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Abstract

Segmentation of head and neck cancer (HNC) primary tumors on medical images is an essential, 

yet labor-intensive, aspect of radiotherapy. PET/CT imaging offers a unique ability to capture 

metabolic and anatomic information, which is invaluable for tumor detection and border 

definition. An automatic segmentation tool that could leverage the dual streams of information 

from PET and CT imaging simultaneously, could substantially propel HNC radiotherapy 

workflows forward. Herein, we leverage a multi-institutional PET/CT dataset of 201 HNC 

patients, as part of the MICCAI segmentation challenge, to develop novel deep learning 

architectures for primary tumor auto-segmentation for HNC patients. We preprocess PET/CT 

images by normalizing intensities and applying data augmentation to mitigate overfitting. Both 2D 

and 3D convolutional neural networks based on the U-net architecture, which were optimized with 

a model loss function based on a combination of dice similarity coefficient (DSC) and binary cross 

entropy, were implemented. The median and mean DSC values comparing the predicted tumor 

segmentation with the ground truth achieved by the models through 5-fold cross validation are 

0.79 and 0.69 for the 3D model, respectively, and 0.79 and 0.67 for the 2D model, respectively. 

These promising results show potential to provide an automatic, accurate, and efficient approach 

for primary tumor auto-segmentation to improve the clinical practice of HNC treatment.
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1 Introduction

Head and neck cancer (HNC) affects over 50,000 individuals and has a mortality rate of over 

10,000 annually [1]. A vast majority of HNC patients receive radiotherapy, which targets the 

tumor tissue with focused radiation beams from different directions, while trying to spare the 

surrounding tissues as much as possible [2]. Performed by the radiation oncologist, definite 

primary and lymph node tumor delineation dictates subsequent radiation dose optimization. 

The high prescribed dose is delivered to the segmented tumor, while limiting the dose 

directly surrounding the segmentation. Inadequate tumor definition can therefore directly 

lead to under-dosage of the tumor, increasing treatment failure risk, or, in contrast, 
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administering too much dose to the surrounding normal tissues. Adequate manual tumor 

segmentation is labor-intensive and subject to inter-observer variation [3-8]. Since, at 

present, CT tissue density information is needed for dose calculation, contours are defined 

on the CT, and often secondarily by 18F-FDG Positron Emission Tomography (PET), 

providing additional information on the tissue’s metabolic activity. Automatic segmentation 

of the primary tumor effectively utilizing the synergistic information from the PET and CT 

together is an unmet need to decrease the work-load of tumor delineation, as well as to 

decrease inter-variability between observers.

Deep learning (DL), an artificial intelligence subtype, is a strong tool for segmentation 

problems [9, 10]. DL techniques for segmentation applications on medical images for HNC 

radiotherapy purposes is a relative novel, yet emerging field [11]. An array of studies have 

peered into the difficult task of primary tumor segmentation with DL in single modality 

images, predominantly CT [12]. DL studies utilizing dual modalities, such as PET/CT 

[13-23], demonstrate the potential to outperform DL networks based on single image 

modalities [13, 21, 22, 24]. Likely due to the complex regional head and neck anatomy, 

PET/CT DL for HNC auto-contouring showed variable success, with dice similarity 

coefficients (DSC) ranging from 0.61 to 0.785 [13, 20-22]. These studies are often limited 

by small numbers of patients in the training and test datasets. The DL architectures for these 

studies vary, with 2D image (i.e. predictions made on a slice by slice basis) or 3D image 

approaches (i.e. predictions made by inputting the entire image volume) predominating.

The aim of this study was to develop and validate primary tumor auto-contouring with 

2D/3D DL approaches that utilize PET and CT images simultaneously based on multi-

institutional HNC data, as part of the MICCAI 2020: HECKTOR challenge.

