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Abstract

Humans and animals navigate uncertain environments by seeking information about the future. 

Remarkably, we often seek information even when it has no instrumental value for aiding our 

decisions – as if the information is a source of value in its own right. In recent years, there has 

been a flourishing of research into these non-instrumental information preferences and their 

implementation in the brain. Individuals value information about uncertain future rewards, and do 

so for multiple reasons, including valuing resolution of uncertainty and overweighting desirable 

information. The brain motivates this information seeking by tapping into some of the same 

circuitry as primary rewards like food and water. However, it also employs cortex and basal 

ganglia circuitry that predicts and values information as distinct from primary reward. Uncovering 

how these circuits cooperate will be fundamental to understanding information seeking and 

motivated behavior as a whole, in our increasingly complex and information-rich world.
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Humans and animals navigate uncertain environments by seeking information about the 

future. Of course, this is partly due to the instrumental value of information to help us 

choose better actions [1–5]. Remarkably, however, we can be strongly motivated to seek 

information even when we know there is no way to use it to influence our future actions and 

outcomes – as if knowledge is a source of value in its own right. Many of us have the 

experience of voting in an election, knowing there is nothing more we can do to influence 

the outcome, and telling ourselves we should get a good night’s sleep and find out in the 

morning…and instead, staying up late into the night with our eyes glued to the TV screen, in 

order to get the information the first moment it becomes available.
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More than ten years ago, neuroscientists began to study how these preferences for non-
instrumental information are encoded by single neurons in the brain, focusing on 

information about uncertain rewards [6]. In its simplest form, this preference can be 

measured by giving a choice between two offers, one of which provides informative cues 

that indicate the reward outcome in advance, while the other provides non-informative cues 

that do not indicate the outcome (Figure 1A). Importantly, both offers provide exactly the 

same reward distribution, and there is no way to use the information to influence the 

outcome. Yet both humans and animals can strongly prefer information (Figure 1B) and 

willingly pay a price for it [7–10], assigning it considerable value in their decisions (Figure 

1C).

At the time non-instrumental information seeking had a long history in several fields. In 

psychology it was called a form of “observing behavior” [11] and was primarily studied in 

rats and pigeons [10,12–14]. In economics it was called “temporal resolution of uncertainty” 

[15] or informational attitude, and was primarily studied in theoretical models and surveys 

[16–18], with studies beginning to examine choices with real consequences [7]. 

Developmental psychology and machine learning also studied the importance of intrinsic 

motivation for learning about the world [19,20]. However, these literatures were largely 

independent, approaching the phenomenon and interpreting their findings in very different 

frameworks, with surprisingly little communication between them. This made it difficult to 

pool their knowledge to understand how informational preferences are created by neural 

circuits in the brain.

In the last few years this picture has changed dramatically. There has been an explosion of 

research on information seeking in neuroscience, bringing together researchers from 

different backgrounds to bridge the gap between these diverse fields, and a flourishing of 

new discoveries. This has been especially true for information seeking about a specific type 

of future event – uncertain rewards – which has become the target of systematic and 

comparative neuroscientific studies in both humans and animals. Here we highlight advances 

in understanding the mechanisms that motivate this form of information seeking, and their 

neural implementations in the brain.

Neural networks integrating information and primary reward

Early neuroscience studies of information seeking in monkeys focused on the “reward 

prediction error” (RPE) system. The RPE system has a key role in motivating actions to seek 

primary rewards like food and water, by signaling the difference between a situation’s 

predicted and actual reward value [21]. The RPE system was shown to have similar signals 

for information – effectively treating information about uncertain outcomes as a reward in 

itself [6,22]. For example, just as many midbrain dopamine neurons are excited when a 

monkey learns that it will get a large water reward (‘more water than predicted’), many are 

also excited when the monkey learns that it will see an informative cue (‘more information 

than predicted’; Figure 2B). This suggested that information seeking is motivated by the 

same RPE circuitry that motivates primary reward seeking.
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Recent studies have replicated and greatly extended this finding in humans, uncovering 

principles by which this network evaluates information. Midbrain regions that contain 

dopamine neurons have a blood oxygen level dependent (BOLD) signal responding to 

informational prediction errors [**9]. This signal is sensitive to the subjective value of the 

information – scaling up for desirable information about likely monetary gains, and scaling 

down for less desirable information about likely losses. Indeed, the signal strength in a major 

target of dopamine projections, the ventral striatum, predicts information preferences. This 

suggests that dopamine projections to basal ganglia may transform prediction errors into 

motivation to seek information.

