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ABSTRACT

Objective: We aim to develop a hybrid model for earlier and more accurate predictions for the number of

infected cases in pandemics by (1) using patients’ claims data from different counties and states that capture lo-

cal disease status and medical resource utilization; (2) utilizing demographic similarity and geographical prox-

imity between locations; and (3) integrating pandemic transmission dynamics into a deep learning model.

Materials and Methods: We proposed a spatio-temporal attention network (STAN) for pandemic prediction. It

uses a graph attention network to capture spatio-temporal trends of disease dynamics and to predict the num-

ber of cases for a fixed number of days into the future. We also designed a dynamics-based loss term for en-

hancing long-term predictions. STAN was tested using both real-world patient claims data and COVID-19 statis-

tics over time across US counties.

Results: STAN outperforms traditional epidemiological models such as susceptible-infectious-recovered (SIR),

susceptible-exposed-infectious-recovered (SEIR), and deep learning models on both long-term and short-term

predictions, achieving up to 87% reduction in mean squared error compared to the best baseline prediction

model.

Conclusions: By combining information from real-world claims data and disease case counts data, STAN can

better predict disease status and medical resource utilization.
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INTRODUCTION

Epidemic/pandemic prediction models
Traditional epidemic prediction models use compartmental based

models that estimate disease transmission dynamics at the popula-

tion level, such as SIR and SEIR models and their variants.2,3 Some

works also utilize time series learning approaches for pandemic pre-

diction, for example, applying curve-fitting3 or autoregression.5 Be-

sides these traditional statistical models, deep learning models were

developed to cast epidemic or pandemic modeling as time series pre-

diction problems. Many works6–8 combine deep neural networks

(DNN) with causal models for influenza-like illness incidence fore-

casting. Deng et al9 proposed a graph message passing framework to

combine learned feature embeddings and an attention matrix to

model disease propagation over time. Yang et al3 used previous pan-

demic data to pretrain the LSTM and then apply it to predict

COVID-19 progression in China. Kapoor et al10 utilized a simple

graph neural network (GNN) for COVID-19 prediction. However,

these models only predict the next day instead of long-term progres-

sion. It is still challenging to make deep learning-based models

achieve good long-term prediction performance. Moreover, DNN-

based methods have a significant issue: they can only predict known
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trends from the input data without understanding the long-term

progression trend. For example, at the early stage of the pandemic if

all case counts are increasing, it is unlikely for these models to pre-

dict a declining trend in the future. Hence the long-term prediction

is often difficult for DNN models.

Incorporate disease transmission dynamics in graph

neural network
Recently, several studies have attempted to incorporate knowledge

about physical systems into deep learning. For example, Wu et al

and Beucler et al11,12 introduced statistical and physical constraints

in the loss function to regularize the model’s predictions. However,

their studies only focused on spatial modeling without temporal dy-

namics. Seo et al13,14 integrated physical laws into GNNs. However,

they focused on using physical laws to optimize node–edge transi-

tions instead of concentrating on prediction results. In particular,

those models only predict graph signals for the next time point in-

stead of long-term outcomes. In our work, we also incorporate phys-

ics laws, (ie, disease transmission dynamics) to regularize model

predictions to overcome the limitations of the prior models. These

regularizations will be applied over a time range to ensure we can

predict long-term pandemic progression. Since our proposed method

is applied to extracted temporal and spatial embeddings of locations

as an extra loss term, it does not introduce extra hyperparameters;

hence, it is easier to train.

OBJECTIVE

Pandemic diseases, such as the novel coronavirus disease (COVID-

19), have been spreading rapidly across the world and pose a severe

threat to global public health. Up to July 2020, COVID-19 has af-

fected 14.1 million people, caused more than 597K deaths world-

wide,1 and caused significant disruption to people’s daily lives as

well as substantial economic losses. Therefore, it is critical to be able

to predict pandemic outbreaks early and accurately to help design

appropriate policies and reduce losses.

Many epidemiological models (eg, susceptible-infected-removed

[SIR], susceptible-exposed-infected-removed [SEIR]), and deep

learning models (eg, long short-term memory [LSTM] networks)

have been applied to predict the COVID-19 pandemic.1–4 However,

they face 3 major challenges: (1) they usually build a separate model

for each location (eg, 1 model per county) without incorporating

geographic proximity and interactions with nearby regions. Or the

forecasts only depend on some observed patterns from other loca-

tions,2,3 while interregional interactions are not directly modeled. In

fact, a location often shows similar disease patterns with its nearby

locations or demographically similar locations due to population

movements or demographic similarity.5 (2) Existing models are

mainly built on COVID-19 case report data. These data are known

to have severe underreporting or other data quality issues. (3) Epide-

miological models such as SIR and SEIR are deterministic models.

