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Abstract

Harnessing the chemistry of onium ylide intermediates generated from transition metal catalysis is 

a powerful strategy to convert simple precursors into complex scaffolds. While the chemistry of 

onium ylides has been studied for over three decades, transformations of aziridinium ylides have 

just recently emerged as a versatile way to exploit the strain of these reactive intermediates to 

furnish densely functionalized N-heterocycles in a highly stereocontrolled manner. Herein, we 

provide a short overview of the key concepts and recent developments in this area, with a focus on 

how mechanistic studies to delineate the factors controlling the reactivity of aziridinium ylides can 

stimulate fruitful future investigations.
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Transition metal-catalyzed generation of ammonium and related ylides

The generation of ammonium ylides via inter- and intramolecular reactions of tertiary 

amines with thermally or photochemically generated carbenes (see Glossary) is well-

established in the literature [1–6]. However, the high reactivity of “free” carbenes typically 

results in low yields and competing side reactions. To address these issues, methods for the 

catalytic generation of ammonium ylides have been developed that involve the attack of an 

amine lone pair on an electrophilic metal carbene complex [7]. These strategies are attractive 

alternatives to traditional base-promoted procedures, as ylides are formed under mild 

conditions and display attenuated reactivity. The resultant carbene-generated ylides have 

been employed in diverse synthetic transformations, including [2,3]-sigmatropic 

rearrangements, Stevens rearrangements, and 1,3-dipolar cycloadditions [8–14]. Creative 

ways to manipulate the reactivity of these unusual intermediates can lead to powerful 

methodologies to convert simple starting materials into stereochemically complex, densely 

functionalized heterocycles with high levels of diastereo- and enantiocontrol.

The structural features of ylides, particularly the nature of the onium group, play key roles in 

influencing reactivity [15–17]. Nitrogen ylides are the third most common type of onium 

ylide, behind phosphorus and sulfur [18–42]; however, the strongly Lewis basic nitrogen of 
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tertiary amines presents a challenge, as it may inactivate the transition metals required to 

decompose diazoesters and other carbene precursors [43].

In contrast to the attention afforded to ammonium ylides, the aziridinium ylide subclass has 

been underexplored. The few published reports describing their reactivity highlight the 

potential for diverse pathways, including ring expansion via rearrangement or fragmentation 

by cheletropic extrusion [44–50]. If aziridinium ylides are to be viewed as truly versatile 

intermediates, the factors dictating their ultimate fate must be better understood and 

controlled.

Intramolecular Cu-catalyzed [2,3]-Stevens rearrangements of aziridinium 

ylides

In 2001, Clark explored the stereoselective synthesis of bicyclic amines through the ring 

expansion of ammonium ylides derived from various cyclic amines tethered to copper-

supported carbenoids (Figure 1A) [44]. Cyclization precursor 1 was subjected to Cu(acac)2 

in benzene at reflux. The bicyclic amine 2 (obtained in 24% isolated yield) was 

hypothesized to arise from a stereoselective, intramolecular [2,3]-rearrangement of the 

aziridinium ylide 3, where the ring strain imparted by the vinyl aziridine moiety facilitated 

productive ring expansion. Decomposition of indolizidine 2 was noted within one day of 

storage at −30°C, suggesting that product instability may have contributed to the modest 

yield.

In 2004, Rowlands disclosed a single example of an aziridine ring expansion proposed to 

proceed through an intramolecular [2,3]-Stevens rearrangement of an aziridinium ylide 

intermediate (Figure 1B) [45]. In this study, a vinyl aziridine containing an internal 

diazoacetate tether was prepared as a 3:4 mixture of nitrogen invertomers, favoring 4b. The 

mixture was heated in the presence of catalytic Cu(acac)2 to furnish the bicyclic amine 5 in 

21% isolated yield. The low yield was attributed to the orientations of the substituents in 

nitrogen invertomers 4a and 4b. Productive [2,3]-Stevens rearrangement requires a cis 
orientation between the alkene and the lone pair of electrons on the nitrogen prior to 

formation of the aziridinium ylide 6; thus, effective reaction occurs only from conformer 4a. 

