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Abstract

The presence of missing entries in data often creates challenges for pattern recognition algorithms. 

Traditional algorithms for clustering data assume that all the feature values are known for every 

data point. We propose a method to cluster data in the presence of missing information. Unlike 

conventional clustering techniques where every feature is known for each point, our algorithm can 

handle cases where a few feature values are unknown for every point. For this more challenging 

problem, we provide theoretical guarantees for clustering using a l0 fusion penalty based 

optimization problem. Furthermore, we propose an algorithm to solve a relaxation of this problem 

using saturating non-convex fusion penalties. It is observed that this algorithm produces solutions 

that degrade gradually with an increase in the fraction of missing feature values. We demonstrate 

the utility of the proposed method using a simulated dataset, the Wine dataset and also an under-

sampled cardiac MRI dataset. It is shown that the proposed method is a promising clustering 

technique for datasets with large fractions of missing entries.

1 INTRODUCTION

CLUSTERING is an exploratory data analysis technique that is widely used to discover 

natural groupings in large datasets, where no labeled or pre-classified samples are available 

apriori. Specifically, it assigns an object to a group if it is similar to other objects within the 

group, while being dissimilar to objects in other groups. Example applications include 

analysis of gene experssion data, image segmentation, identification of lexemes in 

handwritten text, search result grouping and recommender systems [1]. A wide variety of 

clustering methods have been introduced over the years; see [2] for a review of classical 

methods. However, there is no consensus on a particular clustering technique that works well 

for all tasks, and there are pros and cons to most existing algorithms. The common 

clustering techniques such as k-means [3], k-medians [4] and spectral clustering [5] are 

implemented using the Lloyd’s algorithm which is non-convex and thus sensitive to 

initialization. Recently, linear programming and semi-definite programming based convex 

relaxations of the k-means and k-medians algorithms have been introduced [6] to overcome 

the dependence on initialization. Unlike the Lloyd’s algorithm, these relaxations can provide 

a certificate of optimality. However, all of the above mentioned techniques require apriori 

knowledge of the desired number of clusters. Hierarchical clustering methods [7], which 

produce easily interpretable and visualizable clustering results for a varying number of 

clusters, have been introduced to overcome the above challenge. A drawback of [7] is its 

sensitivity to initial guess and perturbations in the data. The more recent convex clustering 
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technique (also known as sum-of-norms clustering) [8] retains the advantages of hierarchical 

clustering, while being invariant to initialization, and producing a unique clustering path. 

Theoretical guarantees for successful clustering using the convex-clustering technique are 

also available [9].

Most of the above clustering algorithms cannot be directly applied to real-life datasets, 

where a large fraction of samples are missing. For example, gene expression data often 

contains missing entries due to image corruption, fabrication errors or contaminants [10], 

rendering gene cluster analysis difficult. Likewise, large databases used by recommender 

systems (e.g Netflix) usually have a huge amount of missing data, which makes pattern 

discovery challenging [11]. The presence of missing responses in surveys [12] and failing 

imaging sensors in astronomy [13] are reported to make the analysis in these applications 

challenging. Several approaches were introduced to extend clustering to missing-data 

applications. For example, a partially observed dataset can be converted to a fully observed 

one using either deletion or imputation [14]. Deletion involves removal of variables with 

missing entries, while imputation tries to estimate the missing values and then performs 

clustering on the completed dataset. An extension of the weighted sum-of-norms algorithm 

(originally introduced for fully sampled data [8]) has been proposed where the weights are 

estimated from the data points by using some imputation techniques on the missing entries 

[15]. Kernel-based methods for clustering have also been extended to deal with missing 

entries by replacing Euclidean distances with partial distances [16], [17]. A majorize 

minimize algorithm was introduced to solve for the cluster-centres and cluster memberships 

in [18], which offers proven reduction in cost with iteration. In [19] and [20] the data points 

are assumed to lie on a mixture of K distributions, where K is known. The algorithms then 

alternate between the maximum likelihood estimation of the distribution parameters and the 

missing entries. A challenge with these algorithms is the lack of theoretical guarantees for 

successful clustering in the presence of missing entries. In contrast, there has been a lot of 

work in recent years on matrix completion for different data models. Algorithms along with 

theoretical guarantees have been proposed for low-rank matrix completion [21] and 

subspace clustering from data with missing entries [22], [23]. However, these algorithms and 

their theoretical guarantees cannot be trivially extended to the problem of clustering in the 

presence of missing entries.

The main focus of this paper is to introduce an algorithm for the clustering of data with 

missing entries and to theoretically analyze the conditions needed for perfect clustering in 

the presence of missing data. The proposed algorithm is inspired by the sum-of-norms 

clustering technique [8]; it is formulated as an optimization problem, where an auxiliary 

variable assigned to each data point is an estimate of the centre of the cluster to which that 

point belongs. A fusion penalty is used to enforce equality between many of these auxiliary 

variables. Since we have experimentally observed that non-convex fusion penalties provide 

superior clustering performance, we focus on the analysis of clustering using a l0 fusion 

penalty in the presence of missing entries, for an arbitrary number of clusters. The analysis 

reveals that perfect clustering is guaranteed with high probability, provided the number of 

measured entries (probability of sampling) is high enough; the required number of measured 

entries depends on several parameters including intra-cluster variance and inter-cluster 
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distance. We observe that the required number of entries is critically dependent on 

coherence, which is a measure of the concentration of inter cluster differences in the feature 

space. Specifically, if the clustering of the points is determined only by a very small subset 

of all the available features, then the clustering becomes quite unstable if those particular 

feature values are unknown for some points. Other factors which influence the clustering 

technique are the number of features, number of clusters and total number of points. We also 

extend the theoretical analysis to the case without missing entries. The analysis in this 

setting shows improved bounds when a uniform random distribution of points in their 

respective clusters is considered, compared to the worst case analysis considered in the 

missing-data setting. We expect that improved bounds can also be derived for the case with 

missing data when a uniform random distribution is considered.

We also propose an algorithm to solve a relaxation of the above l0 penalty based clustering 

problem, using non-convex saturating fusion penalties. The algorithm is demonstrated on a 

simulated dataset with different fractions of missing entries and cluster separations. We 

observe that the algorithm is stable with changing fractions of missing entries, and the 

clustering performance degrades gradually with an increase in the number of missing 

entries. We also demonstrate the algorithm on clustering of the Wine dataset [24] and 

reconstruction of a dynamic cardiac MRI dataset from few Fourier measurements.

2 CLUSTERING USING l0 FUSION PENALTY

2.1 Background

We consider the clustering of points drawn from one of K distinct clusters C1, C2,…, CK. 

We denote the center of the clusters by c1, c2, …, cK ∈ ℝP . For simplicity, we assume that 

there are M points in each of the clusters. The individual points in the kth cluster are 

modelled as:

zk(m) = ck + nk(m); m = 1, .., M, k = 1, …, K (1)

Here, nk(m) is the noise or the variation of zk(m) from the cluster center ck. The set of input 

points xi , i = 1, …, KM is obtained as a random permutation of the points {zk(m)}. The 

objective of a clustering algorithm is to estimate the cluster labels, denoted by 

C xi for i = 1, …, KM.

The sum-of-norms (SON) method is a recently proposed convex clustering algorithm [8]. 

Here, a surrogate variable ui is introduced for each point xi, which is an estimate of the 

centre of the cluster to which xi belongs. As an example, let K = 2 and M = 5. Without loss 

of generality, let us assume that x1, x2,..., x5 belong to C1 and x6, x7,..., x10 belong to C2. 

Then, we expect to arrive at the solution: u1 = u2 = ... = u5 = c1 and u6 = u7 = ... = u10 = c2. 