2 Methods

We developed a deep learning model (Sect. 2.3) for auto-segmentation of primary tumors of 

HNC patients using co-registered 18F-FDG PET and CT imaging data (Sect. 2.1). The 

ground truth manual segmentation of the tumors and the normalized imaging data (Sect. 2.2) 

were used to train the model (Sect. 2.4). The performance of the trained model for auto-

segmentation was validated using a 5-fold cross validation approach (Sect. 2.5).

2.1 Imaging Data

The data set used in this paper, which was released by AIcrowd [25] for the HECKTOR 

challenge at MICCAI 2020 [26], consists of co-registered 18F-FDG PET and CT scans for 

201 HNC patients, of which the majority were oropharyngeal cancer patients. All imaging 

data was paired with manual segmentations of the HN primary tumors, i.e. primary gross 

tumor volume (GTVp), which were considered as the ground truth, in Neuroimaging 

Informatics Technology Initiative (NIfTI) format.

2.2 Image Processing

To mitigate the variable resolution and size of the PET and CT image per patient, all images 

(i.e., PET, CT, and GTVp masks) were cropped to fixed bounding box volumes of size 144 × 

144 × 144 mm3 in the x, y and z dimensions. These bounding boxes were provided with the 
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imaging data (Sect. 2.1) by [25]. Then, the cropped images were resembled to a fixed image 

size of 144 × 144 × 96 voxels. These specified number of voxels were chosen to match the 

maximum number of voxels found in the cropped CT images in the x, y, and z dimensions in 

all patients. The CT intensities were truncated in the range of [−200, 200] Hounsfield Units 

(HU) to increase soft tissue contrast. The intensities of the truncated CT images were then 

rescaled to a [−1, 1] range. The intensities of PET images were truncated between the 10th 

and 99th percentile to improve the images’ contrast, and subsequently with z-normalization 

([intensity-mean]/standard_deviation), resulting in a mean of zero and standard deviation of 

one for the entire cohort.

2.3 Segmentation Model Architecture

We developed 2D and 3D fully convolutional neural network (CNN) models based on the U-

net architecture [27] and our previous 2D U-net model [28], using 4 convolution blocks in 

the encoding and decoding branches of the U-net. For each block, we used one convolution 

layer. The down sampling in the encoding branch was performed using a stride 2 

convolution instead of max pooling layers to improve the model expressive ability through 

learning pooling operations compared to fixed pooling operations [29]. The up-sampling in 

the decoding branch was performed using convolution transpose layers which have been 

shown to be effective in previous studies [30-33]. Each convolution layer was directly 

followed by a batch normalization and a Leaky Relu activation layer; a Leaky Relu was 

chosen instead of Relu to mitigate the effect of improper model weight initialization and 

data normalization on the model training performance due to the “dying Relu” problem [34, 

35]. The encoding and decoding blocks were linked using concatenation layers. Finally, the 

last layer was a Sigmoid activation layer. Figure 1 shows an illustration of the 3D U-net 

architecture proposed in this work. A similar architecture, but substituting the 3D with 2D 

convolution layers, was used to build the 2D U-net model. The batch normalization and 

Leaky Relu activation layers after each convolution layers were omitted from Fig. 1 for 

clarity. The number of filters used for the 4 convolution blocks were 16, 32, 48, 64, and 80 

(Fig. 1). We maximized the number of filters (16 filters) in the first convolution block such 

that the data could be fit in GPU memory used for the model training, while an increment of 

16 filters were used for the other convolution blocks. The total number of trainable 

parameters were 1,351,537 for the 3D model, and 452,113 for the 2D model.

2.4 Model Implementation

The processed PET and CT images (Sect. 2.2) were used as two inputs channels to the 

segmentation model (Sect. 2.3), resulting in an input layer size of [96, 144, 144, 2] for the 

3D model and [144, 144, 2] for the 2D model which represent [z, y, x, channels] and [y, x, 

channels], respectively. The processed manual segmentation GTVp masks were used as the 

ground truth target to train the segmentation model. The processed images and masks were 

split into a training, validation, and test dataset (Sect. 2.5) and then used to train, validate, 

and test the segmentation model, accordingly. The optimizer used was ‘Adam’ with a 

learning rate of 5 * 10−5. The batch size was 1 for the 3D model and 96 for the 2D model. 

