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We developed a mathematical model to describe the new coronavirus transmission in São Paulo State,
Brazil. The model divided a community into subpopulations composed of young and elder persons
considering a higher risk of fatality among elder persons with severe CoViD-19. From the data collected
in São Paulo State, we estimated the transmission and additional mortality rates. Based on the estimated
model parameters, we calculated the basic reproduction number R0, and we retrieved the number of deaths
due to CoViD-19, which was three times lower than those found in the literature. Considering isolation
as a control mechanism, we varied the isolation rates in the young and elder subpopulations to assess the
epidemiological impacts. The epidemiological scenarios focused mainly on evaluating the reduction in
the number of severe CoViD-19 cases and deaths due to this disease when isolation is introduced in a
population.

Keywords: mathematical model; numerical simulations; SARS-CoV-2/CoViD-19; quarantine/relaxation;
epidemiological scenarios.

1. Introduction

Coronavirus disease 2019 (CoViD-19) is caused by the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2, a strain of the SARS-CoV-1 pandemic in 2002/2003) originated in Wuhan, China, in
December 2019, and spread out worldwide. The World Health Organization (WHO) declared CoViD-19
pandemic on March 11, 2020, based on its definition: ‘A pandemic is the worldwide spread of a new
disease. An influenza pandemic occurs when a new influenza virus emerges and spreads around the
world, and most people do not have immunity’.

SARS-CoV-2 (new coronavirus), an RNA virus, can be transmitted by droplets that escape lungs
through coughing or sneezing and infects humans (direct transmission) or is deposited in surfaces and
infects humans when in contact with this contaminated surface (indirect transmission). This virus enters
into a susceptible person through the nose, mouth or eyes, infects cells in the respiratory tract and
releases millions of new viruses. In severe cases, immune cells overreact and attack lung cells causing
acute respiratory disease syndrome and possibly death. In general, the fatality rate in elder patients
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(60 years or more) is much higher than in young patients, and under 40 years seems to be around
0.2% (WHO, 2020). There is no vaccine, neither efficient treatment, even many drugs (chloroquine, for
instance) are under clinical trial. Like all RNA-based viruses, coronavirus tends to mutate faster than
DNA viruses but slower than influenza viruses.

Many mathematical and computational models are being used to describe the current new coron-
avirus pandemic. In mathematical modeling, there is a threshold (see Anderson & May, 1991) called
the basic reproduction number denoted by R0, which is the secondary cases produced by one case
introduced in a completely susceptible population. When a control mechanism is introduced, this
number decreases and is called the reduced reproduction number Rr. Ferguson et al. (2020) proposed a
model to investigate the effects on the CoViD-19 epidemic when susceptible persons are isolated. They
analysed two scenarios called mitigation and suppression. Roughly, mitigation decreases the reduced
reproduction number Rr, but not lower than one (1 < Rr < R0), while suppression decreases the
reduced reproduction number lower than one (Rr < 1). They predicted the numbers of severe cases
and deaths due to CoViD-19 without control measure and compared them with those numbers when
isolation (mitigation and suppression) is introduced as control measures. Li et al. discussed the role of
undocumented infections (Li et al., 2020).

In this paper, we formulate a mathematical model based on ordinary differential equations to
understand the new coronavirus transmission dynamics and, using the data from São Paulo State, Brazil,
to estimate the model parameters. These estimated parameters allow us to study potential scenarios of
isolation as a control mechanism.

The paper is structured as follows. In Section 2, we introduce a model, which is numerically studied
in Section 3. Discussions are presented in Section 4, and conclusions in Section 5.

2. Material and methods

In a community where the new coronavirus is circulating, the risk of infection is more significant in
the elder than in young persons, as well as elder persons are under an increased probability of being
symptomatic with higher CoViD-19 induced mortality. Hence, we divide a community into two groups:
young (under 60 years old, denoted by subscript y) and elder (above 60 years old, denoted by subscript
o) subpopulations. We describe the community’s vital dynamic by the per-capita birth (φ) and death (μ)
rates.

Each subpopulation j (j = y, o) is divided into eight classes: susceptible Sj, susceptible persons
who are isolated Qj, exposed (infected but not infectious) Ej, asymptomatic Aj, asymptomatic caught
by test and then isolated Q1j, pre-diseased (pre-symptomatic, before the onset of CoViD-19) D1j,
symptomatic but presenting mild CoViD-19 (or non-hospitalized) Q2j and symptomatic with severe
CoViD-19 (hospitalized) D2j. Pre-diseased persons caught by test are isolated and, for simplicity, they
are transferred to non-transmitting class Q2j . However, young and elder persons enter into the same
immune class I after experiencing the infection. Table 1 summarizes the model variables.

We describe the natural history of the new coronavirus infection for the young (j = y) and elder
(j = o) subpopulations. We assume that only persons in asymptomatic (Aj) and pre-diseased (D1j)
classes are transmitting the virus, and other infected classes (Q1j, Q2j and D2j) are under voluntary or
forced isolation. The susceptible persons in contact with the virus released by asymptomatic and pre-
diseased persons can be infected at a rate λjSj (known as mass action law; Anderson & May, 1991)
and enter into class Ej, where λj is the per-capita incidence rate (or force of infection) defined by
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Table 1 Summary of the model variables (j = y, o).

Symbol Meaning

Sj Susceptible persons
Qj Isolated among susceptible persons
Ej Exposed (infected but not infectious) persons
Aj Asymptomatic persons
Q1j Isolated among asymptomatic persons caught by test
D1j Presymptomatic (pre-diseased) persons
Q2j Isolated among pre-diseased persons caught by test
D2j Symptomatic (diseased) persons
I Immune (recovered) persons

λj = λ
(
δjy + ψδjo

)
, with λ being

λ = 1

N

(
β1yAy + β2yD1y + β1oAo + β2oD1o

)
, (1)

where δij is the Kronecker delta, with δij = 1 if i = j, and 0, if i �= j; and β1j and β2j are the transmission
rates, i.e. the rates at which virus encounters susceptible person and infects him/her.

Susceptible persons are infected at a rate λj and enter into class Ej. After an average period 1/σj in
class Ej, where σj is the incubation rate, exposed persons enter into asymptomatic Aj (with probability pj)
or pre-diseased D1j (with probability 1 − pj) classes. After an average period 1/γj in class Aj, where γj
is the infection rate of asymptomatic persons, symptomatic persons acquire immunity and enter into
immune (recovered) class I. Another route of exit from class Aj is being caught by test at a rate ηj and
entering into class Q1j, and, then, after a period 1/γj, entering into class I. With very low intensity,
asymptomatic persons are in voluntary isolation, described by the voluntary isolation rate χj. For the
pre-symptomatic persons, after an average period 1/γ1j in class D1j, where γ1j is the infection rate of
pre-diseased persons, they enter into non-hospitalized Q2j (with probability mj) or hospitalized D2j (with
probability 1−mj) classes. The pre-symptomatic persons can also be caught by test at a rate η1j and enter
into class Q2j. Hospitalized persons acquire immunity after a period 1/γ2j, where γ2j is the recovery rate
of severe CoViD-19, and enter into immune class I, or die under disease-induced (additional) mortality
rate αj. The severe CoViD-19 cases are also treated at a rate θj and enter into immune class I. After
an average period 1/γj in class Q2j, non-hospitalized persons acquire immunity and enter into immune
class I, or enter into class D2j at a relapsing rate ξj.

For the control of the CoViD-19 epidemic, we consider continuous isolation and release of persons.
We assume that susceptible young and elder persons are removed from susceptible class Sj at the
isolation rate η2j , and released from class Qj at the release rate η3j, with j = y, o.

Figure 1 shows the flowchart of the new coronavirus transmission model.
Based on the above descriptions summarized in Fig. 1, the new coronavirus transmission model is

described by a system of ordinary differential equations, with j = y, o. The equations for susceptible
persons are ⎧⎪⎨

⎪⎩
d

dt
Sy = φN − (η2y + ϕ + μ)Sy − λSy + η3yQy

d

dt
So = ϕSy − (η2o + μ)So − λψSo + η3oQo,

(2)
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Fig. 1. The flowchart of the new coronavirus transmission model with variables and parameters. In all classes, the arrow
corresponding to the natural mortality rate μ is not shown.

for susceptible persons in isolation Qj and infected persons are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
Qj = η2jSj − (

η3j + μ
)
Qj

d

dt
Ej = λ

(
δjy + ψδjo

)
Sj − (

σj + μ
)
Ej

d

dt
Aj = pjσjEj − (

γj + ηj + χj + μ
)
Aj

d

dt
Q1j = (

ηj + χj

)
Aj − (

γj + μ
)
Q1j

d

dt
D1j = (

1 − pj

)
σjEj − (

γ1j + η1j + μ
)
D1j

d

dt
Q2j = (

mjγ1j + η1j

)
D1j − (

γj + ξj + μ
)
Q2j,

d

dt
D2j = (

1 − mj

)
γ1jD1j + ξjQ2j − (

γ2j + θj + μ + αj

)
D2j,

(3)

and for immune persons is

d

dt
I = γyAy + γyQ1y + γyQ2y + (

γ2y + θy

)
D2y + γoAo + γoQ1o + γoQ2o+(

γ2o + θo

)
D2o − μI,

(4)

with Nj = Sj + Qj + Ej + Aj + Q1j + D1j + Q2j + D2j obeying, with N = Ny + No + I,

d

dt
N = (φ − μ) N − αyD2y − αoD2o, (5)
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Table 2 Summary of the model parameters (j = y, o) and values (rates in days−1, time in days
and proportions are dimensionless). Some values are calculated (&), or varied (#), or assumed (∗),
or estimated (∗∗) or not available (∗∗∗).

Symbol Meaning Value

μ Natural mortality rate 1/(75×360)SEADE–Fundação
Sistema Estadual (2020)

φ Birth rate 1/(75 × 360)∗
ϕ Aging rate 6.7 × 10−6&

σy(σo) Incubation rate 1/6 (1/5)WHO (2020)
γy(γo) Infection rate of asymptomatic persons 1/10 (1/12)WHO (2020)
γ1y(γ1o) Infection rate of pre-diseased persons 1/3 (1/2)WHO (2020)
γ2y(γ2o) Recovery rate of severe CoViD-19 1/10 (1/14)WHO (2020)
ξy(ξyo) Relapsing rate of pre-diseased persons 0.005 (0.01)∗
αy(αo) Additional mortality rate 0.0009 (0.009)∗∗
ηy(ηo) Testing rate among asymptomatic persons 0 (0)∗∗∗
χy(χo) Voluntary isolation rate of asymptomatic persons 0 (0)∗
η1y(η1o) Testing rate among pre-diseased persons 0 (0)∗∗∗
η2y(η2o) Isolation rate of susceptible persons #

η3y(η3o) Releasing rate of isolated persons #

θy(θo) Treatment rate 0(0)∗∗∗
β1y(β1o) Transmission rate due to asymptomatic persons 0.77 (0.77)∗∗
β2y(β2o) Transmission rate due to pre-diseased persons 0.77 (0.77)∗∗
ψ Scaling factor of transmission among elder persons 1.17&

py(po) Proportion of asymptomatic persons 0.8(0.75)∗
my(mo) Proportion of mild (non-hospitalized) CoViD-19 0.8 (0.75)Boletim

Epidemiológico 08 (2020)

where the initial number of population at t = 0 is N(0) = N0. The initial conditions (at t = 0) supplied
to equations (2), (3 ) and (4) are

Sj (0) = N0j, Qj (0) = 0, and Xj (0) = nXj
, where Xj = Ej, Aj, Q1j, D1j, Q2j, D2j, I,

where nXj
is a non-negative number. For instance, nEy

= nEo
= 0 describes the absence of exposed

persons at the beginning of the epidemic.
Table 2 summarizes the model parameters and values (those for elder classes are between parenthe-

ses).
The isolation of persons deserves some words. In the modeling, we know the number of isolated

susceptible persons exactly when introducing the new coronavirus, S(0) = N0. However, as time passes,
susceptible persons are infected and acquire immunity, and, due to asymptomatic persons, susceptible
and immunized persons are indistinguishable (except when hospitalized or caught by test). For this
reason, if isolation of persons is not implemented at the time of the introduction of the virus, this virus
should probably be circulating among the isolated population, but at a lower transmission rate (virus
spreads restricted among household and neighborhood persons), which is not considered in the model.
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From the system of equations (2), (3) and (4), we can derive some epidemiological parameters: new
cases, severe CoViD-19 cases, number of deaths due to CoViD-19 and isolated persons.