In conformer 4b, the ineffective overlap between the anionic carbon and alkene pose steric 

and spatial constraints on the desired rearrangement. This leads to a [1,5]-hydrogen shift 

outcompeting nitrogen inversion in 4b to furnish imine 7, which degrades under the reaction 

conditions. This result highlights how productive ylide formation and subsequent 

rearrangement depend heavily on the presence of an accessible nitrogen lone pair and 

control over the stereochemistry at the newly pyramidalized ring nitrogen. The challenges 

encountered in this original study inspired recent investigations to expand the scope of 

chemistry involving aziridinium ylides by limiting nitrogen inversion through the use of 

tethers and electron-withdrawing groups within the aziridine scaffold.
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Intermolecular Rh-catalyzed formal [3+1] ring expansion of bicyclic 

methyleneaziridines

The Schomaker group has extensively explored the chemistry of bicyclic 

methyleneaziridines (MAs), initially focusing on nucleophilic ring-opening and 

functionalization of the exocyclic alkene [51–58]. Methyleneaziridines have been readily 

transformed to other nitrogen-containing heterocycles, including aminated stereotriads, 

azetidin-3-ones, strained cyclooctynes, and aminated cycloheptenes. Interestingly, the 

constrained geometry and ring strain in MAs inhibits undesired nitrogen inversion and 

renders the nitrogen lone pair both sterically accessible and unusually nucleophilic, due to 

lack of conjugation with the carbamate tether. In 2017, the group exploited these features in 

a formal [3+1] ring expansion of MAs to methyleneazetidines with good scope, yields, and 

diastereoselectivities (Figure 2) [46]. The key aziridinium ylide intermediate was generated 

by nucleophilic addition of the ring nitrogen to a rhodium-bound carbene, where the bicyclic 

nature of the precursor and high E:Z ratios were key to successful ylide formation. A 

stereocontrolled [2,3]-Stevens rearrangement of the ylide ultimately delivered the azetidine 

products.

Experimental results showed that the electronics of the aryl substituents on the diazoester 

carbene precursors do not significantly affect the reaction outcome (Figure 2A). No larger 

N-heterocyclic ring expansion products were noted from ylides formed from vinyl-

substituted diazoacetate 9h, despite the potential for competing vinylogous reactivity [59–

62]. MAs containing a substituent cis to the aziridine nitrogen did not react with sterically 

hindered carbene 9a, as no formation of 10ba was observed; however, switching to the less-

hindered styrenyl diazoester 9h delivered fully substituted methyleneazetidine 10bh. 

Adjacent quaternary stereocenters were successfully set in methyleneazetidine 10ch, which 

was obtained as a mixture of diastereomers with 89% yield and 3:1 dr; separation of the 

diastereomers gave the syn-Me/CO2Me isomer of 10ch in 54% yield and 15:1 dr.

Several possible pathways for the [3+1] ring expansion were studied both experimentally 

and computationally (Figure 2B). The functionalized methyleneazetidine product was 

initially proposed to result from a stepwise ring-opening, ring-closing sequence through 8.3 
and 8.4 (Figure 2B i); this pathway would ablate any stereochemical information present in 

8.1. In contrast, a concerted [2,3]-Stevens rearrangement through 8.6 was identified as an 

alternative mechanism that would result in enantioretention in 8.5 (Figure 2B ii). Cheletropic 

extrusion of the ylide 8.2 to give allenic intermediate 8.8, followed by a [2+2] cycloaddition, 

was also considered as a potential pathway (Figure 2B iii). However, the absence of 8.9, 

which would result from a [2+2] cycloaddition involving the proximal allene bond, renders 

this pathway unlikely. Rh-catalyzed alkene cyclopropanation is well-known [63]; in this 

system, cyclopropanation of 8.1, followed by rearrangement of the azaspiropentane 

intermediate 8.10, would yield methyleneazetidine 8.5 (Figure 2B iv). However, amines 

react readily with electrophiles and Lewis acids, supporting ylide formation over competing 

alkene cyclopropanation [51]. The possibility of a radical pathway was investigated using 

TEMPO as an intermolecular radical trap; no change was noted. In addition, 

methyleneazetidine 10da was successfully accessed without any ring opening of the 
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cyclopropane substituent (Figure 2A), suggesting ring expansion is unlikely to proceed 

through a radical pathway. Excluding the Rh catalyst gave no azetidine product, highlighting 

the importance of metal-mediated decomposition of the diazoester prior to metallocarbene 

and subsequent ylide formation. Experimentally, the efficient transfer of chirality from 

enantioenriched (S)-8a to methyleneazetidine (S,S)-10aa indicates the ring expansion does 

not proceed through any intermediates that ablate the stereochemical information present in 

the aziridine precursor (Figure 2C). Thus, the most likely mechanism involves the concerted 

[2,3]-Stevens rearrangement shown in Figure 2B ii.