They use a set of differential equations to fit the entire curve of dis-

ease counts. These models are determined by only a few parameters,

making them unable to capture complex short-term patterns, such

as superinfection or time-varying infectivity.4 Conversely, deep

learning-based models can only predict known data patterns and

lead to accurate predictions only within a short time period. There-

fore, while there are techniques that allow for either short-term or

long-term predictive models of disease outbreaks, existing models

do not provide accurate models over both time horizons.

In this work, we propose a Spatio-Temporal Attention Network

(STAN) for pandemic prediction using real-world evidence, such as

claims data and COVID-19 case surveillance data. We map loca-

tions (eg, a county or a state) to nodes on a graph and construct the

edges based on geographical proximity and demographic similarity

between locations. Each node is associated with a set of static and

dynamic features extracted from multiple real-world evidence in

medical claims data that capture disease prevalence at different loca-

tions and medical resource utilization conditions. We utilize a graph

attention network (GAT) to incorporate interactions of similar loca-

tions. Then we predict the number of infected patients for a fixed pe-

riod into the future while concurrently imposing physical

constraints on predictions according to transmission dynamics of ep-

idemiological models. We apply STAN to predict both state-level

and county-level future number of infected cases, achieving up to

87% reduction in mean squared error compared to the best baseline

model. This study has been determined by the UIUC IRB as nonhu-

man subject research.

MATERIALS AND METHODS

Problem formulation
In this article, we develop the STAN model to predict the number of

COVID-19 cases, for a fixed number of days into the future, at the

county or state-level across the US, using the following input data:

county-level historical daily numbers of positive cases, county-level

population-related statistics, and the frequencies of relevant medical

codes extracted from medical claims data. Our goal is to better pre-

dict the number of cases by utilizing the rich information captured

by these different data sources.

Throughout the article, we use N to denote the number of spatial

locations (counties), X to represent the feature matrix of size

N � ðFS þ T � FDÞ, where FS is the number of static features per

county (or state), and FD is the number of dynamic features for each

county (or state). T denotes the total number of time steps (ie, days)

for each location. Finally, we are interested in predicting I tð Þ, the

number of infected patients at the tth time step for all the locations.

As depicted in Figure 1, STAN is enabled by the following com-

ponents: 1) a GNN that captures the geographic trends in disease

transmission; 2) an RNN that captures the temporal disease patterns

at each location; 3) Both short-term prediction loss and long-term

transmission dynamics constraint loss to regularize learned hidden

representations of node embeddings. We describe each of these

aspects below.

Graph construction

The input data include dynamic data and static data. Dynamic data is

a 3D tensor that includes location (eg, states, counties, etc), timestamp

(eg, days/weeks), and the dynamic features at each location (eg, the

number of active COVID-19 cases and the numbers of other related

ICD codes). Static data is a 2D matrix that includes location and the

static features for each location. We also form an attributed graph to

capture the spatio-temporal epidemic/pandemic dynamics. In particu-

lar, we model the geographic proximity and demographic similarity

between the different locations as edges in a location graph.

Graph nodes: We construct an attributed graph G V; Eð Þ to repre-

sent the input data. A location is modeled as a graph node and is as-

sociated with a feature matrix that contains both static and dynamic

features across all the timestamps for that location. In total, we have

193 nodes for the county-level graph (1 for each county with more
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than 1000 infected cases) or 45 nodes for the state-level graph (1 for

each state).

Graph edges: The edges are constructed based on geographical

proximity and the population sizes of the nodes (ie, locations). In

particular, we designate the weight of an edge between nodes i and j

as wij / pa
i pb

j exp � dij

r

� �
, where pi and pj are the population size of

the nodes, dij is the geographical distance between them, a; b and r

are hyperparameters. The above model is based on the idea that dis-

ease transmission patterns highly depend on crowd mobility. If there

is a high mobility rate between a pair of nodes, we expect that the

nodes have the similar disease spread parameters. Hence, our pro-

cess includes an edge with a large weight between such a pair of

nodes. Note that the distance parameter dij can incorporate any gen-

eral notion of distance, including inverse of the volume of air and

car travels.

Node features (static): Each node ni has an associated static fea-

ture vector of size 4; consisting of the static features including lati-

tude, longitude, population size, and population density.

Node features (dynamic): Each node ni also has a set of dynamic

features in the form of a matrix. The dynamic features include the

number of active cases, total cases, the current number of hospital-

izations, and ICU stays due to COVID-19, which are calculated by

aggregating the related procedure codes. We also include the num-

ber of each of the 48 COVID-19 related diagnosis codes extracted

from claims data according to the Centers for Disease Control and

Prevention guideline (https://www.cdc.gov/nchs/data/icd/COVID-

19-guidelines-final.pdf). We outline the specific diagnosis codes

used in the description of the dataset.