To minimize risk of over-fitting, data augmentation of the processed linked PET, CT, and 

mask images was implemented using a rotation range of 5°, image scaling (i.e. zoom), 

intensity range shifting of 5%, and horizontal-flipping of images. The same random 
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transformations were applied to the whole PET/CT/masks images for the 3D model per 

patient, while for the 2D model, each single image has different random transformations. 

The model performance metrics were the dice similarity coefficient (DSC), the recall or 

sensitivity, and precision or positive predictive value [28]. We note there is a class imbalance 

of tumor representation compared to normal tissue (i.e., the number of images that contain 

GTVp’s is less than the number of images without GTVp’s – i.e. normal tissue). This 

problem can lead to a low sensitivity in tumor identification by the model and lower the 

model performance for tumor segmentation. Therefore, to reduce the class imbalance effect, 

the model was trained using a loss function given as the summation of the loss function of 

DSC and a weighted Binary Cross Entropy (BCE) loss function as shown in Eqs. (1), (2), 

and (3).

ℒ = ℒDSC + ℒBCE, (1)

ℒDSC = 1 − 2 ×
∑iMi

GTMi
Pred

∑iMi
GT + ∑iMi

Pred , (2)

ℒBCE = ∑ iWi Mi
GT log Mi

Pred + (1 − Mi
GT)log(1 − Mi

Pred) , (3)

where MGT and MPred are the ground truth and predicted tumor masks, respectively, and W 
is the sample-weight used to scale the loss for each image. The sample-weight is a function 

of the number of pixels in the provided ground truth manual segmentation mask as show in 

previous work [28]. The weight of the loss function that corresponds to tumor with larger 

cross-sectional area will be larger than that with smaller areas as well as normal tissue 

image. Figure 2 show an example of the sample-weight used to scale the loss of each image 

based on the size of the tumor of the image. The use of the weight-loss biases the model to 

focus on reducing the loss function more on images with larger tumor size compared to 

those with lower tumor size and normal tissue images and therefore improves the model 

sensitivity and overall model performance for tumor segmentation. The sample-weight is 

provided to the model as a second model input and it has the same size as the target ground 

truth tumor masks as shown in Fig. 1.

2.5 Model Training, Optimization and Validation

There is no available separate data that can be used to evaluate and validate the performance 

of the segmentation model. Therefore, we used a 5-fold (80% training and 20% validation) 

cross-validation approach where the 201 patients’ imaging data and the corresponding 

ground truth tumor masks (Sect. 2.1) were split into 5 sets (Set 1 to Set 5). Each set contains 

imaging data of 40 patients randomly selected from the 201 patient dataset. The random split 

did not take into consideration the institutional sources of the data since the number of 

contributing patients varies significantly between these institutional centers (201 patients 

distributed as 72, 55, 18, and 56 from 4 different institutions); i.e. 4-fold cross validation 

based on patients from different institutions would provide significantly un-balanced train-

validations sets and could lead to inaccurate estimation of the model performance. For each 
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iteration of cross validation, each set of 40 patients serves as test data for the segmentation 

model trained using imaging data from the remaining 4 sets (i.e., 161 patients). Using this 

approach, the segmentation model was trained and tested 5 times. To estimate the number of 

epochs that should be used for training, the model was trained using 161 patients for training 

and 40 patients for validation, randomly selected from the 201 patients. The calculated loss 

using the validation data was used to obtain the maximum number of epochs before the 

model starts to overfit. In other words, when there is no further improvement of the loss 

evaluated in the optimization data. Using this approach, 50 epochs was estimated to be used 

for the 2D and 3D models training. Then, the segmentation model was trained for 50 epochs 

using 161 patients’ data – 80% and tested using 40 patients’ data – 20% 5 times. The overall 

DSC, recall, and precision values were obtained using the average of the mean DSC, recall, 

and precision values generated for the individual test data sets using the corresponding 

trained segmentation models. Subsequently, the model was trained one additional time, 

using 50 epochs, on the entire dataset (i.e., 201 patients’ data) to generate the final model for 

the use of predicting the tumor masks the MICCAI challenge test set, i.e. a representation of 

other unseen datasets.