The numbers of persons infected with the new coronavirus are given by Ey + Ay + Q1y + D1y +
Q2y + D2y for young subpopulation, and Eo + Ao + Q1o + D1o + Q2o + D2o for elder subpopulation.
The incidence rates are

Λy = λSy and Λo = λψSo, (6)

where the per-capita incidence rate λ is given by equation (1), and the numbers of new cases Cy and Co
are

d

dt
Cy = Λy and

d

dt
Co = Λo,

with Cy(0) = 0 and Co(0) = 0. The daily numbers of new cases Ci
y and Ci

o are

Ci
y =

Ti+1∫
Ti

Λydt = Cy

(
Ti+1

)− Cy

(
Ti

)
and Ci

o =
Ti+1∫
Ti

Λodt = Co

(
Ti+1

)− Co

(
Ti

)
,

which are entering into classes Ey and Eo, where Ti = iτ , τ = Ti+1 − Ti = 1 day, for i = 1, · · · , with
T0 = 0.

The numbers of accumulated severe (hospitalized) CoViD-19 cases Ωy and Ωo are given by those
exiting from D1y, Q2y, D1o and Q2o, i.e.

d

dt
Ωy =

(
1 − my

)
γ1yD1y + ξyQ2y and

d

dt
Ωo = (

1 − mo

)
γ1oD1o + ξoQ2o, (7)

with Ωy(0) = 0 and Ωo(0) = 0, and the daily numbers of hospitalized cases Ω i
y and Ω i

o are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ω i
y =

Ti+1∫
Ti

[(
1 − my

)
γ1yD1y + ξyQ2y

]
dt = Ωy(Ti+1) − Ωy(Ti)

Ω i
o =

Ti+1∫
Ti

[(
1 − mo

)
γ1oD1o + ξoQ2o

]
dt = Ωo(Ti+1) − Ωo(Ti),

which are entering into classes D2y and D2o.
We can calculate the number of accumulated deaths caused by severe CoViD-19 cases Π from

hospitalized patients and is

d

dt
Π = αyD2y + αoD2o, (8)
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with Π(0) = 0. The daily number of dead persons π is

π = πy + πo with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

πy =
Ti+1∫
Ti

αyD2ydt

πo =
Ti+1∫
Ti

αoD2odt,

where πy and π0 are the daily numbers of deaths in young and elder subpopulations.

We obtain the number of susceptible persons in isolation in the absence of release Sis from

Sis = Sis
y + Sis

o , where

⎧⎪⎨
⎪⎩

d

dt
Sis

y = η2ySy, with Sis
y (0) = 0

d

dt
Sis

o = η2oSo, with Sis
o (0) = 0,

(9)

where Sis
y and Sis

o are the numbers of isolated young and elder persons.
The system of equations (2), (3) and (4) is non-autonomous. Nevertheless, the fractions of persons

in each compartment approach to a steady state (see Appendix A), hence, by using equations (A.11) and
(A.12), the reduced reproduction number Rr is approximated by

Rr ≈
[
pyR1

ry +
(

1 − py

)
R2

ry

]
S0

y
N0

+ [
poR1

ro + (
1 − po

)
R2

ro

] S0
o

N0
, (10)

where s0
y and s0

o are substituted by S0
y/N0 and S0

o/N0.
Given N and R0, let us evaluate roughly the threshold number of susceptible persons to trigger and

maintain an epidemic, assuming that all model parameters for young and elder subpopulations and all
transmission rates are equal. In this special case, R0 = σβ/ [(σ + φ) (γ + φ)] and Re ≈ R0S/N, using
approximated Re given by equation (A.16). Letting Re = 1, the critical number of susceptible persons
Sth at equilibrium is

Sth ≈ N

R0
. (11)

If S > Sth, epidemic occurs and persists (Re > 1, the non-trivial equilibrium point P∗), and the fraction
of susceptible individuals is s∗ = 1/Re, where s∗ = s∗

y + s∗
o; but if S < Sth, epidemic occurs but fades

out (Re < 1, the trivial equilibrium point P0), and the fractions of susceptible individuals sy and so at
equilibrium are given by equation (A.4) or (A.13) in the absence of controls.

Let us now evaluate roughly the critical isolation rate of susceptible persons η2 assuming that all
model parameters for young and elder subpopulations and all transmission rates are equal. In this
particular case, Rr ≈ R0(η3 + φ)/(η2 + η3 + φ), where R0 = σβ/ [(σ + φ) (γ + φ)], and letting
Rr = 1, we obtain

ηth
2 ≈ (

η3 + φ
) (

R0 − 1
)

. (12)
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If η2 < ηth
2 , the epidemic occurs and persists (Re > 1, the non-trivial equilibrium point P∗); but if

η2 > ηth
2 , the epidemic fades out (Re < 1, the trivial equilibrium point P0).

We apply the above results to study the introduction and establishment of the new coronavirus in
São Paulo State, Brazil. From the data collected in São Paulo State from March 14, 2020, until April
5, 2020, we estimate the transmission and additional mortality rates, and, then, we study the potential
scenarios introducing isolation as a control mechanism.

3. Results

The results obtained in the preceding section are applied to describe the new coronavirus infection in São
Paulo State. The first confirmed case of CoViD-19, on February 26, 2020, was from a traveler returning
from Italy on February 21 and being hospitalized on February 24. The first death due to CoViD-19 was
a 62 years old male with comorbidity who never traveled abroad, hence considered an autochthonous
transmission. He manifested his early symptoms on March 10, was hospitalized on March 14 and died
on March 16. On March 24, the São Paulo State authorities ordered the isolation of persons acting in
non-essential activities and students of all levels until April 6, which was extended to April 22.

Let us determine the initial conditions. In São Paulo State, the number of inhabitants is N (0) = N0 =
44.6 × 106 according to SEADE (SEADE–Fundação Sistema Estadual, 2020). We calculate the value
of parameter ϕ given in Table 1 using equation (A.13), i.e. ϕ = bφ/ (1 − b), where b is the proportion
of elder persons. Using b = 0.153 in São Paulo State (SEADE–Fundação Sistema Estadual, 2020), we
obtained ϕ = 6.7 × 10−6 days−1, hence, Ny (0) = N0y = 37.8 × 106 (s̄0

y = N0y/N0 = 0.847) and

No (0) = N0o = 6.8 × 106 (s̄0
o = N0o/N0 = 0.153). The initial conditions for susceptible persons are

let to be Sy (0) = Ny (0) and So (0) = No (0). For other variables, using py = 0.8 and my = 0.8
from Table 2, the ratios asymptomatic:symptomatic and mild:severe (non-hospitalized:hospitalized)
CoViD-19 are 4:1. To set up initial conditions, we may use as an approximation these same ratios
for elder persons, even though po and mo are slightly different. Hence, if we assume that there is one
person in D2o (the first confirmed case in the elder subpopulation), then there are four persons in Q2o.
The sum 5 is the number of persons in class D1o, implying that there are 20 in class Ao; hence, the sum
25 is the number of persons in class Eo. Finally, we suppose that no one is isolated or tested and also
immunized. We assume that the young subpopulation’s initial conditions are equal to those assigned
to the elder subpopulation. (Probably the first confirmed CoViD-19 person transmitted the virus (since
February 21 when returned infected from Italy), as well as other asymptomatic travelers returning from
abroad, and, perhaps, a young person with severe CoViD-19 was wrongly diagnosed as SARS.)

Therefore, the initial conditions supplied to the dynamic system (2), (3) and (4) are

{
Sj (0) = N0j, Qj (0) = Q1j(0) = 0, Ej (0) = 25,
Aj(0) = 20, D1j(0) = 5, Q2j(0) = 4 D2j(0) = 1, I(0) = 0,

where the initial simulation time t = 0 corresponds to the calendar time February 26, 2020, when the
first case was confirmed. This system is evaluated numerically using fourth-order Runge–Kutta method.

In this section, we present the estimation of the model parameters and the natural epidemic
scenario (section 3.1), the epidemiological scenarios with isolation (section 3.2) and the epidemiological
scenarios of relaxation (section 3.3).
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3.1 Parameters estimation and the natural epidemic

Here we present parameters estimation and epidemiological scenario of the natural epidemic, i.e. the
transmission of the new coronavirus without any control. For simplicity, we assume that all transmission
rates in the young subpopulation are equal, as well as in the elder subpopulation, i.e. we assume that

βy = β1y = β2y = β1o = β2o, and βo = ψβy,

hence the forces of infection are λy = (Ay + D1y + Ao + D1o)βy/N and λo = ψλy.
Currently, the number of kits to detect the infection by the new coronavirus is insufficient. For this

reason, only hospitalized persons and those who died manifesting symptoms of CoViD-19 are tested to
confirm the infection by SARS-CoV-2. Hence, we have only observed data of hospitalized persons (D2y
and D2o) and those who died (Πy and Πo). Taking into account hospitalized persons with CoViD-19, we
estimate the transmission rates, and from persons who died due to CoViD-19, we estimate the additional
mortality rates, which are estimated by applying the least square method (see Raimundo et al., 2002).

The effects of quarantine at t = 27, corresponding to calendar time on March 24, are expected to
appear later. Hence, we will estimate the parameters taking into account the confirmed cases and deaths
from February 26 (t = 0) to April 5 (t = 39),1 hence n = 40 observations. We expect that at around
simulation time t = 43 (April 10), the effects of isolation will appear (the sum of the incubation and
recovery periods (see Table 2) is around 16 days).

To estimate the transmission rates βy and βo, we let αy = αo = 0 and the system of equations (2),
(3) and (4) is evaluated, and we calculate

min
n∑

i=1

{
Ωy

(
ti
)+ Ωo

(
ti
)−

[
Ωob

y

(
ti
)+ Ωob

o

(
ti
)]}2

, (13)

where min stands for the minimum value, n is the number of observations, ti is i-th observation time, Ωy

and Ωo are given by equation (7) and Ωob
y and Ωob

o are the observed number of accumulated CoViD-19
cases.

To estimate the mortality rates αy and αo, we fix previously estimated transmission rates βy and βo
and the system of equations (2), (3) and (4) is evaluated, and we calculate

min
n∑

i=1

{
Πy

(
ti
)+ Πo

(
ti
)−

[
Pob

y

(
ti
)+ Pob

o

(
ti
)]}2

, (14)

where min stands for minimum value, n is the number of observations, ti is i-th observation time, Πy

and Πo are given by equation (8) and Pob
y and Pob

o are the observed number of dead persons.