Modeling spatio-temporal patterns using graph attention networks

Obtaining the complex spatial dependencies is a crucial problem to

pandemic prediction. By utilizing spatial similarity, our model can

make more accurate predictions of a location by considering similar

locations’ disease transmission status. Here we employ the GAT

model15 to extract spatio-temporal similarity features. The basic

idea of GAT is updating the embedding of each node by aggregating

its neighboring nodes. In our setting, each location will receive infor-

mation from its adjacent locations based on mobility to model

spatio-temporal disease transmission patterns. This consideration is

based on the real-world scenario that adjacent locations may have

different impacts on the infectious status of the focused location.

For example, if 1 city has a large population size and increasing

infected cases, this city may have a considerable impact on its adja-

cent counties.

We use a 2-layer GAT to extract spatio-temporal features from

the attributed graph. We use the latest values from historical data

within a sliding window to construct the graph. Mathematically, at

time step t, the input features to node i are X i
t, where

X i
t 2 R

LIðFDþFSÞ, and LI denotes the length of the input window. In-

tuitively at the t-th timestep, we concatenate historical features (ie,

LI days of features) as input. The longer the LI is, the more histori-

cal information and patterns the model will use. Then we apply the

graph attention mechanism and calculate the node representation zi
t

2 R
Fz for each node, where Fz denotes the output dimension of the

GAT layer.

Concretely, to calculate the zi
t, we use the multihead mechanism

to calculate K independent attention scores following the self-

attention strategy.16 A multihead attention mechanism can help the

model get more accurate predictions by generating different attention

weights. Intuitively different attention heads may focus on different

features in the graph to more comprehensively model the locations.

The attention weight of the k-th head between 2 nodes i and j as:

ek
ij ¼ rðWk

aðWk
z X i

tjWk
z X

j
tÞÞ

where Wk
z 2 R

Fz�jX i
t j denotes the linear transformation weight ma-

trix for the k-th head, which will transform the input to the output

dimension. Wk
a 2 R

1 � 2Fz represents the attention computation ma-

trix for the k-th head, and �j�ð Þ denotes the vector concatenation. r
is the nonlinear activation function, and here we use the leaky recti-

fied linear function (LeakyReLU):

r xð Þ ¼
x; if x � 0

0:01x; otherwise

(

which is the same as the original GAT model.15

Next, we use the softmax function to calculate the attention

score:

ak
ij ¼ softmax ek

ij

� �
¼

exp ek
ij

� �
PN

n¼1 exp ek
in

� �

Figure 1. The STAN model: We construct the location graph using location-wise dynamic and static features as nodes and geographic proximity as edges. The

graph is fed into graph attention network to extract spatio-temporal features and learn the graph embedding for the target location. Then the graph embedding is

fed into the GRU to extract temporal relationships. The hidden states of GRU will be used to predict future number of infected and recovered cases. We use an ad-

ditional transmission dynamics loss based on pandemic transmission dynamics to optimize the model.
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Each edge of node i will receive an attention score, which

assesses how much information should be aggregated from neigh-

boring node j. Finally, we sum up all embedding vectors from multi-

ple heads to obtain the final representation zi
t for node i as:

zi
t ¼

1

K

XK

k¼1

XN
j¼1

ak
ijW

k
z X i

t

where N denotes the number of locations.

Modeling temporal features using recurrent neural networks

Pandemic prediction is not only spatial-related, but also a temporal-

related task. The graph information will change along with time.

We want to model the spatio-temporal patterns to better predict fu-

ture trends. We first use the MaxPooling operator, which is to select

the maximum value in each column of a matrix to reduce the dimen-

sion, to generate embedding for the entire graph as:

~zt ¼MaxPoolð½z0
t ; z

1
t ; . . . ; zN

t �Þ

where ½z0
t ; z

1
t ; . . . ; zN

t � is a matrix and the i-th column is zi
t, thus ~zt

incorporates the most important features of all nodes extracted from

the graph.

On the same day, the pandemic may have just emerged for some

locations, but for other locations, the pandemic may have reached

the peak. So, we cannot model temporal patterns for all locations si-

multaneously using the same model parameters. We build a different

model for each location. These locations share the same model struc-

ture and graph structure but have different model parameters. The

STAN model is an end-to-end model, which means each location’s

model will adaptively extract most related spatio-temporal patterns

from the attributed graph. All following equations are for 1 specific

location, and we omit location index i to reduce clutter.

We input the graph embedding to gated recurrent unit (GRU)17

network to learn temporal features. GRU is a type of recurrent neu-

ral network that can effectively model temporal sequences and is

also widely used in many sequence analysis tasks.18,19 The GRU’s

hidden state is calculated as:

ht ¼ GRUð ~z1 ; ~z2 ; . . . ; ~zt Þ

The obtained hidden state of the GRU ht at the t-th timestep for

a specific location contains both spatial and temporal patterns

learned from real-world data.