In order to find the optimal ui∗ , the following optimization problem is solved:

ui∗ = argmin
ui

∑
i = 1

KM
∥ xi − ui ∥2

2 + λ ∑
i = 1

KM
∑
j = 1

KM
∥ ui − uj ∥p (2)
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The fusion penalty ∥ ui − uj ∥p  can be enforced using different lp norms, out of which the 

l1, l2 and l∞ norms have been used in literature [8]. The use of sparsity promoting fusion 

penalties encourages sparse differences ui − uj, which facilitates the clustering of the points 

{ui}. For an appropriately chosen λ, the ui’s corresponding to xi’s from the same cluster 

converge to the same point. The main benefit of this convex scheme over classical clustering 

algorithms is the convergence of the algorithm to the global minimum.

The above optimization problem can be solved efficiently using the Alternating Direction 

Method of Multipliers (ADMM) algorithm and the Alternating Minimization Algorithm 

(AMA) [25]. Truncated l1 and l2 norms have also been used recently in the fusion penalty, 

resulting in non-convex optimization problems [26]. It has been shown that these penalties 

provide superior performance to the traditional convex penalties. Convergence to local 

minimum using an iterative algorithm has also been guaranteed in the non-convex setting.

The sum-of-norms algorithm has also been used as a visualization and exploratory tool to 

discover patterns in datasets [15]. Clusterpath diagrams are a common way to visualize the 

data. This involves plotting the solution path as a function of the regularization parameter λ. 

For a very small value of λ, the solution is given by: ui∗ = xi, i.e. each point forms its 

individual cluster. For a very large value of λ, the solution is given by: ui∗ = c, i.e. every 

point belongs to the same cluster. For intermediate values of λ, more interesting behaviour is 

seen as various {ui} merge and reveal the cluster structure of the data.

In this paper, we extend the algorithm to account for missing entries in the data. We present 

theoretical guarantees for clustering with and without missing entries using an l0 fusion 

penalty. Next, we approximate the l0 penalty by non-convex saturating penalties, and solve 

the resulting relaxed optimization problem using an iterative reweighted least squares 

(IRLS) strategy [27]. The proposed algorithm is shown to perform clustering correctly in the 

presence of large fractions of missing entries.

2.2 Central Assumptions

We make the following assumptions (illustrated in Fig 1), which are key to the successful 

clustering of the points:

A.1: Cluster separation: Points from different clusters are separated by δ > 0 in the l2
sense, i.e:

min
m, n

∥ zk(m) − zl(n) ∥2 ≥ δ; ∀ k ≠ l (3)

We require δ > 0 for the clusters to be non-overlapping. A high δ corresponds to well 

separated clusters.

A.2: Cluster size: The maximum separation of points within any cluster in the l∞ sense is ϵ 
≥ 0, i.e:
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max
m, n

∥ zk(m) − zk(n) ∥∞ = ϵ; ∀k = 1, …, K (4)

Thus, the kth cluster is contained within a cube of size ϵ, with center ck.

A.3: Feature concentration: The coherence of a vector y ∈ ℝP  is defined as [21]:

μ(y) = P ∥ y ∥∞
2

∥ y ∥2
2 (5)

By definition: 1 ≤ μ(y) ≤ P. Intuitively, a vector with a high coherence has a few large values 

and several small ones. Specifically, if μ(y) = P, then y has only 1 non-zero value. In 

contrast, if μ(y) = 1, then all the entries of y are equal. We bound the coherence of the 

difference between points from different clusters as:

max
m, n

μ zk(m) − zl(n) ≤ μ0; ∀ k ≠ l (6)

μ0 is indicative of the difficulty of the clustering problem in the presence of missing data. If 

μ0 = P, then two clusters differ only a single feature, suggesting that it is difficult to assign 

the correct cluster to a point if this feature is not sampled. The best case scenario is μ0 = 1, 

when all the features are equally important. In general, cluster recovery from missing data 

becomes challenging with increasing μ0.

The quantity κ = ϵ P
δ  is a measure of the difficulty of the clustering problem. Small values 

of κ suggest large inter-cluster separation compared to the cluster size; the recovery of such 

well-defined clusters is expected to be easier than the case with large κ values. Note the l2
norm is used in the definition of δ, while the l∞ norm is used to define ϵ. If δ = ϵ P , then κ 
= 1; this value of κ is of special importance since κ < 1 is a requirement for successful 

recovery in our main results.

We study the problem of clustering the points {xi} in the presence of entries missing 

uniformly at random. We arrange the points {xi} as columns of a matrix X. The rows of the 

matrix are referred to as features. We assume that each entry of X is observed with 

probability p0. The entries measured in the ith column are denoted by:

yi = Sixi, i = 1, .., KM (7)

where Si is the sampling matrix, formed by selecting rows of the identity matrix. We 

consider solving the following optimization problem to obtain the cluster memberships from 

data with missing entries:
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ui∗ = min
ui

∑
i = 1

KM
∑
j = 1

KM
∥ ui − uj ∥2, 0

s.t ∥ Si xi − ui ∥∞ ≤ ϵ
2, i ∈ 1…KM

(8)

We use the above constrained formulation rather than the unconstrained formulation in (2) to 

avoid the dependence on λ. The l2,0 norm is defined as:

∥ x ∥2, 0 =
0 , if ∥ x ∥2 = 0
1 , otherwise

(9)

Similar to the SON scheme (2), we expect that all ui’s that correspond to xi in the same 

cluster are equal, while ui’s from different clusters are not equal. We consider the cluster 

recovery to be successful when there are no misclassifications. We claim that the above 

algorithm can successfully recover the clusters with high probability when:

1. The clusters are well separated (i.e, low κ = ϵ P
δ )).

2. The sampling probability p0 is sufficiently high.

3. The coherence μ0 is small.

Before moving on to a formal statement and proof of this result, we consider a simple 

special case to illustrate the approach. In order to aid the reader in following the results, all 

the important symbols used in the paper have been summarized in Table 1.

2.3 Noiseless Clusters with Missing Entries

We consider the simple case where all the points belonging to the same cluster are identical. 

Thus every cluster is “noiseless”, and we have: ϵ = 0 and hence κ = 0. The optimization 

problem (8) now reduces to:

ui∗ = min
ui

∑
i = 1

KM
∑
j = 1

KM
∥ ui − uj ∥2, 0

s.t Sixi = Siui, i ∈ 1…KM
(10)

Next, we state a few results for this special case in order to provide some intuition about the 

problem. The results are not stated with mathematical rigour and are not accompanied by 

proofs. In the next sub-section, when we consider the general case, we will provide lemmas 

and theorems (with proofs in the appendix), which generalize the results stated here. 

Specifically, Lemmas 2.1, 2.2, 2.3 and Theorem 2.4 generalize Results 2.1, 2.2, 2.3 and 2.4 

respectively.

We will first consider the data consistency constraint in (10) and determine possible feasible 

solutions. We observe that all the points in any specified cluster can share a centre without 

violating the data consistency constraint:
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Result 2.1.—Consider any two points x1 and x2 from the same cluster. A solution u exists 
for the following equations:

Sixi = Siu; i = 1, 2 (11)

with probability 1.

The proof for the above result is trivial in this special case, since all points in the same 

cluster are the same. We now consider two points from different clusters.

Result 2.2.—Consider two points x1 and x2 from different clusters. A solution u exists for 
the following equations:

Sixi = Siu; i = 1, 2 (12)

with low probability, when the sampling probability p0 is high and coherence μ0 is low.

By definition, S1 = Sℐ1 and S2 = Sℐ2, where ℐ1 and ℐ2 are the index sets of the features 

that are sampled (not missing) in x1 and x2 respectively. We observe that (12) can be 

satisfied, iff:

Sℐ1 ∩ ℐ2 x1 − x2 = 0 (13)

which implies that the features of x1 and x2 are the same on the index set ℐ1 ∩ ℐ2. If the 

probability of sampling p0 is sufficiently high, then the number of samples at commonly 

observed locations:

ℐ1 ∩ ℐ2 = q (14)

will be high, with high probability. If the coherence μ0 defined in assumption A3 is low, then 

with high probability the vector x1 − x2 does not have q entries that are equal to 0. In other 

words, the cluster memberships are not determined by only a few features. Thus, for a small 

value of μ0 and high p0, we can ensure that (13) occurs with very low probability. We now 

generalize the above result to obtain the following:

Result 2.3.—Assume that xi: i ∈ ℐ, |ℐ| = M  is a set of points chosen randomly from 

multiple clusters (not all are from the same cluster). A solution u exists for the following 
equations:

Sixi = Siu; ∀i ∈ ℐ (15)

with low probability, when the sampling probability p0 is high and coherence μ0 is low.