Follow-up computational studies by density functional theory (DFT) provided further 

support for this pathway (Figure 2D). Formation of aziridinium ylide INT1 from the 

nucleophilic addition of methyleneaziridine 8e to Rh-bound carbene 9a (via TS1, ΔG‡ = 3.2 

kcal/mol) outcompeted an alternative concerted cyclopropanation pathway proceeding 

through TS1′ (ΔG‡ = 11.3 kcal/mol). Rh dissociation from INT1 to generate metal-free 

ylide INT2, followed by ring opening via TS3 (9.2 kcal/mol from INT1) was favored over a 

ring opening of the allylic C–N bond through TS2 (12.5 kcal/mol). Reports on the fates of 

rhodium and copper ylides employed in O–H insertion chemistry support this metal-free 

route, in spite of the energetically costly metal dissociation [64]. In the final step of the 

mechanism, a highly asynchronous, concerted [2,3]-Stevens rearrangement, which proceeds 

through TS3, yields the product methyleneazetidine 10aa. Overall, this efficient 

stereospecific reaction takes advantage of the strained bicyclic MA framework and the 

unique reactivity of aziridinium ylides to forge a new C-C bond, a new C-N bond, and two 

adjacent stereocenters.

N-Heterocycles from bicyclic aziridines via aziridinium ylides

Encouraged by the success of the [3+1] ring expansion, the Schomaker group sought to 

further develop the reactivity of aziridinium ylides by investigating aziridines lacking the 

exocyclic alkene present in MAs [47]. While no conversion was observed with the trans-11a 
aziridine isomer, the cis-11a aziridine isomer yielded imine 12 through a proposed 

cheletropic extrusion of an aziridinium ylide (Figure 3A,B). Similar aziridinium ylide 

reactivity was reported by Watanabe in 1972 [48], where Cu(acac)2-catalyzed addition of 

aziridine 13 to diazoester 14 furnished ethylene 15 and an α-imino ester 16 in quantitative 

yield, instead of the expected azetidine 18 (Figure 3C).

The fragmentation of aziridinium ylide 17 indicates that the reaction proceeds via 
cheletropic extrusion of the aziridinium ylide intermediate, in lieu of the desired [1,2]-

Stevens rearrangement.

Calculations on the bicyclic aziridine system show imine 12 results from cheletropic 

extrusion of either the rhodium-supported ylide INT1-b (via TS4-b) or the free ylide INT2-
b (via TS5-b), with both pathways having favorable activation barriers of 9.9 and 7.2 kcal/

mol, respectively (Figure 3D). However, both activation energy barriers for the cheletropic 

extrusion of INT1-b are significantly higher than the barrier of the analogous ring expansion 

of ylide INT2 (1.6 kcal/mol, via TS3) in the previously studied MA system (Figure 2B).

Dequina and Schomaker Page 4

Trends Chem. Author manuscript; available in PMC 2021 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Features of aziridinium ylides arising from a methyleneaziridine (INT2, Figure 3E) and a 

bicyclic aziridine (INT2-b, Figure 3E) were compared. The differing bond strengths (0.82 

and 0.75, respectively) of the vinylic and allylic C-N bonds in INT2 favor ring expansion 

through the initial rupture of the allylic C-N bond. In contrast, the nearly equivalent bond 

strengths (0.78 and 0.79, respectively) for the C-N bonds of the unbiased aziridine-derived 

ylide INT2-b favor a concerted extrusion over ring expansion. Based on this computational 

analysis, the absence of the exocyclic alkene in INT2-b contributes to cheletropic extrusion 

in the unbiased aziridine system. The increased ring strain (~4.5 kcal/mol) imparted by the 

exocyclic alkene of MA substrate 8e helps to differentiate the bond strengths of the two 

aziridine C-N bonds, thus biasing the allylic C-N bond in INT2 to break first.