Multitask prediction and transmission dynamics inspired loss

function

Our objective is to predict the number of infected cases for both

long-term and short-term. In our method, we tackle this issue by us-

ing a multitask learning framework to consider short-term and long-

term prediction performance jointly.

The idea is to use short-term prediction loss and long-term trans-

mission dynamics constraint loss to regularize learned hidden repre-

sentations of node embeddings (ie, hidden state of the GRU) ht. In

Figure 2, we provide the model prediction process for a single loca-

tion on day 5 (the input window LI ¼ 3). Since the prediction pro-

cess is the same for each timestep, we will omit the time index t for

simplicity. Concretely, the model output consists of 2 parts:

1. Transmission/Recovery rate: The traditional SIR-based model

assumes that the disease transmission/recovery rate b and c re-

main constant time. But in practice, those rates may easily change

over time due to policies or disease evolution reasons. To solve

this issue, we define a prediction window LP that the b and c will

be specific for this window. In Figure 2, LP ¼ 5, and the predic-

tion window starts on Day 6 and ends on Day 10. The model will

predict b and c for the prediction window as:

b; c ¼ sigmoidðMLPðhÞÞ

where MLP �ð Þ denotes the multi-layer perceptron, and we use sig-

moid activation since both b and c are between 0 and 1.

2. Daily increased number of infected/recovered cases: For the i-th

prediction window, the model will predict the increment of the

number of infected and recovered cases cDI and cDR as:

cDI ; cDR ¼MLPðhÞ

Note that cDI and cDR are vectors, since we are predicting for LP

days.

To optimize the model parameters, we design 2 loss terms to make

the model predict better for both short-term and long-term progres-

sion. Concretely, the loss function also consists of 2 parts:

1. Transmission dynamics constraint loss. The first loss term is a

transmission dynamics constraint loss to regularize long-term pre-

diction trends. In this term, we do not directly optimize the pre-

dictions using the ground truth numbers. Instead, we hope the

model can use pandemic dynamics to regularize longer progres-

sions. In particular, we use the predicted transmission/recovery

rate b and c to compute dynamic-based predictions cDI
d

and cDR
d
.

Figure 2. STAN prediction process for a single location at day 5 with LI ¼ 3 and LP ¼ 5.
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Then we can optimize the learned b and c by optimizing these

dynamic-based predictions. Concretely, based on the SIR differen-

tial equations and given the prediction window in Figure 2, we

can calculate the transmission dynamics-based increment number

of infected cases and recovered cases iteratively as:

cDI
d
¼ cDI

d

tþ1;
cDI

d

tþ2; . . . ; cDI
d

tþLp

� �
; each cDI

d

i ¼ bSi�1 � cIi�1

¼ b NP � bId

i�1 � bRd

i�1

� �
� cbId

i�1

cDR
d
¼ cDR

d

tþ1;
cDR

d

tþ2; . . . ; cDR
d

tþLp

� �
; each cDR

d

i ¼ cbId

i�1

where bId

i�1;
bRd

i�1 can be calculated iteratively using the ground truth

value of the infected and recovered cases at the day before the cur-

rent prediction window (ie, I4 and R4 in our example), NP denotes

the population size of the current location, and in Figure 2, t ¼ 5

since we are making predictions at the 5th time step. Finally, the

transmission dynamics constraint loss is calculated as:

‘d ¼ cDI
d
� DI

� 	2

þ cDR
d
� DR

� 	2

where It and Rt denote the ground truth number of infected and re-

covered cases. This loss term calculates the mean squared error of

transmission dynamics-based predictions in order to make the pre-

diction results in line with the long-term trend of pandemics.

2. Prediction loss. The second loss term is a regular mean squared er-

ror loss for the second task:

‘r ¼ cDI � DI
� �2

þ cDR � DR
� �2

this loss term is to make the prediction results as close as possible to

the short-term variation.

By combining 2 loss terms, the final loss function can be calcu-

lated by summing up all locations and timesteps as:

‘ ¼
XT

i

XN
j

ð‘r þ ‘dÞ

Prediction with STAN

Once the model is trained, we can use the trained model to predict

COVID cases at all locations given the length of input window LI,

the length of prediction window Lp, and graph information G as in-

put. Assuming our data are collected between t1 and t2: first, the

graph information between t1 and t2 is fed into GAT to generate the

graph embedding; then the graph embeddings are fed into GRU. At

the last timestep of the GRU, the model will output predicted daily

increased number of infected and recovered cases (ie, cDI ; cDR) for fu-

ture Lp days after t2; finally, we can calculate the total infected cases

number by summing up the increased number. Note that we do not

use the transmission dynamics constraints in the prediction time be-

cause this module is only used for optimizing the model in training

time. We can obtain longer predictions by using a larger prediction

window LP or adding the latest graph data incrementally.