The key message of the above result is that large mis-classified clusters are highly unlikely. 

We will show that all feasible solutions containing small mis-classified clusters are 

associated with higher cost than the correct solution. Thus, we can conclude that the 
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algorithm recovers the ground truth solution with high probability, as summarized by the 

following result.

Result 2.4.—The optimization problem (10) results in the ground-truth clustering with a 
high probability if the sampling probability p0 is high and the coherence μ0 is low.

2.4 Noisy Clusters with Missing Entries

We will now consider the general case of noisy clusters with missing entries, and will 

determine the conditions required for (8) to yield successful recovery of clusters. The 

reasoning behind the proof in the general case is similar to that for the special case discussed 

in the previous sub-section. Before proceeding to the statement of the lemmas and theorems, 

we define the following quantities:

•
Upper bound for probability that two points have less than 

p0
2P
2  commonly 

observed locations:

γ0: = e
2

−
p0
2P
2 (16)

•
Given that two points from different clusters have more than 

p0
2P
2  commonly 

observed locations, upper bound for probability that they can yield the same u 
without violating the constraints in (8):

δ0: = e−
p0
2P 1 − κ2 2

μ0
2

(17)

• Upper bound for probability that two points from different clusters can yield the 

same u without violating the constraints in (8):

β0: = 1 − 1 − δ0 1 − γ0 (18)

• Upper bound for failure probability of (8):

η0: = ∑
mj ∈ S

β0

1
2 M2 − ∑jmj2 ∏

j

M
mj

(19)

where S is the set of all sets of positive integers {mj} such that: 2 ≤ U mj ≤ K
and ∑jmj = M. Here, the function U counts the number of non-zero elements in 

a set. For example, if K = 2 then S contains all sets of 2 positive integers {m1, 

m2}, such that m1 + m2 = M. Thus, 

S = 1, M − 1 , 2, M − 2 , 3, M − 3 , …, M − 1, 1  and (19) reduces to:
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η0 = ∑
i = 1

M − 1
β0

i(M − i) M
i

2
(20)

• We note that the expression for η0 is quite involved. Hence, to provide some 

intuition, we simplify this expression for the special case where there are only 

two clusters. Under the assumption that logβ0 ≤ 1
M − 1 + 2

M − 2 log 1
M − 1 , it can be 

shown that η0 is upper-bounded as:

η0 = ∑
i = 1

M − 1
β0

i(M − i) M
i

2

≤ M3β0
M − 1

: = η0, approx

(21)

The above upper bound is derived in Appendix F.

We now state the results for clustering with missing entries in the general noisy case. The 

following two lemmas are generalizations of Results 2.1 and 2.2 to the noisy case.

Lemma 2.1.—Consider any two points x1 and x2 from the same cluster. A solution u exists 
for the following equations:

∥ Si xi − u ∥∞ ≤ ϵ
2; i = 1, 2 (22)

with probability 1.

The proof of this lemma is in Appendix A.

Lemma 2.2.—Consider any two points x1 and x2 from different clusters, and assume that κ 
< 1. A solution u exists for the following equations:

∥ Si xi − u ∥∞ ≤ ϵ
2; i = 1, 2 (23)

with probability less than β0.

The proof of this lemma is in Appendix C. We note that β0 decreases with a decrease in κ. A 

small ϵ implies less variability within clusters and a large δ implies well-separated clusters, 

together resulting in a low value of κ. Both these characteristics are desirable for clustering 

and result in a low value of β0. This lemma also demonstrates that the coherence assumption 

is important in ensuring that the sampled entries are sufficient to distinguish between a pair 

of points from different clusters. As a result, β0 decreases with a decrease in the value of μ0. 

As expected, we also observe that β0 decreases with an increase in p0.

The above result can be generalized to consider a large number of points from multiple 

clusters. If we choose M points such that not all of them belong to the same cluster, then it 

Poddar and Jacob Page 9

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can be shown that with high probability, they cannot share the same u without violating the 

constraints in (8). This idea (a generalization of Result 2.3) is expressed in the following 

lemma:

Lemma 2.3.—Assume that xi: i ∈ ℐ, |ℐ| = M  is a set of points chosen randomly from 

multiple clusters (not all are from the same cluster). If κ < 1, a solution u does not exist for 
the following equations:

∥ Si xi − u ∥∞ ≤ ϵ
2; ∀i ∈ ℐ (24)

with probability exceeding 1 − η0.

The proof of this lemma is in Appendix D. We note here, that for a low value of β0 and a 

high value of M (number of points in each cluster), we will arrive at a very low value of η0. 

Using Lemmas 2.1, 2.2 and 2.3, we now move on to our main result which is a 

generalization of Result 2.4:

Theorem 2.4.—If κ < 1, the solution to the optimization problem (8) is identical to the 
ground-truth clustering with probability exceeding 1 − η0.

The proof of the above theorem is in Appendix E. The reasoning follows from Lemma 2.3. It 

is shown in the proof that all solutions with cluster sizes smaller than M are associated with 

a higher cost than the ground-truth solution.

2.5 Clusters without Missing Entries

We now study the case where there are no missing entries. In this special case, optimization 

problem (8) reduces to:

ui∗ = min
ui

∑
i = 1

KM
∑
j = 1

KM
∥ ui − uj ∥2, 0

s.t ∥ xi − ui ∥∞ ≤ ϵ
2, i ∈ 1…KM

(25)

We have the following theorem guaranteeing successful recovery for clusters without 

missing entries:

Theorem 2.5.—If κ < 1, the solution to the optimization problem (25) is identical to the 
ground-truth clustering.

The proof for the above Theorem is in Appendix G. We note that the above result does not 

consider any particular distribution of the points in each cluster. Instead, if we consider that 

the points in each cluster are sampled from certain particular probability distributions such 

as the uniform random distribution, then a larger κ is sufficient to ensure success with high 

probability. In the general case where no such distribution is assumed, we cannot make a 

probabilistic argument, and a smaller κ is required. We now consider a special case, where 

the noise nk(m) is a zero mean uniform random variable ∼ U( − ϵ/2, ϵ/2). Thus, the points 
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within each cluster are uniformly distributed in a cube of side ϵ. We note that δ is now a 

random variable, and thus instead of using the constant κ = ϵ P
δ  (as in previous lemmas), we 

define the following constant:

κ′ = ϵ P
c (26)

where c is defined as the minimum separation between the centres of any 2 clusters in the 

dataset:

min
k, l

∥ ck − cl ∥2 ≥ c; ∀ k ≠ l (27)

We also define the following quantity:

β1 = e−
P 1 − 5

6κ′2 2

8κ′2
(28)

We arrive at the following result for two points in different clusters:

Lemma 2.6.—Let κ′ < 6
5 , If the points in each cluster follow a uniform random 

distribution, then for two points x1 and x2 belonging to different clusters, a solution u exists 
for the following equations:

∥ xi − u ∥∞ ≤ ϵ
2; i = 1, 2 (29)

with probability less than β1.

The proof for the above lemma is in Appendix H. This implies that for κ′ < 6
5 , two points 

from different clusters cannot be misclassified to a single cluster with high probability. As 

η0 is expressed in terms of β0 in (19), we can also express η1 in terms of β1. We get the 

following guarantee for perfect clustering:

Theorem 2.7.—If the points in each cluster follow a uniform random distribution and 

κ′ < 6
5 , then the solution to the optimization problem (25) is identical to the ground-truth 

clustering with probability exceeding 1 − η1.