3.1.1 Estimation of the transmission and additional mortality rates. Firstly, letting the additional
mortality rates equal to zero (αy = αo = 0), we estimate a unique β = βy = βo, with ψ = 1, against
hospitalized CoViD-19 cases (Ω) collected from São Paulo State. The estimated value is β = 0.8
days−1, resulting, for the basic reproduction number, R0 = 6.99 (partials R0y = 5.83 and R0o = 1.16)
using equation (A.14). Around this value, we vary βy and βo and choose the better-fitted values

1 Simulations were done on April 6.
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Fig. 2. The estimated accumulated severe CoViD-19 cases Ω and the observed data. The estimated transmission parameters are
βy = 0.77 and βo = 0.9009 (days−1).

comparing the curve of Ω = Ωy + Ωo with the observed data. The estimated values are βy = 0.77 and

βo = ψβy = 0.9009 (days−1), where ψ = 1.17, resulting in the basic reproduction number R0 = 6.915
(partials R0y = 5.606 and R0o = 1.309). Figure 2 shows the estimated curve of Ω and the observed
data. This estimated curve is quite the same as the curve fitted using a unique β.

We fix the transmission rates βy = 0.77 and βo = 0.9009 (both days−1), and we estimate the
additional mortality rates αy and αo. We vary αy and αo and choose the better-fitted values comparing
the curve of deaths due to CoViD-19 Π = Πy + Πo with the observed data. By the fact that lethality in
the young subpopulation is much lower than in the elder subpopulation, we let αy = 0.1αo (WHO, 2020)

and fit only one variable αo. The estimated rates are αy = 0.0036 and αo = 0.036 (days−1). Figure 3
shows the estimated curve of Π = Πy + Πo and the observed data. We call this the first estimation
method.

The first estimation method used only one information: the risk of death is higher in the elder than
young subpopulation (we used αy = 0.1αo). However, the lethality among hospitalized elder persons
is 10% (Boletim Epidemiológico 08, 2020). Combining both findings, we assume that the numbers of
deaths in the young and elder subpopulations are, respectively, 1% and 10% of the accumulated cases
when Ωy and Ωo approach plateaus (see Fig. 5 below). This procedure is called the second estimation
method, which considers the second information besides that used in the first estimation method. In this
procedure, the estimated rates are αy = 0.0009 and αo = 0.009 (days−1). Figure 4 shows the estimated
curve Π = Πy + Πo and the observed data, which fits the initial phase of the epidemic very badly, but
estimates reasonably the number of deaths at the end of the epidemic (see Fig. 6 below).

Reliable estimations of both transmission and additional mortality rates are crucial for predicting
new cases (to adequate the number of beds in hospitals and ICUs, for instance) and deaths. When the
estimation is based on a small number of data, i.e. at the beginning of the epidemic, we must take
some cautions because the rates may be over or underestimated. At the very beginning phase of the
epidemic, the spreading out of infection and deaths increase exponentially. Remember that the estimated
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Fig. 3. The estimated curve of the accumulated deaths due to CoViD-19 Π and the observed data. The estimated additional
mortality rates are αy = 0.0036 and αo = 0.036 (days−1) for the first estimation method.

Fig. 4. The estimated curve of the accumulated deaths due to CoViD-19 Π and the observed data. The estimated additional
mortality rates are αy = 0.0009 and αo = 0.009 (days−1) for the second estimation method.

parameters, especially the additional mortality rates, were based only on 40 observed data. It is worth
stressing that further data will be influenced by the isolation implemented in São Paulo State, and the
epidemic curve will follow a decreased trend departing from the natural epidemic.

The fitted parameters βy, βo, αy and αo are fixed, and the control variables η2y and η2o are varied,
aiming to obtain the epidemiological scenarios. In general, the epidemic period of infection by viruses
is around 2 years, and depending on the value of R0, a second epidemic occurs after elapsed many years
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Fig. 5. The estimated curves of the accumulated number of severe CoViD-19 (Ωy, Ωo and Ω = Ωy + Ωo) during the first wave
of the epidemic.

Fig. 6. The estimated curves of the accumulated number of CoViD-19 deaths (Πy, Πo and Π = Πy + Πo) during the first wave
of the epidemic, for the first (thick curves, labeled αo = 0.036) and the second (thin curves, labeled αo = 0.009 ) methods of
estimation.

(Yang, 1998). For this reason, we study the epidemiological scenarios of CoViD-19 restricted during the
first wave of the epidemic, which is around 180 days.

Remembering that human population is varying due to the additional mortality (fatality) of severe
CoViD-19, we have, at t = 0 (calendar time, February 26), N0y = 3.780 × 107, N0o = 0.680 × 107 and
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N0 = N0y + N0o = 4.460 × 107, and at t = 180 days (calendar time, August 24), Ny = 3.774 × 107

(0.159%), No = 0.66 × 107 (2, 94%) and N = 4.435 × 107 (0.56%) for the first estimation method, and
Ny = 3.779 × 107 (0.026%), No = 0.67 × 107 (1.47%) and N = 4.452 × 107 (0.179%) for the second
estimation method. The percentage of deaths (100(N0j − Nj)/N0j) is given between parentheses.

3.1.2 Natural epidemiological scenario. To describe the entire first wave of the natural epidemic of
CoViD-19, we extend the estimated curves until t = 180 days, when the epidemic attains low values. We
refer to the severe CoViD-19 D2 as the epidemic curve (notice that the epidemic curve can be defined
in several ways, for instance, the sum of those manifesting CoViD-19 Q2 + D2).

Figure 5 shows the extended curves of the accumulated number of severe CoViD-19 (Ωy, Ωo and
Ω = Ωy + Ω) shown in Fig. 2, using equation (7). At t = 140 days (calendar time, July 15), Ω

approached an asymptote (or a plateau), which can be understood as the time when the first wave of
the epidemic ends. Instead of t = 140 days, the curves Ωy, Ωo and Ω attain values at t = 180 days,

respectively, 1.8 × 106, 0.56 × 106 and 2.36 × 106.
Figure 6 shows the extended curves of the accumulated number of CoViD-19 deaths (Πy, Πo and

Π = Πy + Πo) shown in Figs 3 and 4, using equation (8). At t = 140 days, Π approached a plateau.
The values of Πy, Πo and Π at t = 180 days for the first method of estimation (thick curves, labeled

αo = 0.036) are, respectively, 0.625 × 105 (3.47%), 1.887 × 105 (33.7%) and 2.512 × 105 (10.64%),
and for the second method of estimation (thin curves, labeled αo = 0.009), respectively, 1.604 × 104

(0.89%), 6.298 × 104 (11, 24%) and 7.901 × 104 (3.35%). The percentage between parentheses is the
ratio Π/Ω .

By comparing the percentages of fatalities due to CoViD-19 (Π ), the first method predicted a higher
number of deaths than that predicted by the second method. The second method predicted deaths in
11.24% of the severe CoViD-19, three times lower than 33.7% predicted by the first method, especially
in the elder subpopulation. Hence, the second estimation is more credible than the first one, and we
adopt hereafter the values provided by the second estimation method for additional mortality rates,
αy = 0.0009 and αo = 0.009 (days−1), except when explicitly cited. Remember that the additional
mortality rates are considered constant at all times.

Based on the estimated transmission and additional mortality rates, we solve numerically the system
of equations (2), (3) and (4) to obtain the natural epidemiological scenario.

Figure 7 shows the estimated natural epidemic curves of CoViD-19 (D2y, D2o and D2 = D2y +D2o).
We observe that the peaks of severe CoViD-19 for elder, young and entire populations are, respectively,
2.061×105, 5.532×105, and 7.582×105, which co-occur at t = 72 days, which corresponds to calendar
time May 8.

Figure 8 shows the curves of the number of susceptible persons (Sy, So and S = Sy+So). At t = 0, the

numbers of Sy, So and S are, respectively, 3.77762×107, 0.68238×107 and 4.46×107, which diminish
to lower values at t = 180 days due to the infection. Notice that, after the first wave of the epidemic,
very few numbers of susceptible persons are left behind, which are 1.885 × 105 (0.5%), 0.02658 × 105

(0.039%) and 1.912×105 (0.43%), for young, elder and entire populations, respectively. The percentage
between parentheses is the ratio S(180)/S(0).

Figure 9 shows the curves of the number of immune persons (Iy, Io and I = Iy + Io). The number of

immune persons Iy, Io and I increase from zero (t = 0) to, respectively, 3.76×107 (99.53% ), 0.673×107

(98.63%) and 4.433 × 107 (99.39%) at t = 180 days. The percentage between parentheses is the ratio
I/S(0).
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Fig. 7. The estimated epidemic curves (D2y, D2o and D2 = D2y + D2o) during the first wave of the epidemic.

Fig. 8. The curves of the number of susceptible persons (Sy, So and S = Sy + So) during the first wave of the epidemic.

From Figs 8 and 9, the difference between percentages of I/S(0) and S(180)/S(0) is the percentage
of all persons who harbor the new coronavirus. Hence, the second wave of the epidemic will be triggered
after elapsed a very long period of waiting for the accumulation of susceptible persons to surpass its
critical number (Yang, 1998, 2001). Simulating the system of equations (2), (3) and (4) for a very long
time (figures not shown), the trajectories reach the equilibrium fractions, and for susceptible persons we
have s∗

y = S∗
y/N∗ = 0.14660, s∗

o = S∗
o/N∗ = 0.00348 and s∗ = s∗

y + s∗
y = 0.15008.
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Fig. 9. The curves of the number of immune persons (Iy, Io and I = Iy + Io) during the first wave of the epidemic.

Let us estimate roughly the critical number of susceptible persons Sth from equation (11). For R0 =
6.915, we have Sth = 6.450×106. Hence, for São Paulo State, isolating 38.15 million (85.5% ) or above
persons is necessary to avoid the epidemic’s outbreak. The number of young persons is 3.5 million, less
than the threshold number of isolated persons to guarantee the eradication of the CoViD-19 epidemic.
Another rough estimation is for the isolation rate of susceptible person η2, letting η3 = 0 in equation
(12), resulting in ηth = 2.19 × 10−4 days−1, for R0 = 6.915. Hence, for η > ηth the new coronavirus
transmission fades out.

In the next sections, we compare the effects of isolation and relaxation with the natural epidemic of
CoViD-19. In the following epidemiological scenarios of isolation and relaxation, we fix the estimated
transmission rates, βy = 0.77 and βo = ψβy = 0.9009 (days−1), and the additional mortality rates,

αy = 0.0009 and αo = 0.009 (days−1). At the beginning of the CoViD-19 epidemic, only hospitalized
persons are tested because the number of testing kits is minimal; hence we let ηj = η1j = 0, with
j = y, o. We neglect the voluntary isolation of asymptomatic persons allowing χj = 0. Also, a vaccine
is not available as well as effective treatments, so θj = 0.

Using the estimated transmission and additional mortality rates and the values for the model
parameters given in Table 2, we solve the system of equations (2), (3) and (4) numerically considering
only one control mechanism, i.e. the isolation. Initially, we study the isolation without the subsequent
release of isolated persons. After that, we study the relaxation of isolation (release of the isolated
persons). By varying isolation parameters η2y and η2o, and release parameters η3y and η3o, we present
some epidemiological scenarios. In all scenarios, t is the simulation time instead of calendar time.

3.2 Epidemiological scenarios of isolation without relaxation (η3y = η3o = 0)

At t = 0 (February 26), the first case of severe CoViD-19 was confirmed, and at t = 27 (March 24),
São Paulo State introduced the isolation as a mechanism of control (described by η2y and η2o) until
April 22. We analyse two cases. Initially, there is indiscriminate isolation of young and elder persons,
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Fig. 10. The epidemic curves D2j, j = y, o, without and with isolation for different values of η2. Curves from top to bottom
correspond to the increasing η2.

and we assume that the same rates of isolation are applied to young and elder subpopulations, i.e.
η2 = η2y = η2o. Further, we deal with a discriminated (preferential) isolation of young or elder persons,
then we assume η2o �= η2y.