Dehydropiperidines from bicyclic aziridines via aziridinium ylides

Building on the ability to control the fate of aziridinium ylide intermediates, the Schomaker 

group reported a formal [3+3] ring expansion of bicyclic aziridines to highly substituted 

dehydropiperidines with good yields and diastereoselectivities [49]. The aziridinium ylide 

was proposed to arise from the reaction of the bicyclic aziridine with a vinyl diazoacetate-

derived rhodium carbene. Delocalization of the negative charge through the vinyl group of 

the diazo precursor was exploited to preclude competitive cheletropic extrusion and promote 

the desired ring expansion pathway to furnish the dehydropiperidine.

Bicyclic aziridine precursors were prepared from the corresponding homoallylic carbamates 

via Ag-catalyzed nitrene transfer [65], then subjected to the optimized Rh-catalyzed carbene 

transfer conditions. Carbene transfer was successful employing cis-substituted bicyclic 

aziridines, but no reaction was observed with the trans-aziridine isomers, likely due to steric 

congestion at the nitrogen lone pair that hindered productive ylide formation. A variety of 

substituents were tolerated in the cis-aziridine precursors, including alkyl groups, halides, 

and ethers (Figure 4A). A series of aryl-substituted diazoesters with varying steric and 

electronic features were surveyed to probe the impact on reaction outcome. Diazoesters with 

electron-donating and neutral substituents gave dehydropiperidines 20aa–20ac in similar 

yields, demonstrating that the electronics of the styrene in the carbene precursor do not 

heavily affect the reaction outcome. This was further confirmed with dehydropiperidine 

20ad, which was obtained in good yield, despite the presence of an electron-withdrawing 

trifluoromethyl substituent. Dehydropiperidines 20ae and 20af were furnished in good yield 

and excellent dr from alkyl-substituted diazoacetates, which highlighted the extension of the 

chemistry beyond aryl diazoacetates.

DFT calculations supported formation of the aziridinium ylide INT1 from nucleophilic 

attack of the aziridine nitrogen on the Rh-supported carbene (Figure 4B); exergonic 

dissociation of the rhodium catalyst from INT1 gives zwitterion INT2. According to the 

computations, INT2 can undergo either a cheletropic extrusion pathway or ring expansion 

through a ring-opening/ring-closing cascade. In the former case, cheletropic extrusion from 

INT2 proceeding via TS2 would form azadiene INT3. A subsequent aza-Diels Alder 

cycloaddition through TS3 would then furnish the dehydropiperidine 20ba. However, this 

pathway was ruled out as the chirality of enantioenriched aziridine (S,R)-11g was 

transferred to (R,R,R)-20ga with excellent retention at C1 (Figure 4C). For the ring 
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expansion pathway, direct formation of dehydropiperidine 20ba from INT2 was predicted. 

In this scenario, stereochemical information at C1 in 11b would be transferred with 

retention to C1 of the dehydropiperidine 20ba, a prediction that was confirmed 

experimentally. This latter pathway, considered to be a pseudo-[1,4]-sigmatropic 

rearrangement, represents the most energetically favorable pathway of the mechanisms that 

were studied computationally.

The retention of stereochemical information in the ring expansion further provided insight 

into the details of the rearrangement step. A proposed intramolecular SN2 attack of the 

benzylic carbon was invalidated, as an inversion of stereochemistry at C1 was not supported 

by the retention of chirality experiment or the X-ray crystal structure of 20ac. 

Computational insight into the observed experimental results suggests the rearrangement 

proceeds instead through a stereoretentive SN1-like mechanism. TS2 and TS2’ both present 

as low-barrier, early transition states, but C-N bond breakage in the two configurations is 

biased. In the lower energy TS2’, C-N bond breakage occurs at the external C1-N bond, 

which elongates to 1.937 Å. In the energetically disfavored TS2, the internal C2-N bond 

elongates to 2.360 Å, while the C1-N bond elongates to 1.735 Å. As predicted by TS2’ and 

confirmed by experimental results, the ring-opening of the C1-N aziridine bond and the 

subsequent C-C bond formation proceed with retention of stereochemistry at C1. This work 

represents the first examples of aziridinium ylides derived from unbiased aziridines that are 

able to bypass competitive cheletropic extrusion in favor of ring expansion.