Note that κ = κ′ c
δ . Thus, the above result allows for values κ > 1. Our results show that if we 

do not consider the distribution of the points, then we arrive at the bound κ < 1 with and 

without missing entries, as seen from Theorems 2.4 and 2.5 respectively. A uniform random 

distribution can also be assumed in the case of missing entries. Similar to Theorem 2.7, we 

expect an improved bound for the case with missing entries as well.
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3 RELAXATION OF THE l0 PENALTY

3.1 Constrained formulation

We propose to solve a relaxation of the optimization problem (8), which is more 

computationally feasible. The relaxed problem is given by:

ui∗ = min
ui

∑
i = 1

KM
∑
j = 1

KM
ϕ ∥ ui − uj ∥2

s.t ∥ Si xi − ui ∥∞ ≤ ϵ
2, i ∈ 1…KM

(30)

where ϕ is a function approximating the l0 norm. Some examples of such functions are:

• lp norm: ϕ(x) = x p, for some 0 < p < 1.

•
H1 penalty: ϕ(x) = 1 − e− x2

2σ2 .

These functions approximate the l0 penalty more accurately for lower values of p and σ, as 

illustrated in Fig 2. We reformulate the problem using a majorize-minimize strategy. 

Specifically, by majorizing the penalty ϕ using a quadratic surrogate functional, we obtain:

ϕ(x) ≤ w(x)x2 + d (31)

where w(x) = ϕ′(x)
2x , and d is a constant. For the two penalties considered here, we obtain the 

weights as:

• lp norm: w(x) = 2
px(2 − p) + α

−1
. The infinitesimally small α term is introduced 

to deal with situations where x = 0. For non-zero x, we get the expression 

w(x) ≈ p
2xp − 2.

•
H1 penalty: w(x) = 1

2σ2e− x2
2σ2 .

We can now state the majorize-minimize formulation for problem (30) as:

ui∗, wij∗ = arg min
ui, wij

∑
i = 1

KM
∑
j = 1

KM
wij ∥ ui − uj ∥2

2

s.t ∥ Si xi − ui ∥∞ ≤ ϵ
2, i ∈ 1…KM

(32)

where the constant d has been ignored. In order to solve problem (32), we alternate between 

two sub-problems till convergence. At the nth iteration, these sub-problems are given by:

wij
(n) =

ϕ′ ∥ ui
(n − 1) − uj

(n − 1) ∥2
2 ∥ ui

(n − 1) − uj
(n − 1) ∥2

(33)
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ui
(n) = argmin

ui
∑
i = 1

KM
∑
j = 1

KM
wij

(n) ∥ ui − uj ∥2
2

s.t ∥ Si xi − ui ∥∞ ≤ ϵ
2, i ∈ 1…KM

(34)

3.2 Unconstrained formulation

For larger datasets, it might be computationally intensive to solve the constrained problem. 

In this case, we propose to solve the following unconstrained problem:

ui∗ = argmin
ut

∑
i = 1

KM
∥ Si ui − xi ∥2

2 + λ ∑
i = 1

KM
∑
j = 1

KM
ϕ ∥ ui − uj ∥2 (35)

As before, we can state the majorize-minimize formulation for problem (35) as:

ui∗, wij* = arg min
ui, wij

∑
i = 1

KM
∥ Si ui − xi ∥2

2

+λ ∑
i = 1

KM
∑
j = 1

KM
wij ∥ ui − uj ∥2

2
(36)

In order to solve the problem (36), we alternate between two sub-problems till convergence. 

The 1st sub-problem is the same as (33). The 2nd sub-problem is given by:

ui
(n) = argmin

ui
∑
i = 1

KM
∥ Si ui − xi ∥2

2

+λ ∑
i = 1

KM
∑
j = 1

KM
wij

(n) ∥ ui − uj ∥2
2

(37)

3.3 Comparison of penalties

We compare the performance of different penalties when used as a surrogate for the l0

norm. For this purpose, we use a simulated dataset with points in ℝ50 belonging to 3 well-

separated clusters, with 200 points in each cluster. For this particular experiment, we 

considered x1, x2,...,x200 ∈ C1, x201, x202,...,x400 ∈ C2 and x401, x402,...,x600 ∈ C3. We do 

not consider the presence of missing entries for this experiment. We solve problem (35) to 

cluster the points using the l1, lp (for p = 0.1) and H1 (for σ = 0.5) penalties. The results are 

shown in Fig 3. Only for the purpose of visualization, we take a PCA of the data matrix 

X ∈ ℝ50 × 600 and retain the 2 most significant principal components to get a matrix of points 

∈ ℝ2 × 600. These points are plotted in the figure, with red, blue and green representing 

points from different clusters. We similarly obtain the 2 most significant components of the 

estimated centres and plot the resulting points in black. In (b) and (c), we note that 

u1
∗ = u2

∗ = … = u200
∗ , u201

∗ = u202
∗ = … = u400

∗  and u401
∗ = u402

∗ = … = u600
∗ . Thus, the lp
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penalty and the H1 penalty are able to correctly cluster the points. This behaviour is not seen 

in (a). Thus it is concluded that the convex l1 penalty is unable to cluster the points.

The cluster-centres estimated using the lp penalty are inaccurate. The H1 penalty out-

performs the other two penalties and accurately estimates the cluster-centres. We can explain 

this behaviour intuitively by observing the plots in Fig 2. The l1 norm penalizes differences 

between all pairs of points. The l0.1 semi-norm penalizes differences between points that are 

close. Due to the saturating nature of the penalty, it does not heavily penalize differences 

between points that are further away. The same is true for the H1 penalty. However, we note 

that the H1 penalty saturates to 1 very quickly, similar to the l0 norm. This behaviour is 

missing for the l0.1 penalty. For this reason, it is seen that the l0.1 penalty also penalizes 

inter-cluster distances (unlike the H1 penalty), and shrinks the distance between the 

estimated centres of different clusters.

3.4 Initialization Strategies

Our experiments emphasize the need for a good initialization of the weights wij for 

convergence to the correct cluster centre estimates. This dependence on the initial value 

arises from the non-convexity of the optimization problem. We consider two different 

strategies for initializing the weights:

• Partial Distances: Consider a pair of points x1, x2 observed by sampling matrices 

S1 = Sℐ1 and S2 = Sℐ2 respectively. Let the set of common indices be 

ω: = ℐ1 ∩ ℐ2. We define the partial distance as ∥ yω ∥ = P
|ω| ∥ x1ω − x2ω ∥, 

where xiω represents the set of entries of xi restricted to the index set ω. Instead 

of the actual distances which are not available, the partial distances ∥ yω ∥ can be 

used for computing the weights.

• Imputation Methods: The weights can be computed from estimates ui
(0) , where:

ui
(0) = Sixi + I − Si m (38)

Here m is a constant vector, specific to the imputation technique. The zero-filling 

technique corresponds to m = 0. Better estimation techniques can be derived 

where the jth row of m can be set to the mean of all measured values in the jth 

row of X.

We will observe experimentally that for a good approximation of the initial weights W(0), 

we get the correct clustering. Conversely, the clustering fails for a bad initial guess. Our 

experiments demonstrate the superiority of a partial distance based initialization strategy 

over a zero-filled initialization.

4 RESULTS

We study the proposed theoretical guarantees for Theorem 2.4 for different settings. We also 

test the proposed algorithm on simulated and real datasets. The simulations are used to study 
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the performance of the algorithm with change in parameters such as fraction of missing 

entries, number of points to be clustered etc. We also study the effect of different 

initialization techniques on the algorithm performance. We demonstrate the algorithm on the 

publicly available Wine dataset [24], and use the algorithm to reconstruct a dataset of under-

sampled cardiac MR images.

4.1 Study of Theoretical Guarantees

We observe the behaviour of the quantities γ0, δ0, β0, η0 and η0,approx (defined in section 

2.4) as a function of parameters p0, P, κ and M. Fig 4 shows a few plots that illustrate the 

change in these quantities as the different parameters are varied. γ0 is an upper bound for the 

probability that a pair of points have <
p0
2P
2  entries observed at common locations. In Fig 4 

(a), the change in γ0 is shown as a function of p0 for different values of P. In subsequent 

plots, we fix P = 50 and μ0 = 1.5. δ0 is an upper bound for the probability that a pair of 

points from different clusters can share a common centre, given that ≥
p0
2P
2  entries are 

observed at common locations. In Fig 4 (b), the change in δ0 is shown as a function of p0 for 

different values of κ. In Fig 4 (c), the behaviour of β0 = 1 − (1 − γ0)(1 − δ0) is shown, which 

is the probability mentioned in Lemma 2.2.

