated
homology models of FosA3, FosA8, and the three FosA7.5 variants using the I-TASSER
Web server (20) to determine if any protein structural alterations impacting the FosA
active site may explain why the fosA7.5W92G transformant was susceptible to fosfomycin
(Fig. S3). Dimeric FosA protein homology models were generated from the FosA1
Serratia marcescens (PDB: 1nbp) crystal structure to model the complete active site
spanning the dimer interface. All FosA7.5 variant models demonstrated tight overall
alignment to previously characterized FosA3 and FosA8 based on lowest root mean square
deviation (RMSD) values (1.722 to 2.011 Å). The W92G amino acid change in FosA7.5W92G

(GenBank accession number WP_094163054.1) appeared to generate a larger pocket
near the fosfomycin binding site when aligned to other FosA7.5 models, suggesting
that the replacement of tryptophan by a smaller glycine residue may reduce the
enzymatic activity of this variant. FosA7.5W92G may allow greater substrate movement
or amino acid flexibility within the enzyme’s active site by replacing this conserved
tryptophan that we observed in FosA alignments at this residue position (Fig. S1).

In conclusion, we identified three fosA genes in three E. coli clinical isolates (EC623771
to EC623773) recovered from Canadian patients. In addition to confirming the role of fosA3
and fosA8 as determinants of fosfomycin resistance (8, 9), we identified and characterized
multiple variants of fosA7.5. Unlike other fosA7 alleles, which are associated with Salmonella,
distribution of fosA7.5 is primarily restricted to E. coli. Ongoing surveillance for fosfomycin
resistance is crucial to ensure that this antimicrobial remains effective as a first-line therapy
for urinary tract infections.

TABLE 2 Fosfomycin susceptibility testing results for E. coli transformants

E. coli plasmid
transformantc

Agar dilution
MIC (�g/ml)

Disk diffusion
zone diam (mm)

Etest MIC
(�g/ml) Result

FosA3 �512 6a �1,024 Resistant
FosA8 �512 6 �1,024 Resistant
FosA7.5WT �512 6 �1,024 Resistant
FosA7.5Q86E �512 6 �1,024 Resistant
FosA7.5W92G 32 30b 2 Susceptible
pMS119EH 2–4 30 0.5 Susceptible
a6 mm is equivalent to no zone diameter.
bCLSI, 30 mm; EUCAST, 36 mm.
cAll transformants were induced with 1 mM IPTG.
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