This convergence of information and monetary reward processing extends to cortex. Both 

monetary and informational prediction errors induce electroencephalographic (EEG) signals 

with strikingly similar spatial and temporal profiles [*23]. This feedback-related negativity 

originates from medial prefrontal cortex (mPFC), including anterior cingulate cortex (ACC) 

and supplementary eye field [24,25]. Many mPFC neurons respond to unpredicted outcomes 

that motivate changes in behavior [25–31] and may regulate evaluation of uncertain rewards 

[32]. Thus, mPFC may also motivate adjustments in information seeking behavior.

In these cases people sought information with no instrumental value. Could the same 

network handle information that does have instrumental value? This was recently addressed 

by allowing humans to pay for partial information about a lottery’s outcome before deciding 

whether to accept the lottery [*33]. People valued information for both instrumental and 

non-instrumental reasons. This combined subjective value of information correlated with 

BOLD signals in many of the same regions as the value of money. This included the ventral 

striatum region discussed above and the ventromedial prefrontal cortex. Thus, these areas 

may represent the total value of information and primary reward to guide decisions.

Neural networks for information seeking

The networks discussed so far may combine information and primary reward into a common 

currency of total value. However, we can also treat information and primary reward as 

distinct, separate entities (Fig 1C). After all, when we sit down in a restaurant we are pleased 

to get the menu or to get the meal itself – but we know exactly which we are expecting, and 

something is wrong if one comes in place of the other!

Early support for this hypothesis came from evidence that the monkey orbitofrontal cortex 

(OFC) can encode the distinct values of both information about primary reward and primary 
reward itself [8]. This is consistent with evidence that OFC associates cues with the distinct 

values of different rewards [34–36], and separately encodes the confidence of a decision and 

its primary reward value [37]. Human OFC regions respond to the availability [**9] and 

receipt [*38] of information about uncertain rewards. Thus OFC may separately adjust the 

values of information and primary reward cues – so that hunger leads us to seek signs of 

food, while curiosity and uncertainty lead us to seek signs of information.
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How, then, could the brain create a specific motivation to seek information? It would need to 

(1) detect when rewards are uncertain, (2) predict when information will become available to 

resolve the uncertainty, and (3) use this prediction to promote information seeking actions.

A recent study showed evidence for a neural system that carries out these steps, in an 

anatomically interconnected cortex-basal ganglia network including regions of ACC, dorsal 

striatum (DS), and pallidum (Pal) [**39]. A subset of neurons there have information 
predictive activity. They activate when monkeys are uncertain about future rewards and 

ramp up to the time information will arrive to resolve the uncertainty (Figure 2A, red). They 

have much less activity when rewards are certain or no information is predicted (Figure 2A, 

gray and blue).

Crucially, this network’s activity causally influences information seeking. Monkeys rapidly 

shift their gaze to view informative cues [6] in a manner sensitive to reward uncertainty [40]. 

These information seeking gaze shifts are predictive, ramping up to the time of getting 

information [**39]. The neural information prediction signal is linked to this behavior. 

Strong neural signals are followed by gaze shifts toward information-related cues, while 

weak signals are followed by gaze shifts away from them. The signal has no comparable 

relationship to primary reward seeking. Furthermore, inactivating basal ganglia regions that 

contain the information signal impairs information seeking gaze shifts. This suggests that the 

network’s information prediction signal specifically motivates and sustains information 

seeking.

The ACC may have a supervisory role in sustaining information seeking. In the ACC-DS-Pal 

network its information predictions have early tuning to graded levels of uncertainty, and are 

the earliest predictor of information-seeking gaze shifts [**39]. ACC activity has been 

linked to anticipation of multiple pieces of information to resolve reward uncertainty [41], 

and integrating gathered information to change actions or strategies [42–44].