3.2.1 Regime 1–Equal isolation in young and elder subpopulations (η2 = η2y = η2o). In regime 1,
we consider an equal rate of isolation in the young and elder subpopulations. Notice that η2y and η2o are
per-capita rates, then young and elder persons are isolated proportionally when η2 = η2y, but the actual
number of isolation is higher in the young subpopulation.

We choose seven different values for the isolation rate η2 (days−1) applied to young and elder
subpopulations: η2 = 0.00021 (Rr = 1), 0.001 (Rr = 0.23), 0.005 (Rr = 0.048), 0.01 (Rr = 0.024),
0.015 (Rr = 0.016), 0.025 (Rr = 0.009) and 0.035 (Rr = 0.007). The reduced reproduction number Rr
is calculated using equation (10). For η2 = 0.035, the reduced reproduction number in comparison with
the basic reproduction number is decreased to 0.1%. In all figures, the case η2 = 0 (R0 = 6.915) is also
shown (see Fig. 7).

Figure 10 shows the epidemic curves D2j, for young (a) and elder (b) subpopulations, without and
with isolation for different values of η2. Notice that the first two curves obtained with η2 = 0 and
0.00021 practically coincide, and the latter is slightly lower than the roughly estimated ηth = 2.19×10−4

days−1. We present the value of the epidemic peak for three values of η2. For η2 = 0, the peak of the
epidemic in the young (first coordinate) and elder (second coordinate) subpopulations are (5.532 ×
105,2.061 × 105), for η2 = 0.01 we have (3.566 × 105,1.361 × 105), and for η2 = 0.035, (0.699 ×
105,0.292 × 105). The time (in days) at which the peak of the epidemic occurs in the young (first
coordinate) and elder (second coordinate) subpopulations for η2 = 0, 0.01, and 0.035 are, respectively,
(72,71), (75, 74) and (77,77). For η2 = 0.01 in comparison with η2 = 0 , the epidemic peaks are reduced
to 64.5% and 66.0%, respectively, for young and elder subpopulations. For η2 = 0.035, the peaks are
reduced to 12.6% and 14.2%.

As the isolation parameter η2 increases, the diminished peaks of the curves D2y and D2o displace
initially to the right (higher times), but at η2 = ηc

2, they change the direction and move leftward.
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Fig. 11. The curve of an isolation scheme described by η2 = 0.035 days−1 introduced at t = 27 days, and the curve without
isolation.

However, all curves remain inside the curve without isolation (η2 = 0). The values at which the peaks
change direction are ηc

2y = 0.0027 days−1 (t = 78.4) and ηc
2o = 0.0028 days−1 (t = 77.6). In order to

understand this phenomenon, we recall an age-structured model describing the rubella infection (Yang,
1999a,b). As the vaccination rate increases, the peaks of the age-depending force of infection initially
move to the right and, then, move leftward.

At t = 27 days, isolation began in São Paulo State. For this reason, in the system of equations (2),
(3) and (4), we let η2 = 0 for t < 27, and η2 > 0 for t ≥ 27. Figure 11 shows the accumulated curves of
severe CoViD-19 cases Ω without (η2 = 0) and with (η2 = 0.035 days−1) isolation introduced at t = 27
days. The epidemic curve under the isolation bifurcates from the natural epidemic and situates below
this curve. It seems that the effects of isolation (in the observed data) appear at around t = 38 (April 5),
11 days after its implementation. The transition from without to with isolation is under very complex
dynamics, and, for this reason, we cannot assure that η2 = 0.035 days−1 is a good estimation (there are
so few data). Hence, one of the curves shown in Fig. 10 may correspond to the isolation applied to São
Paulo State.

The curve corresponding to η2 = 0.00021 days−1 in Fig. 10 can be considered as a failure of
isolation (Rr > 1) and, for this reason, this curve is removed in all following figures.

Figure 12 shows the curves of accumulated cases of severe CoViD-19 Ωj, for young (a) and elder (b)
subpopulations, without and with isolation for different values of η2. As the isolation rate η2 increases,
the accumulated number of severe CoViD-19 cases Ω decreases. For instance, at t = 180 days, for
η2 = 0, the accumulated numbers of patients in the young (first coordinate) and elder (second
coordinate) subpopulations are (1.799 × 106,5.632 × 105), for η2 = 0.01 we have (1.278 × 106,4.065 ×
105), and for η2 = 0.035, (0.323 × 106,1.135 × 105). For η2 = 0.01 in comparison with η2 = 0, the
numbers of severe CoViD-19 cases are reduced to 71.1% and 72.2%, respectively, for young and elder
subpopulations. For η2 = 0.035, severe CoViD-19 cases are reduced to 17.95% and 20.15%.

Figure 13 shows the curves of accumulated deaths due to CoViD-19 Πj, for young (a) and elder
(b) subpopulations, without and with isolation for different values of η2. At t = 180 days, for
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Fig. 12. The curves of the accumulated number of severe CoViD-19 Ωj, j = y, o, without and with isolation for different values
of η2. Curves from top to bottom correspond to the increasing η2. The beginning of the isolation occurs at t = 27 days.

Fig. 13. The curves of the accumulated number of CoViD-19 deaths Πj, j = y, o, without and with isolation for different values
of η2. Curves from top to bottom correspond to the increasing η2. The beginning of the isolation occurs at t = 27 days.

η2 = 0, the accumulated numbers of deaths in the young (first coordinate) and elder (second coordinate)
subpopulations are (1.604 × 104,6.298 × 104), for η2 = 0.01 we have (1.14 × 104,4.546 × 104), and
for η2 = 0.035, (0.2921 × 104,1.268 × 104). For η2 = 0.01, in comparison with η2 = 0, the numbers
of fatalities due to CoViD-19 are reduced to 71.07% and 72.18% , respectively, for young and elder
subpopulations. For η2 = 0.035, deaths due to CoViD-19 cases are reduced to 18.21% and 20.13%.

Figure 14 shows the curves of the number of susceptible persons Sj, for young (a) and elder (b)
subpopulations, without and with isolation for different values of η2. At t = 180 days, for η2 = 0,
the numbers of susceptible young (first coordinate) and elder (second coordinate) persons are (1.885 ×
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Fig. 14. The curves of the number of susceptible persons Sj, j = y, o, without and with isolation for different values of η2. Curves
from top to bottom correspond to the increasing η2. The beginning of the isolation occurs at t = 27 days.

105,2658), for η2 = 0.01 we have (1.627 × 105,5463), and for η2 = 0.035, (0.965 × 105,7510). For
η2 = 0.01 in comparison with η2 = 0, the susceptible persons are decreased to 86.3% and increased
to 205%, respectively, for young and elder subpopulations. For η2 = 0.035, the susceptible persons are
decreased to 51.2% and increased to 282.5%, respectively, for young and elder subpopulations.

As the isolation parameter η2 increases, the number of susceptible persons decreases according to a
sigmoid shape, but they follow exponential decay at a sufficiently higher value. Again, this phenomenon
is understood recalling the rubella transmission model (Yang, 2001). As the vaccination rate increases,
the fraction of susceptible persons decreases following damped oscillations when Rr > 1, attaining the
non-trivial equilibrium point. However, for Rr < 1, the trivial equilibrium point is an attractor, and the
trajectories follow two patterns: (a) if Rr is not so low, the fraction of susceptible persons decreases
to lower values than the trivial equilibrium point and takes increasing trend to attain the equilibrium
value, but not surpassing it (then there is not damped oscillations); and (b) if Rr is low, the fraction of
susceptible persons decays exponentially and tends to the equilibrium point.

Figure 15 shows the curves of the number of isolated susceptible persons Sis
j , for young (a) and elder

(b) subpopulations, for different values of η2, from equation (9). At t = 180 days, for η2 = 0, there are
not isolated persons, for η2 = 0.01, the numbers of isolated young (first coordinate) and elder (second
coordinate) persons are (1.091 × 107,1.885 × 106), and for η2 = 0.035, (3.086 × 107,5.415 × 106). For
η2 = 0.01, compared with all persons N0 (at t = 0), isolated susceptible persons are 2.4% and 0.42%
of N0, respectively, for young and elder persons. For η2 = 0.035, isolated susceptible persons are 6.9%
and 1.21%.

Figure 16 shows the curves of the number of immune persons Ij, for young (a) and elder (b)
subpopulations, without and with isolation for different values of η2. At t = 180 days, for η2 = 0,
the numbers of immune in the young (first coordinate) and elder (second coordinate) subpopulations
are (3.76 × 107,6.727 × 106), for η2 = 0.01 we have (2.67 × 107,4.856 × 106), and for η2 = 0.035,
(0.685 × 107,1.355 × 106). For η2 = 0.01, in comparison with η2 = 0, the immune persons are reduced
to 71.0% and 72.1%, respectively, for young and elder subpopulations, very close to the reductions
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Fig. 15. The curves of the number of isolated susceptible persons Sis
j , j = y, o, with isolation for different values of η2. Curves

from top to bottom correspond to the increasing η2. The beginning of the isolation occurs at t = 27 days.

Fig. 16. The curves of the number of immunized persons Ij, j = y, o, without and with isolation for different values of η2. Curves
from top to bottom correspond to the increasing η2. The beginning of the isolation occurs at t = 27 days.

observed in the number of deaths due to CoViD-19. For η2 = 0.035, immune persons are reduced to
18.1% and 20.0%.

Epidemiological parameters (peak of D2, Ω , Π and I) are reduced quite similarly for η2 = 0.035
days−1, i.e. between 4.8 times (21%) and 8.3 times (12%); however, the number of susceptible persons
left behind at the end of the first wave increases less, i.e. two times (young) and three times (elder).
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Fig. 17. The epidemic curves D2j, j = y, o, varying η2y , but fixing η2o = 0.01 days−1. Curves from top to bottom correspond to
the increasing η2y. The beginning of the isolation occurs at t = 27 days.

3.2.2 Regime 2–Different isolation in young and elder subpopulations (η2o �= η2y). In regime 2, we
consider the different rates of isolation in young and elder subpopulations. We fix the isolation rate in
the elder subpopulation and vary the young subpopulation’s isolation rate, and vice versa.

Firstly, we choose the isolation rate in the elder subpopulation η2o = 0.01 days−1 and vary η2y =
0.001 (Rr = 0.235), 0.005 (Rr = 0.049), 0.01 (Rr = 0.024), 0.015 (Rr = 0.016), 0.025 (Rr = 0.009),
0.035 (Rr = 0.007) and 0.1 (Rr = 0.002). The reduced reproduction number Rr is calculated using
equation (10 ).

Figure 17 shows the epidemic curves D2j, for young (a) and elder (b) subpopulations, fixing η2o =
0.01 days−1 and varying η2y . The decreasing pattern in curve D2y follows that observed in regime 1.
Still, in the pattern of the curve D2o, as η2y increases, the epidemic peaks displace faster to the right. The
curves become more asymmetric (increased skewness) and spread beyond the curve without isolation.

Figure 18 shows the curves of the number of susceptible persons Sj, for young (a) and elder (b)

subpopulations, varying η2y, fixing η2o = 0.01 days−1. The decreasing pattern of Sy follows that
observed in regime 1 (sigmoid shape followed by exponential decay). Still, the decreasing sigmoid
shaped curves of So, as η2y increases, move from bottom to top, which is an opposite pattern to that
observed in regime 1. As the isolation in the young subpopulation increases, the number of susceptible
young persons decreases, but the number of susceptible elder persons increases. However, from Fig. 17,
severe CoViD-19 cases drop for both subpopulations. This can be explained by the decrease in the
number of immunized persons: young immune persons decrease 41 times when η2y decreases from
0.015 to 0.1, while elder persons decrease 4 times (see Table 3). When η2y = 0.1, the susceptible elder
persons approach an asymptote at t = 500 days (calendar time, July 10, 2021).