EXPERIMENTS

Dataset description
In this article, we used a US county-level dataset that consists of

COVID-19 related data from 2 resources: Johns Hopkins University

(JHU) Coronavirus Resource Center20 and IQVIA’s claims data.21

The data from JHU Coronavirus Resource Center were collected

from March 22, 2020 to June 10, 2020. It has the number of active

cases, confirmed cases, and deaths related to COVID-19 for differ-

ent US locations. We select states with more than 1000 confirmed

cases by May 17 to ensure the data source accuracy, and finally we

have 45 states and 193 counties in the dataset. For those counties,

we set the number of cases before their respective first record dates

as zero. The IQVIA’s claims data are from the IQVIA US9 Database.

We export patient claims data and prescription data from March

22, 2020 to June 10, 2020, from which we obtain the number of

hospital and ICU visits and the term-frequency of each medical code

per county per day. Detailed dataset descriptions are shown in Sup-

plementary Material. The dataset has records for a total of 453 089

patients across the entire time span of the JHU dataset. The 48

unique ICD-10 codes related to COVID-19 are listed in the Supple-

mentary Material.

Baseline models
We compare STAN with the following baselines.

1. SIR: the susceptible-infected-removed (SIR), a basic disease trans-

mission model that uses differential equations to simulate an epi-

demic. S, I, and R represent the number of susceptible, infected,

and recovered individuals.

2. SEIR: the susceptible-exposed-infected-removed (SEIR) epidemio-

logical model as another transmission dynamics constraint-based

baseline. Compared to the SIR model, SEIR adds exposed popula-

tion size to the equation.

3. GRU:17 We input the latest number of infected cases into a naı̈ve

GRU and predict future numbers.

4. ColaGNN:9 ColaGNN uses a location graph to extract spatial

relationships for predicting pandemics. Different from STAN,

graph nodes in ColaGNN only consist of time series of numbers

of infected cases.

5. CovidGNN:10 CovidGNN uses a GNN with skip connections to

predict pandemics. They use the graph embedding to predict the

future number of cases without using RNN to extract temporal

relationships.

To explore the performance enhancement by transmission dy-

namics constraints and graph structures, we also compare STAN

with the following reduced models.

1. STAN-PC removes transmission dynamics constraints from

STAN.

2. STAN-Graph removes the GNN layers and graph data from

STAN.

The implementation details of all models are shown in Supple-

mentary Material. We have made our codes available on a public re-

pository (https://github.com/v1xerunt/STAN).

Tasks and evaluation strategy
We predict the future number of active cases on both county level

and state level. To evaluate the ability of STAN for both long-term

predictions and short-term predictions, we set the prediction win-

dow LP to 5, 15, and 20 (ie, predict for future 5, 15, and 20 days).

All training sets start from March 22, and all test sets start from

May 17. We also split LP days from the training sets as evaluation

sets to determine model hyperparameters. We set LI to 5. All loca-

tions are used in training and testing set by splitting along the time
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dimension, where early time windows are used for training the

model, and later time windows are used for testing the model. All

the models use the same training data and are also evaluated and

tested using the same prediction time window.

We use the mean square error (MSE), mean absolute error

(MAE) to evaluate our model. We also use the average concordance

correlation coefficient (CCC) to evaluate the results. The CCC meas-

ures the agreement between 2 variables, and it is computed as:

CCC ¼ 2qrxry

r2
x þ r2

y þ lx � ly

� �2

where lx and ly are the means for the 2 variables, and r2
x and r2

y are

the corresponding variances. q is the correlation coefficient between

the 2 variables. Note that we chose not to use the coefficient of deter-

mination (R2) because the range of R2 is ð�1;1Þ, so some extreme

value may significantly affect the average value. But the range of CCC

is between �1 and 1, so we can evaluate model results more reliably.

To estimate a 95% confidence interval, according to previous pan-

demic research,22 we resample the locations 1000 times, calculate the

score on the resampled sets, and then use 2.5 and 97.5 percentiles of

these scores as our confidence interval estimate.

RESULTS

Table 1 shows the average performance and a 95% confidence inter-

val for state-level predictions of our model and all baseline models.

STAN achieves the best performance under different lengths of the

prediction window. When the length of the prediction win-

dow LP ¼ 5; STAN achieves 59% lower MSE, 33% lower MAE,

and 23% higher CCC than the best baseline ColaGNN. When the

length of the prediction window LP ¼ 15; STAN achieves 87%

lower MSE, 56% lower MAE, and 47% higher CCC than

ColaGNN. When the length of the prediction window LP ¼ 20;

STAN achieves 48% lower MSE, 37% lower MAE, and 32% higher

CCC than ColaGNN.

Table 2 shows the performance for county-level prediction

results. STAN also achieves the best performance under different

lengths of the prediction window. When the length of the prediction

window LP ¼ 5, STAN acquires 26% lower MSE, 29% lower

MAE, and 25% higher CCC than ColaGNN. When the length of

the prediction window LP ¼ 15, STAN achieves 55% lower MSE,

34% lower MAE, and 30% higher CCC than ColaGNN. When the

length of the prediction window LP ¼ 20, STAN achieves 55%

lower MSE, 37% lower MAE, and 29% higher CCC than

ColaGNN.