We consider the two cluster setting, (i.e. K = 2) for subsequent plots. η0 is the probability of 

failure of the clustering algorithm (8). In (d) and (e), plots are shown for (1 − η0) and (1 − 

η0,approx) as a function of p0 for different values of κ and M. Here, η0,approx is an upper 

bound for η0 computed using (21). As expected, the probability of success of the clustering 

algorithm increases with increase in p0 and M and decrease in κ.

4.2 Clustering of Simulated Data

We simulated datasets with K = 2 disjoint clusters in ℝ50 with a varying number of points 

per cluster (M = 6, 12, 25, 50, 100). The points in each cluster follow a uniform random 

distribution. We study the probability of success of the H1 penalty based constrained 

clustering algorithm (with partial-distance based initialization) as a function of κ, M and p0. 

For a particular set of parameters the experiment was conducted 20 times to compute the 

probability of success of the algorithm. Between these 20 trials, the cluster-centers remain 

the same, while the points sampled from these clusters are different and the locations of the 

missing entries are different. Fig 5 (a) shows the result for datasets with κ = 0.39 and μ0 = 

2.3. The theoretical guarantees for successfully clustering the dataset are shown in (b). Note 

that the theoretical guarantees do not assume that the points are taken from a uniform 

random distribution. Also, the theoretical bounds assume that we are solving the original 

problem using a l0 norm, whereas the experimental results were generated for the H1 

penalty. Our theoretical guarantees hold for κ < 1. However, we demonstrate in (c) that even 

for the more challenging case where κ = 1.15 and μ0 = 13.2, our clustering algorithm is 

successful. Note that we do not have theoretical guarantees for this case. However, by 

assuming a uniform random distribution on the points, we expect that we can get better 

theoretical guarantees (similar to Theorem 2.7 for the case without missing entries).
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Clustering results with K = 3 simulated clusters are shown in Fig 6. We simulated Dataset-1 

with K = 3 disjoint clusters in ℝ50 and M = 200 points in each cluster. In order to generate 

this dataset, 3 cluster centres in ℝ50 were chosen from a uniform random distribution. The 

distances between the 3 pairs of cluster-centres are 3.5, 2.8 and 3.3 units respectively. For 

each of these 3 cluster centres, 200 noisy instances were generated by adding zero-mean 

white Gaussian noise of variance 0.1. The dataset was sub-sampled with varying fractions of 

missing entries (p0 = 1,0.9, 0.8,...,0.3, 0.2). The locations of the missing entries were chosen 

uniformly at random from the full data matrix. We also generate Dataset-2 by halving the 

distance between the cluster centres, while keeping the intra-cluster variance fixed. We test 

both the constrained (30) and unconstrained (35) formulations of our algorithm on these 

datasets. Both the proposed initialization techniques for the IRLS algorithm (i.e. zero-filling 

and partial-distance) are also tested here. Since the points lie in ℝ50, we take a PCA of the 

points and their estimated centres (similar to Fig 3) and plot the 2 most significant 

components. The 3 colours distinguish the points according to their ground-truth clusters. 

Each point xi is joined to its centre estimate ui∗ by a line. As expected, we observe that the 

clustering algorithms are more stable with fewer missing entries. We also note that the 

results are quite sensitive to the initialization technique. We observe that the partial distance 

based initialization technique out-performs the zero-filled initialization. The unconstrained 

algorithm with partial distance-based initialization shows superior performance to the 

alternative schemes. Thus, we use this scheme for subsequent experiments on real datasets.

4.3 Clustering of Wine Dataset

We apply the clustering algorithm to the Wine dataset [24]. The data consists of the results 

of a chemical analysis of wines from 3 different cultivars. Each data point has P = 13 

features. The 3 clusters have 59, 71 and 48 points respectively, resulting in a total of 178 

data points. We created a dataset without outliers by retaining only M = 40 points per 

cluster, resulting in a total of 120 data points. We under-sampled these datasets using 

uniform random sampling with different fractions of missing entries. The results are 

displayed in Fig 7 using the PCA technique as explained in the previous sub-section. It is 

seen that the clustering is quite stable and degrades gradually with increasing fractions of 

missing entries.

4.4 Cardiac MR Image Reconstruction

We apply the proposed algorithm to the reconstruction of a cardiac MR image time series. In 

MRI, samples are collected in the Fourier domain. However, due to the slow nature of the 

acquisition, only a small fraction of the Fourier samples can be acquired in each time frame. 

The goal of image reconstruction is to recover the image series from the incomplete Fourier 

observations. In the case of cardiac MRI, the different images in the time series appear in 

clusters determined by the cardiac and respiratory phase. Thus, the proposed algorithm can 

be applied to the image reconstruction problem.

The cardiac data was acquired on a Siemens Aera MRI scanner at the University of Iowa. 

The subject was asked to breathe freely, and 10 radial lines of Fourier data was acquired to 

reconstruct each image frame. Fourier data corresponding to 1000 frames was acquired and 
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the image series was reconstructed using the proposed unconstrained algorithm. We 

performed spectral clustering [5] on the reconstructed images to form 20 clusters. A few 

reconstructed frames belonging to 2 different clusters are illustrated in Fig 8. The images 

displayed have minimal artefacts and are of diagnostic quality.

5 DISCUSSION

We have proposed a technique to cluster points when some of the feature values of all the 

points are unknown. We theoretically studied the performance of an algorithm that 

minimizes an l0 fusion penalty subject to certain constraints relating to consistency with the 

known features. We concluded that under favourable clustering conditions, such as well-

separated clusters with low intra-cluster variance, the proposed method performs the correct 

clustering even in the presence of missing entries. However, since the problem is NP-hard, 

we propose to use other penalties that approximate the l0 norm. We observe experimentally 

that the H1 penalty is a good surrogate for the l0 norm. This non-convex saturating penalty 

is shown to perform better in the clustering task than previously used convex norms and 

penalties. We describe an IRLS based strategy to solve the relaxed problem using the 

surrogate penalty.

Our theoretical analysis reveals the various factors that determine whether the points will be 

clustered correctly in the presence of missing entries. It is obvious that the performance 

degrades with the decrease in the fraction of sampled entries (p0). Moreover, it is shown that 

the difference between points from different clusters should have low coherence (μ0). This 

means that the expected clustering should not be dependent on only a few features of the 

points. Intuitively, if the points in different clusters can be distinguished by only 1 or 2 

features, then a point missing these particular feature values cannot be clustered correctly. 

Moreover, we note that a high number of points per cluster (M), high number of features (P) 

and a low number of clusters (K) make the data less sensitive to missing entries. Finally, 

well-separated clusters with low intra-cluster variance (resulting in low values of κ) are 

desirable for correct clustering.

Our experimental results show great promise for the proposed technique. In particular, for 

the simulated data, we note that the cluster-centre estimates degrade gradually with increase 

in the fraction of missing entries. Depending on the characteristics of the data such as 

number of points and cluster separation distance, the clustering algorithm fails at some 

particular fraction of missing entries. We also show the importance of a good initialization 

for the IRLS algorithm, and our proposed initialization technique using partial distances is 

shown to work very well.

The proposed algorithm performs well on the MR image reconstruction task, resulting in 

images with minimal artefacts and diagnostic quality. It is to be noted that the MRI images 

are reconstructed satisfactorily from very few Fourier samples. In this case the fraction of 

observed samples is around 5%. However, we see that the simulated datasets and the Wine 

datasets cannot be clustered at such a high fraction of missing samples. The fundamental 

difference between the MRI dataset and the other datasets is the coherence μ0. For the MRI 

data, we acquire Fourier samples. Since we know that the low frequency samples are 
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important for image reconstruction, the MRI scanner acquires more low frequency samples. 