Dehydropiperazines from bicyclic aziridines via aziridinium ylides

The Schomaker group explored other types of carbene precursors to further develop 

aziridinium ylide chemistry for the synthesis of complex N-heterocycles that are not easily 

prepared with current methods. Pyridotriazoles 21a have been reported to form α-imino 

metal carbenes 23a in the presence of a transition metal catalyst [66]. These metal-supported 

carbenes participate in transformations that include cyclopropanation, X-H insertion, and 

transannulations to form N-heterocycle derivatives [67–70]. However, in this case, reaction 

of bicyclic aziridine cis-11a with pyridotriazole 21a furnished a ketimine product 24aa 
through cheletropic extrusion of aziridinium ylide 26 (Figure 5A) [50]. DFT calculations 

were helpful in rationalizing the fate of the aziridinium ylide INT2 formed from 

nucleophilic addition of the aziridine to the electrophilic center of the Rh carbene and 

subsequent metal dissociation (Figure 5B). Two proposed fates of the ylide INT2 were 

investigated: cheletropic extrusion (via TS2) or ring expansion (via TS2ʹ). The cheletropic 

pathway ultimately terminates at imine INT3, as a subsequent aza-Diels-Alder reaction to 

afford the desired tricyclic ring expansion product 25aa is kinetically unfeasible, with a high 

barrier of >50 kcal/mol. This barrier is ascribed to the required loss of aromaticity of the 

pyridyl substituent prior to ring closure.

Altering the identity of the carbene precursor was proposed as a solution to access the 

desired dehydropiperazine scaffold through a ring expansion pathway (Figure 6A). N-

Sulfonyl-1,2,3-triazoles were chosen, as their utility as precursors for accessing metal-

supported imino carbenes have been demonstrated in reactions that include transannulations, 

ring expansions, ylide formation, and C–H functionalization reactions [71–76]. N-
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Sulfonyl-1,2,3-triazoles 27a are reported to tautomerize in solution upon heating to afford α-

diazo imines 28a in low concentrations, eliminating the need for slow addition of the 

carbene precursor to avoid dimerization [77]. Linear alkyl-substituted aziridines 11a–b and 

branched aziridine 11c gave the desired dehydropiperazines 31aa–ba and 31ca in good yield 

and excellent dr of >19:1. Heteroatom-containing substituents, including the alkyl chloride 

in 11d, were well-tolerated to deliver 31da in good yield as a single diastereomer. 

Dehydropiperazine 31ea was obtained in good yield, showing that substitution on the 

aziridine was not necessary for productive reaction. Tosyl-protected aryl N-sulfonyl-1,2,3-

triazoles 27c–f were examined to evaluate the effect of altering the electronic and steric 

environment of the carbene precursor on reaction outcome (Figure 6B). N-sulfonyl-1,2,3-

triazoles 27e–f, bearing electron-donating substituents, furnished the respective 

dehydropiperazines 31ae–af in good yields; however, strongly electron-withdrawing groups 

lowered the yield. As demonstrated with dehydropiperazine 31ag, the use of alkyl-

substituted triazoles failed to furnish any desired product. Calculations showed aryl carbenes 

have a smaller HOMO-LUMO gap (3.40 eV versus 3.71 eV), suggesting stabilized carbenes 

of this type are more reactive towards nucleophilic bicyclic aziridines as compared to alkyl 

carbenes (Figure 6C). DFT calculations support the nucleophilic addition of the bicyclic 

aziridine 11f to the electrophilic center of the rhodium-supported carbene 29a, followed by 

Rh dissociation to furnish the aziridinium ylide INT2 (Figure 6D). A highly exergonic 

cheletropic extrusion of intermediate INT2 is predicted to produce alkene intermediate 

INT3 via TS2. INT3 may then undergo an aza-Diels Alder cycloaddition through TS3 to 

yield the corresponding dehydropiperazine 31fa. In contrast, an alternative reaction pathway 

directly produces the dehydropiperazine 6aa′ from ylide INT2 through a sigmatropic 

rearrangement in which breaking of the aziridine C-N bond and formation of a new C-N 

bond is concomitant, yet highly asynchronous. Calculations suggest the direct formation of 

dehydropiperazine 31fa through TS2′ is kinetically favored, though both reaction pathways 

are possible given the experimental reaction conditions.