The curves of the accumulated number of severe CoViD-19 Ω , the accumulated number of CoViD-
19 deaths Π , the number of isolated susceptible person Sis and the number of immune persons I are
similar to those shown in the preceding section. For this reason, we present in Table 3 (η2o = 0.01
days−1 fixed) their values at t = 180 days for young, elder and entire populations, letting η2y = 0.015,
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Table 3 Values and percentages of Ω , Π , Q and I at time t = 180 days fixing η2o = 0.01 days−1 and
varying η2y = 0.015, η2y = 0.035 and η2y = 0.1 (days−1). y, o and Σ stand for, respectively, young,
elder and total persons.

η2y = 0.015 η2y = 0.035 η2y = 0.1
y o Σ y o Σ y o Σ

Ω (106) 1.051 0.3984 1.4494 0.397 0.3354 0.7324 0.0259 0.0999 0.1258
Π 9371 44550 53921 3536 37470 41006 231 11120 11351
S (105) 1.444 0.127 1.571 0.713 1.589 2.302 0.165 10.6 10.765
Q (107) 1.568 0.198 1.766 2.944 0.259 3.203 3.726 0.452 4.178
I (107) 2.198 0.476 2.674 0.829 0.4 1.229 0.054 0.119 0.173

Ω (%) 58.42 70.76 61.36 22.07 59.57 31.01 1.44 17.74 5.33
Π (%) 58.42 70.74 68.24 22.04 59.50 51.89 1.44 17.66 14.36
S (%) 76.60 477.80 82.18 37.82 5978.18 120.42 8.75 39879.61 563.15
Q (%) 41.50 29.03 39.60 77.92 37.98 71.82 98.62 66.28 93.68
I (%) 58.46 70.73 60.32 22.05 59.44 27.72 1.44 17.68 3.90

Fig. 18. The curves of the number of susceptible persons Sj, j = y, o, varying η2y, but fixing η2o = 0.01 days−1. Curves from
top to bottom correspond to the decreasing η2y. The beginning of the isolation occurs at t = 27 days.

η2y = 0.035 and η2y = 0.1 (days−1). For η2o = η2y = 0, we have, from the preceding section,

Ωy = 1.799 × 106, Ωo = 5.632 × 105 and Ω = 2.362 × 106; Πy = 1604 × 104, Πo = 6298 × 104

and Π = 7902 × 104; Sy = 1.885 × 105, So = 2658 and S = 1.912 × 105; and Iy = 3.76 × 107, Io =
0.673 × 106 and I = 4.433 × 107. The percentages are calculated as the ratio between epidemiological
parameter evaluated with (η2j > 0) and without (η2y = η2o = 0) isolation, at t = 180. The number of

isolated susceptible persons is Sis = 0 in the absence of the isolation, and the percentage is calculated
as the ratio between Sis at t = 180 and N0.
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Fig. 19. The epidemic curves D2j, j = y, o, varying η2o , but fixing η2y = 0.01days−1. Curves from top to bottom correspond to
the increasing η2. The beginning of the isolation occurs at t = 27 days.

Figures 17 and 18 and Table 3 portray variable isolation in the young subpopulation but maintaining
elder persons isolated at a fixed level. Hence, the increase in η2y protects young persons, but elder
persons are also benefited.

Now, we choose the isolation rate in the young subpopulation η2y = 0.01 days−1 and vary the

isolation rate in the elder subpopulation η2o (days−1) for seven different values: η2o = 0.001 (Rr =
0.025), 0.005 (Rr = 0.02444), 0.01 (Rr = 0.02442), 0.015 (Rr = 0.024416), 0.025 (Rr = 0.024413),
0.035 (Rr = 0.024411) and 0.1 (Rr = 0.02440).

Figure 19 shows the epidemic curves D2j, for young (a) and elder (b) subpopulations, varying η2o,

but fixing η2y = 0.01 days−1. The pattern is similar to that observed in Fig. 7, but changing the pattern
of D2y by D2o, and vice versa, and more smooth.

Figure 20 shows the curves of the number of susceptible persons Sj, for young (a) and elder (b)

subpopulations, varying η2o, but fixing η2y = 0.01 days−1. The pattern is similar to that observed in
Fig. 18, but changing the pattern of Sy by So, and vice versa.

The curves of the accumulated number of severe CoViD-19 Ω , the accumulated number of CoViD-
19 deaths Π , the number of isolated susceptible person Sis and the number of immunized persons I
are similar to those shown in the preceding section. For this reason, we present in Table 4 (η2y = 0.01

days−1 fixed) their values at t = 140 days for young, elder and entire populations, letting η2o = 0.015,
η2o = 0.035 and η2o = 0.1 (days−1). Values for Ω , Π , Sis and I, for η2o = η2y = 0, are those used in
Table 3, as well as the definitions of the percentages.

Figures 19 and 20 and Table 4 portray variable isolation in the elder subpopulation but maintaining
young persons isolated at a fixed level. Hence, the increase in η2o of course protects elder persons, but
young persons are also benefited.

Tables 3 and 4 allow us to choose a suitable isolation scheme aiming at two different goals. If the
objective is diminishing the accumulated number of severe CoViD-19 cases Ω , the best strategy is
isolating more young than elder persons. However, if the goal is to reduce the fatality cases Π , the
best strategy is isolating more elders than young persons. But, when very intense isolation is possible
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Fig. 20. The curves of the number of susceptible persons Sj, j = y, o, varying η2o, but fixing η2y = 0.01 days−1. Curves from
top to bottom correspond to decreasing η2o. The beginning of the isolation occurs at t = 27 days.

Table 4 Values and percentages of Ω , Π , Q and I at time t = 140 days fixing η2y = 0.01 days−1 and

varying η2o = 0.015, η2o = 0.035 and η2o = 0.1 (days−1). y, o and Σ stand for, respectively, young,
elder and total persons.

η2o = 0.015 η2o = 0.035 η2o = 0.1
y o Σ y o Σ y o Σ

Ω (106) 1.272 0.345 1.617 1.252 0.18 1.432 1.217 0.0274 1.2444
Π 11340 38610 49950 11160 20160 31320 10850 3063 13913
S (105) 1.728 0.03 1.758 2.099 0.0026 2.1016 2.678 0.00019 2.67819
Q (107) 1.102 0.263 1.365 1.141 0.462 1.603 1.208 0.646 1.854
I (107) 2.66 0.413 3.073 2.618 0.215 2.833 2.544 0.033 2.577

Ω (%) 70.71 61.28 68.46 69.59 31.97 60.63 67.65 4.87 52.68
Π (%) 70.70 61.31 63.21 69.58 32.01 39.64 67.64 4.86 17.61
S (%) 91.67 112.87 91.97 111.35 9.78 109.94 109.94 0.71 140.10
Q (%) 29.17 38.56 30.61 30.20 67.74 35.94 31.97 94.72 41.57
I (%) 70.74 61.37 69.32 69.63 31.95 63.91 67.66 4.90 58.13

(η2y = η2o = 0.1), then isolating more young persons is recommended. Notice that only the strategies
η2o = 0.01 and η2y = 0.1 attain the number of isolated susceptible persons above the threshold

3.815 × 107.
The peak of the epidemic in the absence of isolation in São Paulo State occurs around May 8.

However, depending on the intensity of the isolation, the peak is displaced at most 8 days later.
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Fig. 21. The epidemic curves D2j, j = y, o, fixing η2 = 0.035 days−1, and varying η3. Curves from top to bottom correspond to
the decreasing η3. The beginning of the release occurs at t = 56 days.

3.3 Epidemiological scenarios of relaxation

When the relaxation (release of the isolated persons) begins, equation (9) is not valid anymore to
evaluated the accumulated number of isolated susceptible persons. Hence, we use Qy, Qo and Q =
Qy + Qo for the numbers of isolated susceptible, respectively, young, elder and entire populations. Qy
and Qo are solutions of the system of equations (2), (3) and (4).

At t = 0, the first case of severe CoViD-19 was confirmed, and at t = 27, São Paulo State introduced
the isolation as a mechanism of control (described by η2y and η2o) until April 22.2 Hence, the beginning
of the relaxation of isolated persons will occur at the simulation time t = 56 (calendar time, April
22).3 We assume that the same rates of the release are applied to young and elder subpopulations, i.e.
η3 = η3y = η3o, and we consider regime 1-type isolation, i.e. η2 = η2o = η2y. Hence, from time 0 to
27, we have R0 = 6.915 (without isolation), followed by regime 1-type isolation from 27 to 56 with
Rr = 0.007, and since after time 56, we have the isolation and relaxation with the value of Rr depending
on η3.

In order to assess the epidemiological scenarios when isolated persons are released, we fix η2 =
0.035 (days−1), and vary η3 = 0 (Rr = 0.007), 0.0055 (Rr = 0.84), 0.01 (Rr = 1.49), 0.015 (Rr = 2.02),
0.25 (Rr = 2.82), 0.035 (Rr = 3.39) and 0.1 (Rr = 5.07). The reduced reproduction number Rr is
calculated using equation (10).

Figure 21 shows the epidemic curves D2j, for young (a) and elder (b) subpopulations, fixing η2 =
0.035 days−1, and varying η3 . The beginning of release occurs at t = 56 days, the date proposed by
the São Paulo State authorities. The epidemic peaks when η3 = 0.035 days−1, for young and elder
subpopulations are, respectively, 2.31 × 105 and 9.06 × 104, which occur at t = 99 (calendar time, June
4) and t = 98 days.

2 On April 6 the isolation was extended until April 22.
3 Simulations were done on April 10.
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Table 5 Values and percentages of Ω , Π , Q and I at time t = 360 days fixing η2y = η2o = 0.035

days−1 and varying η3 = 0.015, η3 = 0.035 and η3 = 0.1 (days−1). y, o and Σ stand for, respectively,
young, elder and total persons. Releasing initiates at t = 56.

η3 = 0.015 η3 = 0.035 η3 = 0.1
y o Σ y o Σ y o Σ

Ω (106) 1.121 0.3723 1.4933 1.531 0.4927 2.0237 1.75 0.552 2.302
Π 9985 41570 51555 13650 55110 68760 15600 61720 77320
S (106) 4.317 0.676 4.993 3.012 0.422 3.434 1.098 0.1004 1.198
Q (107) 1.016 0.161 1.177 0.299 0.0422 0.3412 0.0381 0.0035 0.0416
I (107) 2.331 0.442 2.773 3.183 0.585 3.768 3.636 0.655 4.291

Ω (%) 62.35 66.13 63.25 85.15 87.51 85.71 97.33 98.01 97.49
Π (%) 62.41 66.35 65.55 85.31 87.96 87.43 97.50 98.52 98.31
S (%) 3484 27446 3951 2431 17133 2717 886 4076 948
Q (%) 26.89 23.61 26.39 7.91 6.19 7.65 1.01 0.51 0.93
I (%) 61.96 6.57 62.54 84.61 8.70 84.97 96.65 9.74 96.77

The curves of the accumulated number of severe CoViD-19 Ω , the accumulated number of CoViD-
19 deaths Π , the number of isolated susceptible person Sis and the number of immune persons I are
similar to those shown in the preceding section. For this reason, we present in Table 5 (η2 = 0.035
days−1 fixed) their values at t = 360 (calendar time, February 20, 2021) for young, elder and entire
populations, letting η3o = 0.015, 0.035 and 0.1 (days−1). For η2 = 0, the values of Ω , Π , Sis and I are
those used in Table 3, as well as the definitions of the percentages.