This is a case where high coherence is helpful in clustering. However, for the simulated and 

Wine data, we do not know apriori which features are more important. In any case the 

sampling pattern is random, and as predicted by theory, it is more useful to have low 

coherence. The conclusion is that if the sampling pattern is within our control, it is useful to 

have high coherence if the relative importance of the different features is known apriori. If 

this is unknown, then random sampling is preferred and it is useful to have low coherence. 

Our future work will focus on deriving guarantees for the case of high μ0 when the locations 

of the important features are known with some confidence, and the sampling pattern can be 

adapted accordingly.

Our theory assumes well-separated clusters and does not consider the presence of any 

outliers. Theoretical and experimental analysis for the clustering performance in the 

presence of outliers needs to be investigated. Improving the algorithm performance in the 

presence of outliers is a direction for future work. Moreover, we have shown improved 

bounds for the clustering success in the absence of missing entries when the points within a 

cluster are assumed to follow a uniform random distribution. We expect this trend to also 

hold for the case with missing entries. This case will be analyzed in future work.

6 CONCLUSION

We propose a clustering technique for data in the presence of missing entries. We prove 

theoretically that a constrained l0 norm minimization problem recovers the clustering 

correctly even in the presence of missing entries. An efficient algorithm that solves a 

relaxation of the above problem is presented next. It is demonstrated that the cluster centre 

estimates obtained using the proposed algorithm degrade gradually with an increase in the 

number of missing entries. The algorithm is also used to cluster the Wine dataset and 

reconstruct MRI images from under-sampled Fourier data. The presented theory and results 

demonstrate the utility of the proposed algorithm in clustering data when some of the feature 

values of the data are unknown.

APPENDIX A: Proof of Lemma 2.1

Proof. Since x1 and x2 are in the same cluster, ∥ x1 − x2 ∥∞ ≤ ϵ. For all the points in this 

particular cluster, let the pth feature be bounded as: fmin
p ≤ x(p) ≤ fmax

p . Then we can 

construct a vector u, such that u(p) = 1
2 fmin

p + fmax
p . Now, since fmax

p − fmin
p ≤ ϵ, the 

following condition will be satisfied for this particular choice of u:

∥ xi − u ∥∞ ≤ ϵ
2; i = 1, 2 (39)

From this, it follows trivially that the following will also hold:

∥ Si xi − u ∥∞ ≤ ϵ
2; i = 1, 2 (40)
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□

APPENDIX B: Lemma B.1

Lemma B.1.

Consider any pair of points x1, x2 ∈ ℝP  observed by sampling matrices S1 = Sℐ1 and 

S2 = Sℐ2, respectively. We assume the set of common indices ω: = ℐ1 ∩ ℐ2  to be of size 

q = ℐ1 ∩ ℐ2 . Then, for some 0 < t < q
P , the following result holds true regarding the partial 

distance ∥ yω ∥2 = ∥ Sℐ1 ∩ ℐ2 x1 − x2 ∥2:

ℙ ∥ yω ∥2
2 ≤ q

P − t ∥ y ∥2
2 ≤ e− 2t2P2

qμ0
2 (41)

Proof. We use some ideas for bounding partial distances from Lemma 3 of [22]. We rewrite 

the partial distance ∥ yω ∥2
2 as the sum of q variables drawn uniformly at random from 

y1
2, y2

2, …, yP
2 . By replacing a particular variable in the summation by another one, the value 

of the sum changes by at most ∥ y ∥∞
2 . Applying McDiarmid’s Inequality, we get:

ℙ E ∥ yω ∥2
2 − ∥ yω ∥2

2 ≥ c ≤ e
− 2c2

Σi = 1
q ∥ y ∥∞4 = e− 2c2

q ∥ y ∥∞4
(42)

From our assumptions, we have E ∥ yω ∥2
2 = q

P ∥ y ∥2
2. We also have 

∥ y ∥2
2

∥ y ∥∞2
≥ P

μ0
 by (6). 

We now substitute c = t ∥ y ∥2
2, where 0 < t < q

P . Using the results above, we simplify 

expression (42) as:

ℙ ∥ yω ∥2
2 ≤ q

P − t ∥ y ∥2
2 ≤ e−

2t2 ∥ y ∥2
4

q ∥ y ∥∞4

≤ e− 2t2P2

qμ0
2

(43)

□

APPENDIX C: Proof of Lemma 2.2

Proof. We will use proof by contradiction. Specifically, we consider two points x1 and x2 

belonging to different clusters and assume that there exists a point u that satisfies:

∥ Si xi − u ∥∞ ≤ ϵ
2; i = 1, 2 (44)
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We now show that the above assumption is violated with high probability. Following the 

notation of Lemma B.1, we denote the difference between the vectors by y = x1 − x2 and the 

partial distances by:

∥ yω ∥2 = ∥ Sℐ1 ∩ ℐ2 x1 − x2 ∥2 (45)

Using (44) and applying triangle inequality, we obtain ∥ yω ∥∞ ≤ ϵ, which translates to 

∥ yω ∥2 ≤ ϵ q, where q = ℐ1 ∩ ℐ2  is the number of commonly observed locations. We need 

to show that with high probability, the partial distances satisfy:

∥ yω ∥2
2 > ϵ2q (46)

which will contradict (44). We first focus on finding a lower bound for q. Using the Chernoff 

bound and setting E(q) = p0
2P , we have:

ℙ q ≥
p0

2P
2 > 1 − γ0 (47)

where γ0 = e
2

−
p0
2P
2 . Thus, we can assume that q ≥

p0
2P
2  with high probability.

Using Lemma B.1, we have the following result for the partial distances:

ℙ ∥ yω ∥2
2 ≤ q

P − t ∥ y ∥2
2 ≤ e− 2t2P2

qμ0
2 (48)

Since x1 and x2 are in different clusters, we have ∥ y ∥2 ≥ δ. We will now determine the 

value of t for which the above upper bound will equal the RHS of (46):

q
P − t ∥ y ∥2

2 = ϵ2q (49)

or equivalently:

t = q
P − ϵ2q

∥ y ∥2
2 ≥ q

P − ϵ2q
δ2 = q

P 1 − κ2
(50)

Since t > 0, we require κ < 1, where κ = ϵ P
δ . Using the above, we get the following bound if 

we assume that q ≥
p0
2P
2 :

t2

q ≥ q
P2 1 − κ2 2 ≥

p0
2

2P 1 − κ2 2
(51)
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We now obtain the following probability bound for any q ≥
p0
2P
2 :

ℙ ∥ yω ∥2 > ϵ2q ≥ 1 − e− 2t2P2

qμ0
2

≥ 1 − e−
p0
2P 1 − κ2 2

μ0
2

= 1 − δ0

(52)

Combining (47) and (52), the probability for (44) to hold is ≤ 1 − (1 − γ0)(1 − δ0) = β0. □

APPENDIX D: Proof of Lemma 2.3

Proof. We construct a graph where each point xi is represented by a node. Lemma 2.1 

implies that a pair of points belonging to the same cluster can yield the same u in a feasible 

solution with probability 1. Hence, we will assume that there exists an edge between two 

nodes from the same cluster with probability 1. Lemma 2.2 indicates that a pair of points 

belonging to different clusters can yield the same u in a feasible solution with a low 

probability of β0. We will assume that there exists an edge between two nodes from different 

clusters with probability β0. We will now evaluate the probability that there exists a fully-

connected sub-graph of size M, where all the nodes have not been taken from the same 

cluster. We will follow a methodology similar to [28], which gives an expression for the 

probability distribution of the maximal clique (i.e. largest fully connected sub-graph) size in 

a random graph. Unlike the proof in [28], in our graph every edge is not present with equal 

probability.