Concluding Remarks

This review highlights recent strategies to exploit the unique features of aziridinium ylides 

as synthetic intermediates for the construction of densely substituted, stereochemically 

complex N-heterocycles. The key to expanding the utility of this chemistry hinges on 

obtaining a better mechanistic understanding of how to effectively form and control the 

subsequent reactivities of aziridinium ylide intermediates (see Outstanding Questions). A 

combination of experimental and computational studies has provided insight into some of 

the factors that contribute to the fate of diverse types of aziridinium ylides; continuing these 

investigations will enable the rational design of improved methods that furnish a broader 

range of complex nitrogen-containing heterocycles. Future work will aim to engage 

analogous onium ylides derived from smaller heterocycles as intermediates toward the 

synthesis of larger, highly functionalized heterocycles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

Aziridinium ylide
a subclass of N(sp3)-based ammonium ylides that contain a positively charged aziridinium 

nitrogen adjacent to an exocyclic nucleophilic carbanionic site; in this review, an ylide 

generated from the reaction between an aziridine and a metal-supported carbene

Carbene
a compound containing a divalent carbon atom with a pair of nonbonding electrons

Cheletropic extrusion
a pericyclic reaction in which two σ bonds terminating at the same atom are made or broken 

in a concerted fashion

1,3-Dipolar cycloaddition
a pericyclic chemical reaction between a 1,3-dipole and a dipolarophile leading to the 

formation of a five-membered ring

Stereospecificity
a condition of a reaction in which the production of a single stereoisomer is directly 

determined by the stereochemistry of the starting material

Stevens rearrangement
traditionally, a base-promoted transformation of a sulfonium or quaternary ammonium salt 

to a sulfide or tertiary amine, which is accompanied by the 1,2-mitrgration of an alkyl group 

from the central nitrogen or sulfur atom
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Figure 1. 
Intramolecular [2,3]-Stevens rearrangements of aziridinium ylides. (A) Clark’s attempted 

indolizidine synthesis from the [2,3]-rearrangement of spirocyclic ylide intermediate 3. (B) 

Rowlands’ Cu-catalyzed ring expansion attempt of aziridine invertomers 4a and 4b.
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Figure 2. 
Intermolecular Rh-catalyzed synthesis of methyleneazetidines. (A) Select substrates from 

the diazoester and aziridine scopes of the [3+1] ring expansion of bicyclic 

methyleneazetidines. (B) Chirality transfer experiment using enantiopure methyleneaziridine 

(S)-8a. (C) Potential mechanisms for the [3+1] ring expansion. (D) Computed reaction 

profile for the process involving methyl-substituted methyleneazeridine 8e and dirhodium-

bound carbene 9a-Rh2.
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Figure 3. 
Exploration of unbiased bicyclic aziridines. (A) Unsucessful Rh-mediated carbene transfer 

between trans-11a and diazoacetate 9a. (B) Cheletropic extrusion from the Rh-mediated 

carbene transfer between cis-11a and diazoacetate 9a. (C) Cheletropic extrusion of an 

aziridinium ylide generated from a copper-mediated carbene transfer. (D) Computed 

reaction profile for the chelotropic extrusion of the aziridinium ylide formed in the reaction 

of 11a and dirhodium-bound carbene 9a-Rh2. (E) Computed Wiberg bond indices for the C-

N bonds of INT2 and INT2-b.
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Figure 4. 
Intermolecular Rh-catalyzed synthesis of dehydropiperidines. (A) Select substrates from the 

aziridine and diazoester scopes of the [3+3] ring expansion of bicyclic aziridines. (B) 

Computed reaction profile for the process involving aziridine 11b and dirhodium-bound 

carbene 19a-Rh2. (C) Chirality transfer experiment using enantiopure aziridine (S,R)-11g.
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Figure 5. 
Exploring pyridotriazoles as carbene precursors toward the synthesis of N-heterocycles. (A) 

Attempted carbene transfer to access fused piperazines from the reaction between aziridine 

9a and Rh-bound 23a-Rh2. (B) Computed reaction profile for the process involving cis-

aziridine 11a and dirhodium-bound carbene 23a-Rh2.
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Figure 6. 
Intermolecular Rh-catalyzed synthesis of dehydropiperazines. (A) Dehydropiperazine 

synthesis via the ring expansion of an aziridinium ylide generated from a Rh-mediated 

carbene transfer. (B) Select dehydropiperazine products from the aziridine and diazoester 

scopes. (C) Left: Example of an inaccessible alkyl substrate. Right: Computed HOMO and 

LUMO energies for the bicyclic aziridine, aryl carbene, and alkyl carbene. (D) Computed 

reaction profile for the ring expansion process involving aziridine 11f and dirhodium-bound 

carbene 29a-Rh2.
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