Figure 22 shows the epidemic curves D2j, for young (a) and elder (b) subpopulations, fixing η2 =
0.035 days−1, and varying η3 . The beginning of release is at t = 49, a week earlier. The epidemic
peaks when η3 = 0.035 days−1, for young and elder subpopulations are, respectively, 2.515 × 105 and
9.827×104, which occur at t = 93 and 92. In comparison with Fig. 21, the epidemic peaks are increased
for young and elder subpopulations by, respectively, 8.9% and 8.5%, which are anticipated in 6 days.

The curves of the accumulated number of severe CoViD-19 Ω , the accumulated number of CoViD-
19 deaths Π , the number of isolated susceptible person Sis and the number of immune persons I are
similar to those shown in the preceding section. For this reason, we present in Table 6 (η2 = 0.035
days−1 fixed) their values at t = 360 for young, elder and entire populations, letting η3o = 0.015,
η3o = 0.035 and η3o = 0.1 (days−1). For η2 = 0, the values of Ω , Π , Sis and I are those used in
Table 3, as well as the definitions of the percentages.

Figure 23 shows the epidemic curves D2j, for young (a) and elder (b) subpopulations, fixing η2 =
0.035 days−1, and varying η3 . The beginning of release is at t = 63, a week later. The epidemic
peaks when η3 = 0.035 days−1 are for young and elder subpopulations, respectively, 2.084 × 105 and
8.197 × 104, which occur at t = 108 (calendar time, June 13) and 107. In comparison with Fig. 21,
the epidemic peaks are decreased for young and elder subpopulations by, respectively, 9.8% and 9.5%,
which are delayed in 9 days.

The curves of the accumulated number of severe CoViD-19 Ω , the accumulated number of CoViD-
19 deaths Π , the number of isolated susceptible person Sis and the number of immune persons I are
similar to those shown in the preceding section. For this reason, we present in Table 7 (η2 = 0.035
days−1 fixed) their values at t = 360 for young, elder and entire populations, letting η3o = 0.015, 0.035
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Fig. 22. The epidemic curves D2j, j = y, o, fixing η2 = 0.035 days−1, and varying η3. Curves from top to bottom correspond to
the decreasing η3. The beginning of the release occurs at t = 49 days.

Table 6 Values and percentages of Ω , Π , Q and I at time t = 360 days fixing η2y = 0.01 days−1 and

varying η2o = 0.015, η2o = 0.035 and η2o = 0.1 (days−1). y, o and Σ stand for, respectively, young,
elder and total persons. Releasing initiates at t = 49.

η3 = 0.015 η3 = 0.035 η3 = 0.1
y o Σ y o Σ y o Σ

Ω (106) 1.131 0.3748 1.5058 1.535 0.4937 2.0287 1.751 0.5523 2.3
Π 10080 41870 51950 13690 55220 68910 15620 61770 77390
S (106) 4.271 0.67 4.941 2.971 0.4166 3.3876 1.074 0.0967 1.17
Q (107) 1.001 0.158 1.159 0.2949 0.042 0.3369 0.037 0.0034 0.04
I (107) 2.352 0.445 2.797 3.191 0.586 3.777 3.639 0.656 4.295

Ω (%) 62.90 66.57 63.78 85.37 87.69 85.93 97.39 98.10 97.56
Π (%) 63.00 66.83 66.05 85.56 88.14 87.62 97.63 98.60 98.40
S (%) 3447 27203 3910 2398 16914 2681 867 3926 926
Q (%) 26.50 23.17 25.99 7.81 6.16 7.55 0.98 0.50 0.91
I (%) 62.52 6.62 63.08 84.82 8.72 85.18 96.73 9.76 96.86

and 0.1 (days−1). For η2 = 0, the values of Ω , Π , Sis and I are those used in Table 3, as well as the
definitions of the percentages.

From Figs 21, 22 and 23, the epidemic peaks are increased by 9% and anticipated in 6 days if
isolation is relaxed 7 days earlier, while the epidemic peaks are decreased by 10% and delayed in 9
days if isolation is relaxed 7 days later. From Tables 5, 6 and 7, the increase in the accumulated numbers
of severe coViD-19 cases and deaths due to CoViD-19 by anticipating the release by 7 days are 0.9%,
0.3% and 0.06% for, respectively, η3 = 0.015, 0.035 and 0.1 (days−1); while delaying in 7 days, they
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Fig. 23. The epidemic curves D2j, j = y, o, fixing η2 = 0.035 days−1, and varying η3. Curves from top to bottom correspond to
the decreasing η3. The beginning of the release occurs at t = 63 days.

Table 7 Values and percentages of Ω , Π , Q and I at time t = 360 days fixing η2y = 0.01 days−1 and

varying η2o = 0.015, η2o = 0.035 and η2o = 0.1 (days−1). y, o and Σ stand for, respectively, young,
elder and total persons. Releasing initiates at t = 63.

η3 = 0.015 η3 = 0.035 η3 = 0.1
y o Σ y o Σ y o Σ

Ω (106) 1.111 0.37 1.481 1.527 0.49 2.017 1.747 0.55 2.297
Π 9885 41260 51145 13620 55020 68640 15580 61660 77240
S (106) 4.358 0.68 5.038 3.045 0.43 3.475 1.126 0.105 1.231
Q (107) 1.032 0.162 1.194 0.3024 0.043 0.3454 0.039 0.0037 0.0427
I (107) 2.309 0.439 2.748 3.176 0.585 3.761 3.632 0.655 4.287

Ω (%) 61.79 65.72 62.73 84.93 87.03 85.43 97.16 97.69 97.29
Π (%) 61.78 65.86 65.03 85.13 87.82 87.27 97.38 98.42 98.21
S (%) 3517 27609 3987 2458 17458 2750 909 4263 974
Q (%) 27.32 23.75 26.77 8.00 6.30 7.74 1.03 0.54 0.96
I (%) 61.38 6.53 61.97 84.42 8.70 84.82 96.54 9.74 96.68

are decreased by 0.9%, 0.6% and 0.2% for, respectively, η3 = 0.015, 0.035 and 0.1 (days−1). However,
0.9% represents the deaths of 95 precious lives.

4. Discussion

Systems of equations (2), (3) and (4) were simulated to provide epidemiological scenarios. These
scenarios are more reliable if based on credible values assigned to the model parameters. In many
viruses, the ratio asymptomatic:symptomatic is higher than 4:1, but for the new coronavirus, this ratio
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is unknown. Even so, we used 4:1 for the ratios of asymptomatic:symptomatic and mild:severe (non-
hospitalized:hospitalized) CoViD-19 (Boletim Epidemiológico 08, 2020). When mass testing against
the new coronavirus could be available, this ratio can be estimated.

Let us consider the estimation of the transmission and mortality rates based on a few data. From
Figs 7 and 8, it is expected, at the end of the first wave of the epidemic, 2.36 million severe (hospitalized)
CoViD-19 cases and 250 thousand deaths due to this disease in São Paulo State. If we consider a 5 times
higher inhabitants than São Paulo State, 11.8 million severe (hospitalized) CoViD-19 cases and 1, 250
thousand deaths are expected. Approximately these numbers of cases and deaths of CoViD-19 were
projected to Brazil by Ferguson et al. (2020). However, the second method of estimation for fatality
rates resulted in 78.7 thousand deaths in São Paulo State, but the number of severe cases is the same.
Hence, extrapolating to Brazil, the number is 383 thousand deaths.

We address the discrepancy in providing the number of deaths during the first wave of the epidemic.
When the estimation of the parameters is based on the computational (agent-based model, for instance)
models, and the observed data are in the collection process, these models must be fed continuously
with new data, and the model parameters must be reestimated. As the number of data increases, their
estimations become more and more reliable. Hence, initial estimates and forecasting could be terrible,
and, perhaps, they become dangerous when predicting catastrophic scenarios. In many cases, such
predictions can lead to the formulation of mistaken public health policies.

When models are structured based on the empirical data, besides the need for continuous calibration
of model parameters as new data are being incorporated, the main flaw is the lack of evaluating their
suitability to explain dynamics behind data. The reason is that the model ‘learns’ and explains data
at the expense of new calibrations. However, models based on biological phenomena (in our case, the
transmission of the new coronavirus based on the natural history of the disease) have an extraordinary
advantage: models can be assessed whether they are suitable or not to explain the biological phenomena,
and model’s predictions can be compared with further data aiming the acceptance or rejection of a
model.

For the isolation of susceptible persons, we can formulate different strategies depending on the
target. If the goal is to decrease the number of CoViD-19 cases to adequate the capacity of hospitals and
ICUs, a better strategy is isolating more young than elder persons. However, if death due to CoViD-19
is the primary goal, a better strategy is isolating more elder than young persons.

We also studied relaxation strategies. We compared the release that will be initiated on April 22 with
that when the release occurs one week earlier (April 19) and one week later (April 29). Briefly, there is a
variation of 1% in the number of severe CoViD-19 cases and deaths due to this disease if the relaxation
is anticipated or delayed in one week.

The estimated basic reproduction number and its partial values were R0 = 6.915 (partials
R0y = 5.606 and R0o = 1.309), and the asymptotic fraction of susceptible persons and its partial
fractions provided by the Runge–Kutta method were, respectively, s∗ = 0.15008, s∗

y = 0.14660 and
s∗

o = 0.00348. Using equation (A.15), we obtain 1/R0 = 0.1446. Clearly, s∗ is not the inverse of
the basic reproduction number R0, and f (s∗, s∗

y , s∗
o) in equation (A.15) is not s∗ = s∗

y + s∗
o, neither

R0ys∗
y +R0os∗

o. The analysis of the non-trivial equilibrium point to find f (s∗, s∗
y , s∗

o) is left to further work.
To understand this question, we suppose that the new coronavirus is circulating in non-communicating
young and elder subpopulations, then young and elder subpopulations approach to s∗

y = 1/R0y = 0.178
and s∗

o = 1/R0o = 0.764 at steady state (non-trivial equilibrium point P∗ ). But, the new coronavirus
is circulating in homogeneously mixed young and elder subpopulations (this is an assumption of the
model). Using equation (1), we calculate the forces of infection λ1 = (β1yAy +β2yD1y)/N (contribution
due to infectious young persons), λ2 = (β1oAo + β2oD1o)/N (elder persons) and λ = λ1 + λ2 (both
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Fig. 24. The forces of infection λ1 = (β1yAy + β2yD1y)/N (young subpopulation), λ2 = (β1oAo + β2oD1o)/N (elder
subpopulation), and λ = λ1 + λ2 (entire population).

classes). These forces of infection are shown in Fig. 24 (λ is the force of infection acting on young
persons, and for elder persons, it is enough multiplying by the factor ψ).

The peaks of the force of infection for λ1, λ2 and λ are, respectively, 0.193, 0.038, and 0.231, which
occur at the simulation times 68.2, 66.9, and 68.2 (days), and the contributions of λ1 and λ2 with respect
to λ are 83.6% and 16.4%. The ratio between peaks λ1:λ2 is 5.1:1, which is close to the ratio between
the numbers of young:elder 5.5:1. When the virus circulates in mixed subpopulations, young and elder
persons are infected additionally by, respectively, elder (λ2) and young (λ1) persons. This fact is the
reason for the actual equilibrium values being bigger (s∗

y > 1/R0y and s∗
o > R0o), but among elder

persons, the increase (220 times) is enormous (λ1, relatively big, acts on relatively small population So).
For this reason, contacts between elder and young persons must be avoided.

Finally, let us discriminate the circulation of the new coronavirus in a community without any
control. Figure 25 shows all persons harboring this virus (Ej, Aj, D1j, Q2j and D2j), for young (a) and
elder (b) subpopulations. Notice that the exposed (E) and pre-diseased (D1) persons are relatively higher
in the young subpopulation.