We define the following random variables:

• t := Size of the largest fully connected sub-graph containing nodes from more 

than 1 cluster

• n := Number of M membered complete sub-graphs containing nodes from more 

than 1 cluster

Our graph can have an M membered clique iff n is non-zero. Thus, we have:

ℙ(t ≥ M) = ℙ(n ≠ 0) (53)

Since the distribution of n is restricted only to the non-negative integers, it can be seen that:

ℙ(n ≠ 0) ≤ E(n) (54)

Combining the above 2 results, we get:

ℙ(t ≥ M) ≤ E(n) (55)

Let us consider the formation of a particular clique of size M using m1, m2,...,mK nodes 

from clusters C1, C2,...,CK respectively such that ∑j = 1
K mj = M, and at least 2 of the 

variables {mj} are non-zero. The number of ways to choose such a collection of nodes is: 
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Πj
M
mj

. In order to form a solution {mj}, we need 1
2 M2 − ∑jmj2  inter-cluster edges to be 

present. We recall that each of these edges is present with probability β0. Thus, the 

probability that such a collection of nodes forms a clique is β0

1
2 M2 − ∑jmj2 . This gives the 

following result:

E(N) = ∑
mj ∈ S

β0

1
2 M2 − ∑jmj2 ∏

j

M
mj

= η0 (56)

where S is the set of all sets of positive integers {mj} such that: 2 ≤ U mj ≤ K and 

∑jmj = M. Here, the function U counts the number of non-zero elements in a set. Thus, we 

have:

ℙ(t ≥ M) ≤ η0 (57)

This proves that with probability ≥ 1 − η0, a set of points of cardinality ≥ M not all 

belonging to the same cluster cannot all have equal cluster-centre estimates. □

APPENDIX E: Proof of Theorem 2.4

Proof. Lemma 2.1 indicates that fully connected original clusters with size M are likely with 

probability 1, while Lemma 2.3 shows that the size of misclassified large clusters cannot 

exceed M − 1 with very high probability. These results enable us to re-express the 

optimization problem (8) as a simpler maximization problem. We will then show that with 

high probability, any feasible solution other than the ground-truth solution results in a cost 

higher than the ground-truth solution.

Let a candidate solution have k groups of sizes M1, M2,...,Mk respectively. The centre 

estimates for all points within a group are equal. These are different from the centre 

estimates of other groups. Without loss of generality, we will assume that at most K of these 

groups each have points belonging to only a single ground-truth cluster, i.e. they are “pure”. 

The rest of the clusters in the candidate solution are “mixed” clusters. If we have a candidate 

solution with greater than K pure clusters, then they can always be merged to form K pure 

clusters; the merged solution will always result in a lower cost.

The objective function in (8) can thus be rewritten as:

∑
i = 1

KM
∑
j = 1

KM
∥ ui − uj ∥2, 0 = ∑

i = 1

k
Mi KM − Mi

= K2M2 − ∑
i = 1

k
Mi

2
(58)

Since we assume that the first K clusters are pure, therefore they have a size 0 ≤ Mi ≤ M, i = 

1,...,K. The remaining clusters are mixed and have size ≤ M − 1 with probability ≥ 1 − η0. 

Hence, we have the constraints 0 ≤ Mi ≤ (M − 1), i = K + 1,...,k. We also have a constraint 
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on the total number of points, i.e. ∑i = 1
k Mi = KM. Thus, the problem (8) can be rewritten as 

the constrained optimization problem:

Mi
∗, k∗ = max

Mi , k
∑
i = 1

k
Mi

2

s.t. 0 ≤ Mi ≤ M, i = 1, …, K
0 ≤ Mi ≤ M − 1, i = K + 1, …, k

∑
i = 1

k
Mi = KM

(59)

Note that we cannot have k < K, with probability ≥ 1 − η0, since that involves a solution 

with cluster size > M. We can evaluate the best solution Mi
∗  for each possible value of k in 

the range K ≤ k ≤ MK. Then we can compare these solutions to get the solution with the 

highest cost. We note that the feasible region is a polyhedron and the objective function is 

convex. Thus, for each value of k, we only need to check the cost at the vertices of the 

polyhedron formed by the constraints, since the cost at all other points in the feasible region 

will be lower. The vertex points are formed by picking k − 1 out of the k box constraints and 

setting Mi to be equal to one of the 2 possible extremal values. We note that all the vertex 

points have either K or K + 1 non-zero values. As a simple example, if we choose M = 10 

and K = 4, then the vertex points of the polyhedron (corresponding to different solutions 

{Mi}) are given by all possible permutations of the following:

• (10,10,10,10,0,0...0) : 4 clusters

• (10,10,10,0,1,9,0...0): 5 clusters

• (10,10,0,0,2,9,9,0...0): 5 clusters

• (10,0,0,0,3,9,9,9,0...0): 5 clusters

• (0,0,0,0,4,9,9,9,9,0...0): 5 clusters

In the general case the vertices are given by permutations of the following:

• (M, M,...,M, 0, 0...0): K clusters

• (M, M,...,0, 0, 1, M − 1, 0...0): K + 1 clusters

• (M, M,...,0, 0, 2, M − 1, M − 1...0): K + 1 clusters

• …

• (0, 0,...0, K, M − 1, M − 1...M − 1, 0): K+1 clusters

Now, it is easily checked that the 1st candidate solution in the list (which is also the ground-

truth solution) has the maximum cost. Mixed clusters with size > M − 1 cannot be formed 

with probability > 1 − η0. Thus, with the same probability, the solution to the optimization 

problem (8) is identical to the ground-truth clustering. This concludes the proof of the 

theorem. □
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APPENDIX F: Upper Bound for η0 in the 2-cluster case

Proof. We introduce the following notation:

1. F(i) = i(M − i)log β0, for i ∈ [1, M − 1].

2. G(i) = 2[log Γ(M + 1) − log Γ(i + 1) − log Γ (M − i + 1)], for i ∈ [1, M − 1] 

where Γ is the Gamma function.

We note that both the functions F and G are symmetric about i = M
2 , and have unique 

minimum and maximum respectively for i = M
2 . We will show that the maximum for the 

function F + G is achieved at the points i = 1, M − 1. We note that:

G′(i) = − 2[Ψ(i + 1) − Ψ(M − i + 1)] (60)

where Ψ is the digamma function, defined as the log derivative of the Γ function. We now 

use the expansion:

Ψ(i + 1) = log i + 1
2i (61)

Substituting, we get:

G′(i) = − 2 log i
M − i + M − 2i

2i(M − i) (62)

We also have:

F ′(i) = (M − 2i)logβ0 (63)

Adding, we get:

F ′(i) + G′(i) = (M − 2i)(logβ0 − 1
i(M − i)

−2log i
(M − i)

(64)

Now, in order to ensure that F ′(i) + G′(i) ≤ 0, we have to arrive at conditions such that:

logβ0 ≤ 1
i(M − i) + 2

M − 2i log i
M − i (65)

Since the RHS is monotonically increasing in the interval i ∈ 1, M
2 − 1  the above condition 

reduces to:

logβ0 ≤ 1
M − 1 + 2

M − 2log 1
M − 1 (66)

Under the above condition, for all i ∈ 1, M
2 :
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F ′(i) + G′(i) ≤ 0 (67)

Thus, the function F + G reaches its maxima at the extremal points given by i = 1, M − 1. 

For positive integer values of i, i.e. i ∈ {1,2,...,M − 1}:

F (i) + G(i) = log β0
i(M − i) M

i
2

(68)

Thus, the function β0
i(M − i) M

i
2
 also reaches its maxima at i = 1, M − 1. This maximum 

value is given by: β0
M − 1M2. This gives the following upper bound for η0:

η0 ≤ ∑
i = 1

M − 1
β0

M − 1M2

= M2(M − 1)β0
M − 1

≤ M3β0
M − 1

= η0, approx

(69)

□

APPENDIX G: Proof of Theorem 2.5

Proof. We consider any two points x1 and x2 that are in different clusters. Let us assume that 

there exists some u satisfying the data consistency constraint:

∥ xi − u ∥∞ ≤ ϵ/2, i = 1, 2 (70)

Using the triangle inequality, we have ∥ x1 − x2 ∥∞ ≤ ϵ and consequently, 

∥ x1 − x2 ∥2 ≤ ϵ P . However, if we have a large inter-cluster separation δ > ϵ P , then this is 

not possible.