Furthermore, a recent study implicated ACC in sustained information sampling [**45]. 

Humans and monkeys were allowed to collect information about choice options before 

making a final decision. Both species showed evidence of non-instrumental information 

seeking. After they collected strong evidence favoring a specific option, they did not simply 

choose it immediately, and instead spent additional time gathering information about its 

future outcome [**45,46]. In parallel, a subset of monkey ACC neurons tracked how each 

piece of information influenced the certainty of choosing that favored option, and hence the 

certainty of receiving that outcome. This activity was prevalent in ACC and rare in OFC and 

dorsolateral prefrontal cortex, supporting a key role of ACC in information sampling.

How do these networks cooperate to motivate behavior?

We have discussed networks that (1) specifically signal information, and (2) integrate 

information and primary reward. How do they cooperate to motivate behavior? We propose 

the following hypothesis (Figure 3).

Cortex-basal ganglia pathways have primary reward predictive neurons that promote primary 

reward seeking [47–49], and the work reviewed here suggests they contain a parallel process 
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for information seeking (Figure 3, top). These processes are intermixed, with information 

and primary reward signals in nearby neurons [**39] and potentially mixed in single 

neurons. However, there is some clustering. For example, information-related neurons are 

enriched in a DS region that receives strong ACC projections [**39] and can activate in 

humans during risky decisions [50].

As a result, these pathways could combine information and primary reward predictions to 

compute the total predicted reward value that guides decisions. These total reward 

predictions could also be used to compute RPEs, by sending them directly to the classic RPE 

system that regulates dopamine, including the lateral habenula, rostromedial tegmental 

nucleus, and dopamine neurons themselves [51] (Figure 3, bottom; LHb, RMTg, DA). RPE 

computations could also occur in the cortex-basal ganglia pathway itself, where subsets of 

neurons have RPE-related signals [52–55]. Indeed, these areas have all been implicated in 

predicting values, controlling the RPE system, or both [48,55–66].

Neural systems for information prediction and RPEs are well positioned to support each 

other. Information seeking provides the raw material for predictions, while erroneous 

predictions indicate the need for new information. In particular, information predictive 

activity anticipates the moment of gaining information about uncertain future rewards 

(Figure 2A), and this information immediately triggers a phasic RPE signal based on 

whether it is better or worse than predicted (Figure 2B). Therefore, information prediction 

signals may have a special role in preparing the brain to compute and learn from RPEs 

(Figure 3).

Conversely, RPEs are ideally suited to instruct information predictions (Figure 3). An RPE 

indicates the receipt of new information about rewards. In classic theories, RPEs instruct 

learning of reward predictions: positive RPEs increase reward predictions, while negative 

RPEs decrease reward predictions [67]. In principle, however, RPEs could also instruct 

learning of information predictions: large positive and negative RPEs both indicate the 

receipt of a large amount of information about future reward value, while small RPEs 

typically indicate the receipt of little information. If so, RPEs could instruct both total 

reward value predictions and information predictions.

In addition, many dopamine neurons are activated by alerting events, which are important 

for motivated behavior but do not increase the situation’s reward value [68–70] (such as 

memoranda in a memory task [71], unexpected stop signals [72], and rewards changing 

flavor [73,74]). Some dopamine neurons are also activated by certain aversive events 

[70,75–77]. This could motivate information prediction and seeking about these important 

events as well.

What algorithm does the brain use to calculate the value of information?

We have discussed networks that translate the value of information into motivated behavior. 

How, then, does the brain decide information’s value? Shortly after the discovery of 

“observing behavior” in 1952 [11], two general theories emerged about the underlying 

mechanism [78,79] (Figure 1C). These theories have been remarkably durable, emerging in 
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similar forms in multiple fields. They share the common basis that, since non-instrumental 

information cannot be used to change the objective rate of gaining primary rewards from the 

environment, the brain must value information based on how it changes subjective, internal 

states.