3 Results

The training performance of the model is illustrated in Fig. 3. The validation loss and DCS 

values do not show further improvements after epoch 45 for the 3D model and epoch 50 for 

the 2D model, consequently further model training led to model overfitting.

The DSC values’ distributions obtained by the 3D and 2D segmentation models for the 5 test 

data sets using 50 epochs are illustrated in Fig. 4. The DSC median and mean values for the 

3D model for Set 1 to Set 5 are 0.79, 0.79, 0.80, 0.78, and 0.79, respectively, and 0.72, 0.71, 

0.70, 0.68, and 0.63, respectively. The DSC median and mean values for the 2D model for 

Set 1 to Set 5 are 0.81, 0.79, 0.80, 0.77, and 0.80, respectively, and 0.71, 0.70, 0.68, 0.63, 

and 0.61, respectively. The overall average (mean) values for the DSC, recall, and precision 

using all test data sets are presented in Table 1.

To illustrate the performance of the segmentation model, samples of overlays of CT and PET 

images with the outlines of tumor masks using ground truth (red) and model segmentations 

(green) from the test data sets are shown in Fig. 5. The figure shows representative 

segmentation results for DSC values 0.51, 0.63, 0.80, 0.89, 0.92, and 0.94 which are below, 

comparable, and above the segmentation model’s median DSC value of 0.79.

4 Discussion

As shown in Fig. 4 and Table 1, the 3D model outperforms the 2D model for all performance 

metrics. Specifically, the 3D model performance was superior to that of the 2D model for the 

mean DCS values for each test set (Set 1 to Set 5) (Fig. 4). Moreover, the mean DCS, recall, 

and precision values for all test sets (Table 1) are higher for the 3D model compared to the 

2D model. As shown in Table 1, the mean DSC value of the 3D model (0.69) is larger than 

that of the 2D model (0.67). We performed a paired t-test on the 200 DSC values obtained 
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from the 3D and 2D models (combining the DSC values of the 5 validation sets), resulting in 

a significant p-value of 0.043.

The image size of 144 × 144 used in the model training is relatively small compared to 512 

× 512 and 256 × 256 usually used in the training of the standard U-net. Therefore, in the 

current 2D and 3D U-net models, to overcome overfitting, we used a small number of filters 

and 1 convolution layer for each convolution block which leads to total numbers of trainable 

parameters of 1,351,537 for the 3D model, and 452,113 for the 2D model compared to 

7,759,521 for the standard U-net used in our previous model [28]. In addition, we used data 

augmentation to further mitigate the overfitting to improve the model performance. 

However, as seen in Fig. 3, the model starts to overfit after epoch 30 for the 3D model when 

trained on 161 patients. This indicates that the size of the data set used to train the model 

needs to be increased to improve the model performance and to mitigate the overfitting 

problem.

There are some limitations in the current approach. The proposed model has not been 

evaluated using an independent data set, instead, we performed a five-fold cross-validation 

approach (80% training and 20% validation) to estimate the expected model performance 

when applied to unseen test data. Therefore, it was assumed that the training data used by 

the model have a similar statistical representation of true unseen data which may not be 

accurate, especially if the unseen data has different image resolutions than the ones used to 

train the model. The model has been trained using images with 144 × 144 × 96 voxels which 

are the maximum number of voxels found in the CT scans of the 201 patients within the 

provided bounding boxes of 144 × 144 × 144 mm3. Therefore, all images were up-sampled 

to that number of voxels. Training the model with a larger size (i.e., 144 × 144 × 144) gives 

a lower model performance and increases overfitting as increasing the image size does not 

add additional useful information to the model describing the tumor. To show this, we 

trained the 3D model for 50 epochs using image size of 144 × 144 × 144 voxels; the mean 

DSC values obtained from the 5 validation sets was lowered to 0.66 ± 0.04 compared to 0.69 

± 0.03 using images with size of 144 × 144 × 96 voxels. Therefore, the model performance 

may be degraded when used to predict tumor masks using images with voxel size larger than 

144 × 144 × 96 as the input images will need to be down-sampled to a smaller size 144 × 

144 × 96 for masks’ prediction.