In Fig. 26, we show the ratio hidden:apparent based on Fig. 25. Those who harbor the new
coronavirus as exposed and those who do not manifest symptoms are classified in the hidden category,
and in the apparent category, we include those who manifest symptoms. Hence the ratio is calculated
as (E + A + D1) : (Q2 + D2). At t = 0, the ratio is 10 : 1 for young and elder persons due to initial
conditions.

Comparing Figs 25 and 26, as the epidemic evolves, the ratio increases quickly at the beginning,
reaches a plateau during the increasing phase and decreases quickly during the declining phase, and
finally reaches another plateau after the ending phase of the first wave. In the first plateau, the ratios
are 14:1, 23:1 and 21:1 for, respectively, elder, young and entire persons. The second plateau (3:1) is
reached when the first wave of the epidemic is ending. Therefore, there are much more hidden than



MODELING THE TRANSMISSION OF THE NEW CORONAVIRUS IN SÃO PAULO STATE, BRAZIL 31

Fig. 25. The curves of all persons harboring the new coronavirus (Ej, Aj, D1j, Q2j and D2j), j = y, o, for the young and elder
subpopulations.

Fig. 26. The curves of the ratio hidden:apparent for young, elder and total persons.

apparent persons during the epidemic, which indicates that the control of CoViD-19 by isolation must
be accompanied by mass testing to find infected persons.

5. Conclusion

We formulated a mathematical model considering two subpopulations comppsed of young and elder
subpopulations to study CoViD-19 in São Paulo State, Brazil. The model considered continuous but
constant rates of isolation and relaxation. We change the rates describing the isolation and release by
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proportions of susceptible persons being isolated or released in future work.4 The reason behind this is
the difficulty of establishing a relationship between rates and proportions.

Our model estimated quite the same number of severe CoViD-19 cases predicted by Ferguson et al.
(2020) for Brazil, as well as the number of deaths due to CoViD-19. However, the second estimation
method provided 3.3 times lower for fatalities due to CoViD-19, hence the difference relays mainly in
the estimation method for the additional mortality rates.5

Suppose the currently adopted lockdown is indeed based on the goal of decreasing hospitalized
CoViD-19 cases. In that case, our model agrees since it predicts that a higher number of young and
elder persons must be isolated to achieve this objective. However, if the goal is to reduce the number
of deaths due to CoViD-19, elder persons must be isolated in a higher number than young persons.
Remember that in mixed young and elder subpopulations, the infection is much harmful in the elder
than in young persons, which is a reason to avoid contact between them. Optimal rates of isolation in
young and elder subpopulations to reduce both CoViD-19 cases and deaths can be obtained by optimal
control theory (Thomé et al., 2009).

If vaccine and efficient treatments are available, the new coronavirus epidemic should not be
considered a threat to public health. However, currently, there is no vaccine neither efficient treatment.6

For this reason, the adoption of the isolation or lockdown is the best-recommended strategy, which can
be less hardly implemented if there is enough kit to test against the new coronavirus. Remember that
all isolation strategies considered in our model assumed the identification of the susceptible persons.
Finally, the isolation as a control mechanism delayed the peak of the epidemic, which may avoid the
overloading in hospitals and ICUs, besides providing an additional time to seek a cure (medicine) and
or development of a vaccine.
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4 The model proposed here can easily be modified to consider the Dirac delta function to describe the isolation and releases,
i.e. isolation and releases are supplied to the dynamical system as pulses. For instance, the isolation can be introduced in the
model changing η2jSj by ζjδ(t − τ)Sj, where ζj is the proportion in isolation, τ is the time at which isolation was implemented,
and δ(x) is the Dirac delta function. The model presented here and the modified model using the Dirac function estimate well the
transmission rates and parameters related to isolation when incorporating more observed data.

5 If we use the fact that the time of registration ti of deaths Pob (ti) must be related to the deaths of new cases Δ times ago,
i.e. Π (ti) = D2(ti − Δ) , then the observed accumulated number of deaths due to CoViD-19 is nicely fitted, and its fitting at the
ending phase of the epidemic is quite similar than that provided by the second method.

6 Additional protective measures adopted by the population are the use of a face mask, washing hands with alcohol and gel, and
social distancing. This kind of control aiming at the reduction in the transmission can be incorporated in the model introducing a
reduction parameter ε in the force of the infection, i.e. changing λ by ελ, with ε ≤ 1.
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A. The trivial equilibrium point and its stability

By the fact that N is varying, the system of equations (2), (3) and (4) in the main text is non-autonomous
non-linear differential equations. To obtain an autonomous system of equations, we use the fractions of
individuals in each compartment, defined by, with j = y and o,

xj = Xj
N , where X = Sj, Qj, Ej, Aj, Q1j

, D1j
, Q2j

, D2j
, I,

resulting in

d

dt
xj ≡ d

dt

Xj

N
= 1

N

d

dt
Xj − xj

1

N

d

dt
N = 1

N

d

dt
Xj − xj (φ − μ) + xj

(
αyd2y + αod2o

)
,

using equation (5) for N. Hence, equations (2), (3) and (4) in terms of the fractions become autonomous
non-linear system of equations, with equations for susceptible persons,⎧⎪⎨

⎪⎩
d

dt
sy = φ − (

η2y + ϕ + φ
)
sy − λsy + η3yqy + sy

(
αyd2y + αod2o

)
d

dt
so = ϕsy − (

η2o + φ
)

so − λψso + η3oqo + so

(
αyd2y + αod2o

)
,

(A.1)

for susceptible persons in isolation qj and for infected persons,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
qj = η2jsj − (

η3j + φ
)
qj + qj

(
αyd2y + αod2o

)
d

dt
ej = λ

(
δjy + ψδjo

)
sj − (

σj + φ
)
ej + ej

(
αyd2y + αod2o

)
d

dt
aj = pjσjej − (

γj + ηj + χj + φ
)
aj + aj

(
αyd2y + αod2o

)
d

dt
q1j = (

ηj + χj

)
aj − (

γj + φ
)
q1j + q1j

(
αyd2y + αod2o

)
d

dt
d1j = (

1 − pj

)
σjej − (

γ1j + η1j + φ
)
d1j + d1j

(
αyd2y + αod2o

)
d

dt
q2j = (

η1j + mjγ1j

)
d1j − (

γj + ξj + φ
)
q2j + q2j

(
αyd2y + αod2o

)
d

dt
d2j = (

1 − mj

)
γ1jd1j + ξjq2j − (

γ2j + θj + φ + αj

)
d2j + d2j

(
αyd2y + αod2o

)
,

(A.2)

and for immune persons,

d

dt
i = γyay + γyq1y + γyq2y + (

γ2y + θy

)
d2y + γoao + γoq1o + γoq2o + (

γ2o + θo

)
d2o − φi+

i
(
αyd2y + αod2o

)
,

(A.3)

where λ is the force of infection given by equation (1) re-written as

λ = β1yay + β2yd1y + β1oao + β2od1o,

and ∑
j=y,o

(
sj + qj + ej + aj + q1j + d1j + q2j + d2j

)+ i = 1.
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We remember that all classes vary with time; however, their fractions attain a steady-state (the sum of all
classes’ derivatives is zero). This system of equations is not easy to determine the non-trivial (endemic)
equilibrium point P∗. Hence, we restrict our analysis to the trivial (disease-free) equilibrium point.

The trivial or disease-free equilibrium point P0 is given by

P0 = (
s0

j , q0
j , e0

j = 0, a0
j = 0, q0

1j = 0, d0
1j = 0, q0

2j = 0, d0
2j = 0, i0 = 0

)
,

for j = y and o, where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0
y = φ

(
η3y + φ

)
φ
(
η2y + η3y + φ

)+ ϕ
(
η3y + φ

)
q0

y = φη2y

φ
(
η2y + η3y + φ

)+ ϕ
(
η3y + φ

)
s0

o = ϕ
(
η3y + φ

)(
η3o + φ

)
[
φ
(
η2y + η3y + φ

)+ ϕ
(
η3y + φ

)](
η2o + η3o + φ

)
q0

o = ϕη2o

(
η3y + φ

)
[
φ
(
η2y + η3y + φ

)+ ϕ
(
η3y + φ

)](
η2o + η3o + φ

) ,

(A.4)

with s0
y + q0

y + s0
o + q0

o = 1.
Due to the high number of equations, we do not deal with characteristic equation corresponding

to the Jacobian matrix evaluated at P0, but we apply the next-generation matrix theory (Diekmann
et al., 2010). The next-generation matrix, evaluated at the trivial equilibrium point P0, is obtained
considering the vector of variables x = (ey, ay, d1y, eo, ao, d1o). Instead of calculating the spectral radius
corresponding to the next generation matrix, we apply the method proposed in Yang (2014) and proved
in Yang (2017). Notice that control mechanisms are considered, hence we are obtaining the reduced
reproduction number Rr.

A.1 Local stability of P0

The next generation matrix is constructed considering a subsystem of equations (2), (3) and (4) taking
into account the state-at-infection (ej) and the states-of-infectiousness (aj,d1j) (Diekmann et al., 2010),
resulting in x = (ey, ay, d1y, eo, ao, d1o). In a matrix form, the subsystem is written as

d

dt
x = f (x) − v(x),

where the vectors f and v are defined below, with the partial derivatives of f and v evaluated at P0 being
given by

F = Df = ∂f
∂x and V = Dv = ∂v

∂x . (A.5)

Depending on the choice of vectors f and v, we can obtain the reduced reproduction number or the
fraction of susceptible persons at endemic level (Yang, 2014).
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A.1.1 The reduced reproduction number. In order to obtain the reduced reproduction number Rr,
diagonal matrix V is considered (Yang, 2014). Hence, the vectors f and v are

f T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λsy + ey

(
αyd2y + αod2o

)
pyσyey + ay

(
αyd2y + αod2o

)
(
1 − py

)
σyey + d1y

(
αyd2y + αod2o

)
λψso + eo

(
αyd2y + αod2o

)
poσoeo + ao

(
αyd2y + αod2o

)
(
1 − po

)
σoeo + d1o

(
αyd2y + αod2o

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.6)

and

vT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
σy + φ

)
ey(

γy + ηy + χy + φ
)
ay(

γ1y + η1y + φ
)
d1y(

σo + φ
)
eo(

γo + ηo + χo + φ
)
ao(

γ1o + η1o + φ
)
d1o

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.7)

where the superscript T stands for the transposition of a matrix, from which we obtain the matrices F
and V using equation (A.5) evaluated at the trivial equilibrium P0. The matrix F is given by

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 β1ys0
y β2ys0

y 0 β1os0
y β2os0

y
pyσy 0 0 0 0 0

(1 − py)σy 0 0 0 0 0
0 β1yψs0

o β2yψs0
o 0 β1oψs0

o β2oψs0
o

0 0 0 poσo 0 0
0 0 0 (1 − po)σo 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A.8)

and the matrix V is given by

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

σy + φ 0 0 0 0 0
0 Θy 0 0 0 0
0 0 γ1y + η1y + φ 0 0 0
0 0 0 σo + φ 0 0
0 0 0 0 Θo 0
0 0 0 0 0 γ1o + η1o + φ

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A.9)
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where Θy = γy + ηy + χy + φ and Θo = γo + ηo + χo + φ. The next generation matrix FV−1 is, then,

FV−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
β1ys0

y
γy+ηy+χy+φ

β2ys0
y

γ1y+η1y+φ
0

β1os0
y

γo+ηo+χo+φ

β2os0
y

γ1o+η1o+φ
pyσy
σy+φ

0 0 0 0 0
(1−py)σy

σy+φ
0 0 0 0 0

0
β1yψs0

o
γy+ηy+χy+φ

β2yψs0
o

γ1y+η1y+φ
0 β1oψs0

o
γo+ηo+χo+φ

β2oψs0
o

γ1o+η1o+φ

0 0 0 poσo
σo+φ

0 0

0 0 0 (1−po)σo
σo+φ

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the characteristic equation corresponding to FV−1, obtained from det
[
FV−1 − ϑI6

] = 0, with I6
being the 6 × 6 identity matrix, is

ϑ4(ϑ2 − Rr) = 0, (A.10)

where the reduced reproduction number Rr is

Rr = Rrys0
y + Rros0

o, where

{
Rry = pyR1

ry + (1 − py)R
2
ry

Rro = poR1
ro + (1 − po)R

2
ro,

(A.11)

and Rry and Rro are the partial reproduction numbers defined by⎧⎪⎪⎨
⎪⎪⎩

R1
ry = σy

σy + φ

β1y

γy + ηy + χy + φ
, and R2

ry = σy

σy + φ

β2y

γ1y + η1y + φ

R1
ro = σo

σo + φ

β1oψ

γo + ηo + χo + φ
, and R2

ro = σo

σo + φ

β2oψ

γ1o + η1o + φ
.