The first theory, proposed by the curiosity research pioneer Daniel Berlyne, is that we value 

information because it reduces uncertainty [78] (Figure 1C). His original paper suggested 

computing uncertainty with Shannon’s newly invented information theory [80]. Later work 

proposed alternate computations for uncertainty, often considering its experience and 

resolution over time [81]. For instance, uncertainty about potential gains and losses may 

produce anticipatory emotions like hope and anxiety [16–18]. This theory is supported by 

evidence that uncertainty and its resolution activate cortex-basal ganglia networks in 

monkeys [**39] (Figure 2A) and multiple cortical areas in humans [*38], and in those 

settings uncertainty strongly influences information seeking [*38,**39].

The second theory, proposed by the “observing behavior” discoverer L. Benjamin Wyckoff, 

is that we value information because we overweight desirable information [79] (Figure 1C). 

In a nutshell, objectively neutral information sources may become subjectively valuable if 

we overweight their desirable information (‘good news’), or underweight their undesirable 

information (‘bad news’). The first proposal by economists was a similar mechanism, even 

suggesting the same equation for overweighting (a squaring nonlinearity) [15]. Later work 

proposed many mechanisms for overweighting, including selective observing [13], 

engagement [82], savoring desirable outcomes, and dreading undesirable outcomes [83,84].

An important message of recent work is that individuals may value information about 

uncertain rewards through both mechanisms – in a way that may vary across individuals, 

species, and situations. For example, information seeking can be tuned to both reward 

uncertainty and expected reward value, but to different degrees in different studies 

[**9,*38,40,**85,86]. Even work reporting predominance of uncertainty often finds some 

effect of expected value [*38,86], while work reporting predominance of ‘good news’ often 

finds that this requires variance between good news and other possible outcomes [84,87]. 

Most strikingly, even in a single study, humans have a remarkable diversity of information 

attitudes: some are guided by uncertainty, some by expected value, and some by both [**85]. 

Taken together, this work suggests the need for hybrid theories [18,88,89] with flexible 

mechanisms to value information.

Looking forward

A key goal of future research will be to uncover the neural basis of a broader spectrum of 

information attitudes. We have discussed information seeking about uncertain rewards, but 

similar neural mechanisms may apply to other events. Humans have similar information 

seeking about trivia, and even remember trivia better when it evokes a more positive 

informational prediction error – when it satisfies their curiosity better than predicted [90]. 

Humans and animals can also seek information about aversive events [91], and humans can 

have ‘morbid fascination’ with observing the aversive experiences of others [92] that may 

activate regions of mPFC and OFC [93]. A recent study reported evidence that monkeys 
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even seek information about counterfactual outcomes – outcomes they would have received 

if they had chosen a different option [*94]. Lastly, we have discussed information seeking, 

but humans and animals sometimes avoid information [9,12,95,96], such as avoiding 

medical screening for disease [95] or refusing to check their stock portfolio during a bear 

market [**9].

Finally, an important long-term goal will be to discover the evolutionary and developmental 

origin of information seeking. That is, why do brains develop a motivational system that 

treats non-instrumental information as valuable? In natural environments, organisms can 

rarely estimate the instrumental value of a specific piece of information with high precision. 

This is especially true for unfamiliar environments and important life events, such as moving 

to a new home, finding a mate, or voting in a national election.

We hypothesize that the brain solves this problem by nudging its estimate of information 

value toward the value that similar types of information typically have in natural 

environments. This could be based on the environments the organism encountered during its 

development, and an evolved prior about the environments its species typically encounters. 

This would explain why organisms can be well adapted to natural environments, yet 

persistently seek information in controlled lab experiments where it has no instrumental 

value.

There is precedent for this phenomenon in neuroscience. ‘Visual illusions’ are often viewed 

as simple errors in perception, perhaps due to the brain using flawed algorithms for visual 

processing. Why should we perceive certain objects to be closer than they really are, and 

others to move slower than they really are? However, when vision scientists measured the 

natural statistics of visual scenes, they realized that many illusions may actually result from 

the brain making rational inferences about the world based on its evolved and learned 

knowledge about the structure of natural environments [97,98]. ‘Most objects move slowly, 

so err on the side of slowness.’ In a similar manner, non-instrumental information seeking 

may arise from a ‘value illusion’ as the brain attempts to infer the value of information based 

on the natural statistics of cues, rewards, and actions. ‘Information about rewards is usually 

valuable, so err on the side of value.’ If so, then measuring the natural statistics of 

motivational events would revolutionize our understanding of why we value information, 

and what rules we use to calculate its value.