The proposed models combine several novel features to improve performance such as a 

reduced U-net size, data augmentation, and a novel loss function for improving model 

sensitivity. For the 3D model, these features aid in achieving overall average median and 

mean DSC values of 0.79 and 0.69 respectively, comparable to a mean DSC between 

radiation oncologists for HNC GTV delineation using PET/CT images (0.69) [36]. These 

features can be implemented in several other network architectures proposed for tumor 

segmentations such as ResNet [37], Inception [38], and DenseNet [39], which are worth 

investigating for future model improvement.

For the test data of the HECKTOR challenge, our 3D model was only able to achieve a DSC 

of 0.637. Interestingly, while DSC performance was generally lacking when compared to the 

other state of the art methods in the competition, our method was among the top models in 
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precision (0.755). However, this came at a cost of low sensitivity (0.628). This indicates that 

the image voxels our model classified as tumor were very likely to be tumor, however, it 

subsequently was unable to detect many tumor voxels. While we are currently blinded to the 

ground truth contours of the test data, we can make some educated guesses on why our 

model did not generalize well in the test dataset. The test data includes several patients with 

images of higher resolutions than the ones used to train the model (i.e., the cropped images 

within the 144 × 144 × 144 mm bounding boxes have sizes of 144 × 144 × 144 voxels). 

These images were down-sampled to the size of 144 × 144 × 96 voxels which is the size of 

the images used to train the model. Therefore, we expect a degradation of the model 

performance when used to predict the tumor masks of these images. The second reason for 

the discrepancy between the estimated DSC values using the training the test data could be 

due to the inaccurate estimation of the model performance on un-seen data using the 

proposed 5-fold cross validation the training data. Using 10-fold or larger internal validation 

strategies might provide a better estimation of the model performance on the test data.

5 Conclusion

This study presented a deep learning CNN model based on the U-net architecture to 

automatically segment primary tumors in HNC patients using co-registered FDG-PET/CT 

images. A combination of data normalization, dual input channel integration of PET and CT 

data, data augmentation, and the use of a loss function that combines contributions from the 

DSC while weighting BCE resulting in a promising performance of 3D tumor auto-

segmentation with overall average median and mean cross-validation DSC values of 0.79 

and 0.69, respectively. While our 3D model showed lower performance on a held-out test 

dataset, our methods are still useful for the auto-contouring community to incorporate and 

improve upon.
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Fig. 1. 
An illustration of the 3D U-net model architecture.
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Fig. 2. 
An illustration of the sample-weight used to scale the BCE loss function for each image per 

patient based on the cross-sectional area of the tumor. The small squares show overlays of 

the tumor ground truth contours (red) and the cross-sectional images. Scale of the 

background grayscale color is the BCE weights.
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Fig. 3. 
The loss and DSC values as a function of epochs obtained during the 3D (A) and (B) and the 

2D (C) and (D) model training.
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Fig. 4. 
Boxplots of the DSC distribution for the 5 test data sets (Set 1 to Set 5) used for the 3D and 

2D segmentation model cross validation. The DSC mean values are given in the boxes and 

the lines inside the box refer to the DSC median values.
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Fig. 5. 
2D axial examples of overlays of the ground truth segmentations (red) and predicted 

segmentations (green) and CT images (first and third columns) and PET images (second and 

forth columns) with different 3D volumetric DSC values given at the right top.
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Table 1.

3D and 2D model performance metrics.

Model DSC Recall Precision

3D 0.69 ± 0.03 0.75 ± 0.07 0.72 ± 0.03

2D 0.67 ± 0.04 0.71 ± 0.06 0.71 ± 0.03
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