(A.12)

Instead of calculating the spectral radius (ρ(FV−1) = √
Rr) of the characteristic equation (A.10),

we apply procedure in Yang (2014) (the sum of coefficients of characteristic equation), resulting in the
threshold Rr. Hence, the trivial equilibrium point P0 is locally asymptotically stable (LAS) if Rr < 1 .

When a protection mechanism is introduced in a population, the basic reproduction number R0
is decreased to Rr, the reduced reproduction number. The safety of susceptible persons is done by a
vaccine (not yet available) or isolation (or quarantine). The isolation was described by the isolation rate
of susceptible persons η2j, with j = y, o. When η2j = 0, the fraction of young persons and elders are,
from equation (A.4), ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s̄0
y = φ

φ + ϕ
q̄0

y = 0

s̄0
o = ϕ

φ + ϕ
q̄0

o = 0,

(A.13)

with s̄0
y + s̄0

0 = 1. The basic reproduction number R0 is retrieved letting ηj = χj = η1j = 0, with j = i, o,
in equation (A.12), resulting in

R0 = R0ys̄0
y + R0os̄0

o, where

{
R0y = pyR1

0y + (1 − py)R
2
0y

R0o = poR1
0o + (1 − po)R

2
0o,

(A.14)
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with R0y and R0o being the partial reproduction numbers given by

⎧⎪⎪⎨
⎪⎪⎩

R1
0y = σy

σy + φ

β1y

γy + φ
, and R2

0y = σy

σy + φ

β2y

γ1y + φ

R1
0o = σo

σo + φ

β1oψ

γo + φ
, and R2

0o = σo
σo+φ

β2oψ
γ1o+φ

.

The partial reproduction number R1
0ys̄0

y (or R2
0ys̄0

o) is the secondary cases produced by one case of
asymptomatic individual (or pre-diseased individual) in a completely susceptible young subpopulation
without control. The partial basic reproduction number R1

0os̄0
o (or R2

0os̄0
o) is the secondary cases produced

by one case of asymptomatic individual (or pre-diseased individual) in a completely susceptible elder
subpopulation without control. If all parameters are equal, and ψ = 1, then

R0 =
[
pR1

0 + (1 − p) R2
0

]
,

where R1
0 = R1

0y+R1
0o and R2

0 = R2
0y+R2

0o are the partial reproduction numbers due to the asymptomatic
and pre-diseased persons.

A.1.2 The fraction of susceptible persons. To obtain the fraction of susceptible individuals, F must
be the most straightforward (matrix with the least number of non-zero elements) (Yang, 2014). Hence,
the vectors f and v are

f = (
λsy 0 0 λψso 0 0

)
and

vT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
σy + φ

)
ey − ey

(
αyd2y + αod2o

)
−pyσyey + (

γy + ηy + χy + φ
)
ay − ay

(
αyd2y + αod2o

)
−(1 − py

)
σyey + (

γ1y + η1y + φ
)
d1y − d1y

(
αyd2y + αod2o

)
(
σo + φ

)
eo − eo

(
αyd2y + αod2o

)
−poσoeo + (

γo + ηo + χo + φ
)
ao − ao

(
αyd2y + αod2o

)
−(1 − po

)
σoeo + (

γ1o + γ3o + η1o + φ
)
d1o − d1o

(
αyd2y + αod2o

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

from which we obtain the matrices F and V using equation (A.5) evaluated at the trivial equilibrium P0.
The matrix F is given by

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 β1ys0
y β2ys0

y 0 β1os0
y β2os0

y
0 0 0 0 0 0
0 0 0 0 0 0
0 β1yψs0

o β2yψs0
o 0 β1oψs0

o β2oψs0
o

0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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and the matrix V is given by

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

σy + φ 0 0 0 0 0
−pyσy Θy 0 0 0 0

−(1 − py)σy 0 γ1y + η1y + φ 0 0 0
0 0 0 σo + φ 0 0
0 0 0 −poσo Θo 0
0 0 0 −(1 − po)σo 0 γ1o + η1o + φ

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where Θy = γy + ηy + χy + φ and Θo = γo + ηo + χo + φ. The next generation matrix FV−1 is

FV−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R0ys0
y

β1ys0
y

γy+ηy+χy+φ

β2ys0
y

γ1y+η1y+φ
R0os0

y
β1os0

y
γo+ηo+χo+φ

β2os0
y

γ1o+η1o+φ

0 0 0 0 0 0
0 0 0 0 0 0

R0yψs0
o

β1yψs0
o

γy+ηy+χy+φ

β2yψs0
o

γ1y+η1y+φ
R0oψs0

o
β1oψs0

o
γo+ηo+χo+φ

β2oψs0
o

γ1o+η1o+φ

0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the characteristic equation corresponding to FV−1 is

ϑ5(ϑ − Rr

) = 0.

The spectral radius is ρ(FV−1) = Rr = Rry + Rro given by equation (A.11). Hence, the trivial

equilibrium point P0 is LAS if ρ < 1.
Both procedures resulted in the same threshold, hence, according to Yang & Greenhalgh (2015), the

inverse of the reduced reproduction number Rr given by equation (A.11) is a function of the fraction of
susceptible individuals at endemic equilibrium s∗ through

f
(
s∗, s∗

y , s∗
o

) = 1

Rr
= 1

Rrys0
y + Rros0

o
, (A.15)

where s∗ = s∗
y + s∗

o (see Yang et al., 2016; Yang & Greenhalgh, 2015). For this reason, the effective
reproduction number Re (Yang, 2020), which varies with time, cannot be defined by Re = R0(sy +ψso),
or Re = R0ysy + R0oψso. The function f (�) is determined by calculating the coordinates of the non-
trivial equilibrium point P∗. For instance, for dengue transmission model, f (s∗

1, s∗
2) = s∗

1 × s∗
2, where s∗

1
and s∗

2 are the fractions at equilibrium of, respectively, humans and mosquitoes (Yang et al., 2016). For
tuberculosis model considering drug-sensitive and resistant strains, there is not f (�), but s∗ is solution
of a second degree polynomial (Yang & Greenhalgh, 2015).

From equation (A.15), let us use as an approximation that f (s∗, s∗
y , s∗

o) = s∗
y + s∗

o. Then, we can
define the effective reproduction number Re as

Re ≈ Rr(sy + so), (A.16)

which depends on time, and when attains steady state (Re = 1), we have s∗ = 1/Rr.

A.2 Global stability of P0

The global stability of P0 follows the method proposed in Shuai & Driessche (2013). Let the vector of
variables be x = (ey, ay, d1y, eo, ao, d1o), vectors f and v given by equations (A.6) and (A.7) and matrices
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F and V given by equations (A.8) and (A.9). The vector g, constructed as

gT = (F − V) xT − f T − vT ,

is

gT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ
(
s0

y − sy

)− ey

(
αyd2y + αod2o

)
−ay

(
αyd2y + αod2o

)
−d1y

(
αyd2y + αod2o

)
λψ
(
s0

o − so

)− eo

(
αyd2y + αod2o

)
−ao

(
αyd2y + αod2o

)
−d1o

(
αyd2y + αod2o

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where gT ≥ 0 if s0
y ≥ sy, s0

o ≥ so and αy = αo = 0.

Let vl = (
z1, z2, z3, z4, z5, z6

)
be the left eigenvector satisfying the equation vlV

−1F = ρvl, where
ρ = √

Rr is the spectral radius of the characteristic equation (A.10), and

V−1F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
β1ys0

y
σy+φ

β2ys0
y

σy+φ
0

β1os0
y

σy+φ

β2os0
y

σy+φ
pyσy

γy+ηy+χy+φ
0 0 0 0 0

(1−py)σy
γ1y+η1y+φ

0 0 0 0 0

0
β1yψs0

o
σo+φ

β2yψs0
o

σo+φ
0 β1oψs0

o
σo+φ

β2oψs0
o

σo+φ

0 0 0 poσo
γo+ηo+χo+φ

0 0

0 0 0 (1−po)σo
γ1o+η1o+φ

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We must solve the system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pyσy

γy + ηy + χy + φ
z2 + (1 − py)σy

γ1y + η1y + φ
z3 = ρz1

β1ys0
y

σy + φ
z1 + β1yψs0

o

σo + φ
z4 = ρz2

β2ys0
y

σy + φ
z1 + β2yψs0

o

σo + φ
z4 = ρz3

poσo

γo + ηo + χo + φ
z5 + (1 − po)σo

γ1o + η1o + φ
z6 = ρz4

β1os0
y

σy + φ
z1 + β1oψs0

o

σo + φ
z4 = ρz5

β2os0
y

σy + φ
z1 + β2oψs0

o

σo + φ
z4 = ρz6,

and the vector-solution is given by

vl =
(

σy + φ

ρβ2ys0
y

Rry,
β1y

β2y
, 1,

σo + φ

ρβ2ys0
o

Rro,
β1o

β2y
,
β2o

β2y

)
.
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A Lyapunov function L can be constructed as L = vlV
−1xT , resulting in

L = z1

σy + φ
ey + z2

γy + ηy + χy + φ
ay + 1

γ1y + η1y + φ
d1y + z4

σo + φ
eo+

z5

γo + ηo + χo + φ
ao + z6

γ1o + η1o + φ
d1o,

which is always positive or zero (L ≥ 0), and

d
dt L = − (1 − ρ)

σy+φ

ρβ2ys0
y
Rryey − (1 − ρ)

σo+φ

ρβ2ys0
o
Rroeo − 1

ρβ2y
λ

[
Rry
s0
y

(
s0

y − ρsy

)+ Rro
s0
o

(
s0

0 − ρs0

)]+

ey

(
αyd2y + αod2o

)+ ay

(
αyd2y + αod2o

)+ d1y

(
αyd2y + αod2o

)+
eo

(
αyd2y + αod2o

)+ ao

(
αyd2y + αod2o

)+ d1o

(
αyd2y + αod2o

)
,

which is negative or zero (dL/dt ≤ 0) only if ρ < 1, s0
y ≥ sy, s0

o ≥ so and αy = αo = 0 (conditions to

have gT ≥ 0).
Hence, the method proposed in Shuai & Driessche (2013) is valid only for αy = αo = 0, in which

case P0 is globally stable if s0
y ≥ sy, s0

o ≥ so and ρ = √
Rr ≤ 1.


	Modeling the transmission of the new coronavirus in S&#x00E3;o Paulo State, Brazil---assessing the epidemiological impacts of isolating young and elder persons
	1. Introduction
	2. Material and methods
	3. Results
	3.1 Parameters estimation and the natural epidemic
	3.2 Epidemiological scenarios of isolation without relaxation eta 3y=eta 3o=0
	3.3 Epidemiological scenarios of relaxation

	4. Discussion
	5. Conclusion
	A.1 Local stability of P0
	A.2 Global stability of P0