Our increasingly interconnected world puts a vast ocean of information at our fingertips. 

Learning to navigate it is vital for our own happiness and the health of our society. Thus, 

understanding our informational preferences is becoming increasingly important not only for 

the sake of scientific discovery, but also society as a whole.
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HIGHLIGHTS

• Humans and animals seek information about uncertain future rewards

• Information is valued for resolving uncertainty and signaling desirable 

outcomes

• The reward prediction error system integrates information with primary 

reward

• A cortex-basal ganglia network specifically predicts and drives information 

seeking
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Figure 1. Humans and animals can seek non-instrumental information about uncertain future 
rewards.
(A) A simple task to study information preferences (originally invented by [14]). Individuals 

are offered a choice between options that provide either informative cues that indicate the 

outcome in advance (Info, red; reward cue or no-reward cue) or non-informative cues that do 

not indicate the outcome (Noinfo, blue). Importantly, there is no way to use this information 

to influence the outcome. (B) Humans and macaque monkeys can both prefer to view 

informative cues. This data was collected with more sophisticated tasks where offers 

provided different chances of obtaining information about gaining future rewards – money 

for humans, and juice or water for monkeys [8,**9,22]. (C) A simple candidate mechanism 

for non-instrumental information seeking. Individuals can value information for multiple 

reasons, including valuing the resolution of uncertainty, and overweighting desirable vs. 

undesirable information. The value of information is then combined with the value of 

primary rewards to compute the total reward value that guides decisions.
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Figure 2. Candidate neural signals to motivate information seeking: information predictions and 
reward prediction errors.
(A) An example neuron in the dorsal striatum with activity resembling an information 

prediction (data from [**39]). This neuron activated during reward uncertainty, ramped up to 

the time the animal expected to receive information, and then returned to baseline after the 

information was received. Specifically, this neuron had ramping activation in anticipation of 

the offer, which indicated the availability of information and of juice reward. If the offer 

indicated that reward was uncertain and information was forthcoming, the neuron activated 

again and ramped to the predicted time of the informative cue (red). The neuron had much 

less activity if no information was predicted (blue) or if reward was fully certain to occur 

(gray). (B) An example midbrain dopamine neuron with an RPE signal treating information 

as a reward (data from [6]). This neuron was activated by Info offers (red, ‘more information 

than predicted’) and by informative cues indicating water reward delivery (red solid line, 

‘more reward than predicted’); it was inhibited by Noinfo offers (blue, ‘less information than 
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predicted’) and by informative cues indicating reward omission (red dashed line, ‘less 

reward than predicted’); and had little response to non-informative cues (blue, ‘predictions 

unchanged’). As a result, the information prediction signal (A) ramps up to the expected 

time of detecting an RPE (B).
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Figure 3. Hypothesized network mechanisms of information seeking.
Left: anatomically connected neural networks for motivated behavior. Left top: cortex-

striatum-pallidum network. Left bottom: classic RPE network. Sharp/blunt arrows indicate 

predominant excitatory/inhibitory projections [**39,51]. Right: neuronal signals 

demonstrated to exist in each network, and their hypothesized influences on each other 

(arrows). Note that the RPE signal is depicted to straddle the two networks because RPE-like 

activity has been reported in subsets of neurons in both. Top: the cortex-striatum-pallidum 

network contains distinct predictions about the availability of information and primary 

reward (red, gray). These may directly motivate the specific pursuit of information or of 

primary reward. They may also be combined (purple) to compute the total predicted reward 

value, and in turn the total reward prediction error. These signals could then motivate the 

general pursuit of total reward value. The information prediction signal may also interface 

with RPEs: information predictions could prepare the brain for impending prediction errors, 

while RPEs could instruct information predictions by signaling the receipt of new 

information that changes reward predictions.
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