The results show STAN can conduct more accurate long-term

and short-term prediction than SIR and SEIR models on both state

and county levels. Since county-level graph data are more granular,

STAN can benefit more by utilizing such data than the traditional

dynamics-based model. It is also worth noting that both reduced

model STAN-PC and STAN-Graph also outperform other baselines.

This indicates that both transmission dynamics constraints and real-

world evidence provide valuable information for pandemic progres-

sion prediction. We reported the detailed performance of each loca-

tion in the Supplementary Material. We conducted a T-test between

STAN and each baseline model to check the performance difference

statistically. The P value is shown in Table 3. The results show that

for each baseline model, STAN can significantly outperform statisti-

cally (P value < .001). The detailed t-test results are shown in the

Supplementary Material.

DISCUSSION AND LIMITATIONS

In this section, we will discuss the advantages and also the limita-

tions of our model. We draw the predicted curve of 20 days from

May 16 to Jun 5 for 2 counties, El Paso, TX and Lake, IN, and 2

states, CA and MA. As shown in Table 4, for the 2 counties, STAN

shows up to 99% relatively lower MSE compared to the SEIR and

SIR model. For the 2 states, the performance improvement is much

greater, STAN can achieve at most 95% lower MSE compared to

the best SEIR models. And as shown in Figures 3 and, 4 the curve

also fits the actual trend better for both counties and states. One ob-

vious drawback of SIR and SEIR models is the overfitting issue. The

SIR and SEIR models tend to predict the peak will come right after

current data, which is especially apparent in the prediction curve of

Lake, IN, and MA. This is because these traditional models do not

incorporate the influence and interdependency of transmission be-

tween geographic regions. The characteristics of transmission of in-

fectious diseases in 1 area are unlikely to be decoupled from those of

nearby areas unless there are barriers to interaction between the

regions such as topography (rivers with limited bridges or mountain

ranges with limited road connections) or controlled borders. Such

decoupling is infrequently present between counties in the US. The

inability to account for this geographic interdependency removes an

important variable in the SIR and SEIR models and impedes their

ability to predict the future progression using limited data at the

early pandemic stage.

Though deep learning-based methods can achieve better perfor-

mance than traditional statistical methods in various time series

analysis and prediction tasks, there are still 2 major limitations in

our work. The first limitation is the prediction window setting in

our method. The traditional SIR and SEIR models use all historical

training data to fit the model and generate the entire curve to be less

affected by the fluctuations in the data. However, our model divides

historical data into prediction windows in training time. This setting

allows STAN to dynamically model the pandemic progressions.

Therefore, it can better simulate situations, such as changes in

reporting policy or dynamical changes in transmissibility or conta-

gion. However, if the number of cases fluctuates drastically due to

inaccuracy in the data collection process, it is difficult for the STAN

model to learn valid and stable transmission and recovery rates.

This issue can be further solved by applying dynamic data smooth-

ing to smooth such abnormal data points.

The second limitation is that the transmission dynamics constraints

may be too simple to reflect real-world situations, such as home isola-

tion and pandemic control policies. A lot of research focuses on im-

proving the traditional SIR model by adding more population groups

and transmission equations.3,23 These variants can be quickly adopted

in our model by modifying the transmission dynamic loss.

The third limitation is about data quality for constructing the at-

tribute graph. For node features, indeed, sometimes ICD codes may

not reflect real pandemic status due to report delay or other reasons.

And the edge mobility calculation can also be improved by incorporat-

ing more data sources such as traffic info or mobile geolocation track-

ing. Besides, the dynamic features and static features are processed

together without considering their different characteristics. Future

work can incorporate more data sources and extend the transmission

dynamics constraints into STAN to further enhance the prediction per-

formance with richer data and process different data types more rea-

sonably. Our model can also be easily adopted for mortality or

hospitalization prediction tasks by adding related statistics such as

COVID-19 related treatment codes and ICU codes to the data.
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CONCLUSION

In this work, we propose a spatio-temporal attention network model

(STAN) for the COVID-19 pandemic prediction. We map locations

(eg, a county or a state) to nodes on a graph. We use a set of static

and dynamic features extracted from multiple real-world evidence,

including real-world medical claims data, to construct nodes and

use geographical proximity and demographic similarity between

locations to construct edges. We use a GAT to incorporate the vari-

ant influence of the different neighboring locations of a node and

Table 1. Performance comparison for state-level predictions

Prediction window LP ¼ 5

Model MSE MAE CCC

SIR 2 968 711

(814 014–4 152 617)

921.06

(776.93–1209.22)

0.41

(0.37–0.45)