Thus, if δ > ϵ P , then points in different clusters cannot be misclassified to a single cluster. 

Among all feasible solutions, clearly the solution to problem (25) with the minimum cost is 

the one where all points in the same cluster merge to the same u. Thus, κ < 1 ensures that we 

will have the correct clustering. □

APPENDIX H: Proof of Lemma 2.6

Proof. The idea is similar to that in Theorem 2.5. We will show that with high probability 

two points x1 and x2 that are in different clusters satisfy ∥ x1 − x2 ∥2 > ϵ P  with high 

probability, which implies that (29) is violated.

Let points in C1 and C2 follow uniform random distributions in ℝP  with centres c1 and c2 

respectively. The expected distance between x1 ∈ C1 and x2 ∈ C2 is given by:
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E ∥ x1 − x2 ∥2
2 = 1

ϵ2 ∑
p = 1

P ∫c1
p − ϵ

2

c1
p + ϵ

2∫c2
p − ϵ

2

c2
p + ϵ

2 x1
p − x2

p 2dx1
pdx2

p

= ∥ c1 − c2 ∥2
2 + P

6 ϵ2

= c12
2 + P

6 ϵ2

(71)

where ci
p and xi

p are the pth features of ci and xi respectively, and c12 = ∥ c1 − c2 ∥2. Let 

ci = c1
i − c2

i , for i = 1,2,...,P. Using Mcdiarmid’s inequality:

ℙ ∥ x1 − x2 ∥2
2 ≤ E ∥ x1 − x2 ∥2

2 − t

≤ e
− 2t2

∑i = 1
P ci + ϵ 2 − ci − ϵ 2 2

= e− t2

8ϵ2c12
2

(72)

Let t = E ∥ x1 − x2 ∥2
2 − Pϵ2. Then we have:

ℙ ∥ x1 − x2 ∥2 ≤ ϵ P ≤ e−
c12
2 − 5P

6 ϵ2 2

8ϵ2c12
2

(73)

We note that the RHS above is a decreasing function of c12. Thus, we consider some c ≤ c12, 

such that c is the minimum distance between any 2 cluster centres in the dataset. We then 

have the following bound:

ℙ ∥ x1 − x2 ∥2 ≤ ϵ P ≤ e−
c2 − 5P

6 ϵ2 2

8ϵ2c2
(74)

To ensure t > 0, we require: c > 5P
6 ϵ, or equivalently, κ′ = ϵ P

c < 6
5 .

We now get the probability bound:

ℙ ∥ x1 − x2 ∥2 ≤ ϵ P ≤ e−
P 1 − 5

6κ′2 2

8κ′2 = β1
(75)

Thus, (29) is violated with probability exceeding 1 − β1. □
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Fig. 1: 

Central Assumptions: (a) and (b) illustrate different instances where points belonging to ℝ2

are to be separated into 3 different clusters (denoted by the colours red, green and blue). 

Assumptions A.1 and A.2 related to cluster separation and cluster size respectively, are 

illustrated in both (a) and (b). The importance of assumption A.3 related to feature 

concentration can also be appreciated by comparing (a) and (b). In (a), points in the red and 

blue clusters cannot be distinguished solely on the basis of feature 1, while the red and green 

clusters cannot be distinguished solely on the basis of feature 2. Thus, it is difficult to 

correctly cluster these points if either of the feature values is unknown. In (b), due to low 

coherence (as assumed in A.3), this problem does not arise.
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Fig. 2: 
Different penalty functions ϕ. (a) The l0 norm (b) The lp penalty function which is non-

convex for 0 < p < 1 and convex for p = 1 (c) The H1 penalty function. The lp and H1 

penalties closely approximate the l0 norm for low values of p and σ respectively.
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Fig. 3: 
Comparison of different penalties. We show here the 2 most significant principal 

components of the solutions obtained using the IRLS algorithm. (a) It can be seen that the l1
penalty is unable to cluster the points even though the clusters are well-separated. (b) The 

l0.1 penalty is able to cluster the points correctly. However, the cluster-centres are not 

correctly estimated. (c) The H1 penalty correctly clusters the points and also gives a good 

estimate of the centres.
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Fig. 4: 
Study of Theoretical Guarantees. The quantities γ0, δ0 and β0 defined in Section 2.4 are 

studied in (a), (b) and (c) respectively. In (b) and (c), P = 50 and μ0 = 1.5 are assumed. β0 

gives the probability that 2 points from different clusters can share a centre. As expected, 

this value decreases with increase in p0 and decrease in κ. Considering K = 2 clusters, a 

lower bound for the probability of successful clustering (1 − η0) using the proposed 

algorithm is shown in (d) for different values of κ. The approximate values (1 − η0,approx) 

computed using (21) are shown in (e).
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Fig. 5: 
Experimental results for probability of success. Guarantees are shown for a simulated 

dataset with K = 2 clusters. The clustering was performed using (32) with an H1 penalty and 

partial distance based initialization. For (a) and (b) it is assumed that κ = 0.39 and μ0 = 2.3. 

(a) shows the experimentally obtained probability of success of clustering for clusters with 

points from a uniform random distribution. (b) shows the theoretical lower bound for the 

probability of success. (c) shows the experimentally obtained probability of success for a 

more challenging dataset with κ = 1.15 and μ0 = 13.2. Note that we do not have theoretical 

guarantees for this case, since our analysis assumes that κ < 1.
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Fig. 6: 
Clustering results in simulated datasets. The H1 penalty is used to cluster two datasets with 

varying fractions of missing entries. Both the constrained and unconstrained formulation 

results are presented with different initialization techniques (zero-filled and partial-distance 

based). We show here the 2 most significant principal components of the solutions. The 

original points {xi} are connected to their cluster centre estimates {ui} by lines. Inter-cluster 

distances in Dataset 2 are half of those in Dataset 1, while intra-cluster distances remain the 

same. Consequently, Dataset 1 performs better at a higher fraction of missing entries. For the 
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unconstrained clustering formulation with partial-distance based initialization, the cluster 

centre estimates are relatively stable with varying fractions of missing entries.
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Fig. 7: 
Clustering on Wine dataset. The H1 penalty is used to cluster the Wine datasets with varying 

fractions of missing entries.
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Fig. 8: 
Cardiac MRI reconstruction results. The images were reconstructed from highly under-

sampled Fourier data using the unconstrained formulation. A sampling mask for 1 particular 

frame is shown in (a), along with the Fourier data for that frame in (b). The missing Fourier 

entries were filled with zeros and an inverse Fourier Transform was taken to get the 

corrupted image in (c). The clustering algorithm was applied to this data and the resulting 

images were clustered into 20 clusters using spectral clustering. (d) shows some 

reconstructed images from 2 different clusters.

Poddar and Jacob Page 37

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Poddar and Jacob Page 38

TABLE 1:

Notations used

K Number of clusters

M Number of points in each cluster

P Number of features for each point

Ci The ith cluster

ci Centre of Ci
zi(m) mth point in Ci
{xi} Random permutation of KM points {zk(m)} for k ∈ 1, 2, …, K , m ∈ 1, 2, …, M
Si Sampling matrix for xi

X Matrix formed by arranging {xi} as columns, such that the ith column is xi

p0 Probability of sampling each entry in X

δ Parameter related to cluster separation defined in (3)

ϵ Parameter related to cluster size defined in (4)

κ
Defined as κ = ϵ P

δ
μ0 Parameter related to coherence defined in (6)

γ0 Defined in (16)

δ0 Defined in (17)

β0 Defined in (18)

η0 Defined in (19)

η0,approx Upper bound for η0 for the case of 2 clusters, defined in (21)

c Parameter related to cluster centre separation defined in (27)

Κ′
Defined as κ′ = ϵ P

c
Β1 Defined in (28)

η1 Probability of failure of Theorem 2.7
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