SEIR 1 890 708

(612 049–3 562 890)

679.64

(681.57–1197.38)

0.49

(0.44–0.54)

GRU 925 701

(501 309–1 792 855)

582.43

(479.50–842.38)

0.55

(0.50–0.60)

ColaGNN 601 840

(381 907–982 354)

440.26

(323.57–568.44)

0.66

(0.59–0.72)

CovidGNN 830 517

(430 127–1 109 311)

500.11

(367.55–645.72)

0.58

(0.53–0.64)

STAN-PC 323 325

(213 702–450 314)

313.72

(280.39–392.01)

0.75

(0.70–0.79)

STAN-Graph 472 245

(276 391–612 099)

362.04

(310.08–452.39)

0.67

(0.63–0.71)

STAN 237 412

(159 995–290 801)

220.50

(172.71–272.03)

0.84

(0.81–0.87)

Prediction window LP ¼ 15

Model MSE MAE CCC

SIR 22 939 910

(11 682 896–35 393 542)

2438.95

(1807.71–3119.30)

0.32

(0.25–0.40)

SEIR 12 993 900

(5 234 542–21 928 077)

1781.66

(1305.68–2295.44)

0.49

(0.44–0.55)

GRU 9 205 382

(3 708 352–15 534 698)

1710.09

(1253.23–2203.22)

0.38

(0.34–0.43)

ColaGNN 7 192 031

(2 897 281–12 137 035)

1290.41

(945.67–1662.52)

0.57

(0.51–0.63)

CovidGNN 9 609 283

(3 871 062–16 216 309)

1611.19

(1180.75–1075.80)

0.45

(0.40–0.50)

STAN-PC 1 785 304

(1 032 754–2 895 702)

774.22

(650.39–904.74)

0.72

(0.68–0.76)

STAN-Graph 2 897 053

(1 352 076–4 309 806)

964.09

(784.01–1011.36)

0.66

(0.60–0.71)

STAN 972 192

(622 425–1 404 284)

586.56

(484.11–690.61)

0.84

(0.80–0.87)

Prediction window LP ¼ 20

Model MSE MAE CCC

SIR 46 732 397

(23 701 239–71 720 863)

3439.25

(2538.28–4423.32)

0.25

(0.18–0.33)

SEIR 25 296 100

(9 038 485–44 609 676)

2451.60

(1849.00–3120.60)

0.43

(0.37–0.50)

GRU 15 901 430

(5 681 699–28 042 173)

2046.32

(1543.34–2604.72)

0.52

(0.44–0.60)

ColaGNN 9 317 132

(3 971 773–19 667 264)

1645.42

(1240.98–2094.72)

0.63

(0.54–0.72)

CovidGNN 16 739 642

(6 623 891–27 756 861)

2 081.25

(1569.69–2649.19)

0.54

(0.46–0.62)

STAN-PC 5 929 321

(3 082 515–10 309 710)

1209.41

(1032.75–1564.71)

0.75

(0.72–0.78)

STAN-Graph 9 509 671

(5 909 301–15 408 623)

1689.90

(1342.09–2031.74)

0.68

(0.64–0.72)

STAN 4 909 604

(1 999 607–8 811 535)

1088.48

(820.78–1366.01)

0.82

(0.79–0.86)

Abbreviations: CCC, concordance correlation coefficient; GNN, graph neural network, GRU, gated recurrent unit; MAE, mean absolute error; MSE, mean

square error; SEIR, susceptible-exposed-infectious-recovered SIR, susceptible-infectious-recovered; STAN, spatio-temporal attention network.
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predict the number of infected patients for a fixed period into the fu-

ture. We also impose transmission dynamics constraints on predic-

tions according to transmission dynamics. STAN achieves better

prediction performance than either of the traditional SIR and SEIR

models and other deep learning methods and shows less overfitting

issues at the early stage of the pandemic. We hope our model can

help governments and researchers better allocate medical resources

and make policies to control the pandemic earlier. Our model can

also be easily extended to predict hospitalization of COVID-19 as

future work.

Table 2. Performance comparison for county-level predictions

Prediction window LP ¼ 5

Model MSE MAE CCC

SIR 93 512

(44 864–159 117)

151.33

(125.49–177.86)

0.40

(0.38–0.44)

SEIR 134 494

(50 223–251 893)

165.14

(136.94–194.09)

0.35

(0.32–0.38)

GRU 79 982

(39 820–136 096)

121.76

(100.96–143.10)

0.47

(0.43–0.51)

ColaGNN 61 627

(36 176–104 864)

110.91

(91.97–130.36)

0.53

(0.49–0.58)

CovidGNN 71 664

(37 718–121 941)

120.01

(99.16–140.55)

0.47

(0.43–0.51)

STAN–PC 53 194

(32 961–103 211)

107.69

(87.63–123.12)

0.58

(0.53–0.63)

STAN-Graph 50 331

(29 023–97 304)

104.99

(85.09–117.33)

0.57

(0.53–0.61)

STAN 44 177

(13 028–79 916)

79.80

(66.17–93.79)

0.66

(0.60-0.71)

Prediction window LP ¼ 15

Model MSE MAE CCC

SIR 884 249

(438 613–1 353 544)

415.79

(353.08–480.88)

0.29

(0.26–0.32)

SEIR 1 102 601

(495 229–2 014 880)

391.06

(318.76–469.78)

0.33

(0.30–0.36)

GRU 810 362

(382 092–1 008 423)

322.90

(291.54–397.06)

0.48

(0.45–0.51)

ColaGNN 465 104

(290 623–878 780)

286.55

(258.72–352.37)

0.56

(0.54–0.59)

CovidGNN 635 401

(342 312–935 801)

310.84

(280.64–382.23)

0.50

(0.47–0.53)

STAN–PC 393 790

(251 323–675 304)

246.01

(215.42–305.33)

0.65

(0.63–0.68)

STAN-Graph 339 082

(210 403–612 392)

242.74

(219.02–298.37)

0.66

(0.63–0.69)

STAN 157 243

(100 712–218 922)

193.85

(170.52–220.06)

0.72

(0.69–0.74)

Prediction window LP ¼ 20

Model MSE MAE CCC

SIR 1 881 144

(511 054–2 953 878)

585.14

(497.63–682.66)

0.23

(0.20–0.26)

SEIR 2 238 468

(647 839–3 998 162)

538.57

(437.36–644.32)

0.29

(0.26–0.32)

GRU 981 064

(419 891–1 294 611)

461.86

(426.74–585.42)

0.46

(0.43–0.49)

ColaGNN 703 377

(301 042–928 175)

410.13

(378.95–519.86)

0.55

(0.52–0.58)

CovidGNN 1 043 261

(446 511–1 376 685)

468.44

(432.83–593.77)

0.43

(0.40–0.47)

STAN-PC 492 374

(287 672–853 034)

271.63

(233.17–325.09)

0.67

(0.64–0.70)

STAN-Graph 555 681

(300 626–879 030)

281.62

(239.01–356.71)

0.68

(0.64–0.71)

STAN 326 258

(187 532–505 796)

253.86

(219.53–291.86)

0.71

(0.69–0.74)

Abbreviations: CCC, concordance correlation coefficient; GNN, graph neural network, GRU, gated recurrent unit; MAE, mean absolute error; MSE, mean

square error; SEIR, susceptible-exposed-infectious-recovered SIR, susceptible-infectious-recovered; STAN, spatio-temporal attention network.
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Table 3. T-Test for STAN and other baseline models (prediction window in 5–20 days)

Model State-5 State-15 State-20 County-5 County-15 County-20

SIR 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00 0.00Eþ00

SEIR 0.00Eþ00 0.00Eþ00 4.04E-263 1.46E-203 6.21E-253 9.74E-257

GRU 5.27E-16 3.46E-12 2.70E-08 8.46E-18 3.57E-84 5.28E-56

ColaGNN 9.54E-09 4.08E-20 1.03E-04 2.83E-07 5.23E-60 9.85E-57

CovidGNN 2.02E-12 4.38E-24 5.27E-08 3.07E-20 4.32E-69 2.57E-61

STAN-PC 3.84E-04 6.23E-06 3.95E-03 1.98E-06 3.99E-32 7.21E-21

STAN-Graph 5.34E-07 6.62E-09 7.16E-05 4.76E-04 6.31E-16 4.55E-12

Abbreviations: GNN, graph neural network, GRU, gated recurrent unit; SEIR, susceptible-exposed-infectious-recovered; SIR, susceptible-infectious-recovered;

STAN, spatio-temporal attention network.

Table 4. Prediction performance for 2 counties (El Paso, TX and Lake, IN) and 2 states (CA and MA)

Model MSE MAE CCC

El Paso, TX

SIR 867 272 922.38 0.27

SEIR 196 954 403.36 0.47

STAN 3889 47.14 0.99

Lake, IN

SIR 448 839 619.16 0.06

SEIR 182 627 361.95 0.19

STAN 842 24.67 0.99

CA

SIR 122 495 498 8498.43 0.45

SEIR 58 379 735 5848.03 0.79

STAN 2 782 908 1306.15 0.99

MA

SIR 592 535 941 21 652.34 �0.11

SEIR 28 495 989 4458.38 0.37

STAN 2 771 603 1461.30 0.93

Abbreviations: CCC, concordance correlation coefficient; MAE, mean absolute error; MSE, mean square error; SEIR, susceptible-exposed-infectious-recovered

SIR, susceptible-infectious-recovered; STAN, spatio-temporal attention network.

Figure 3. Predicted curve for 2 counties: El Paso, TX (left) and Lake, IN (right).
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