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A B S T R A C T   

This paper investigates the dynamics of a COVID-19 stochastic model with isolation strategy. The white noise as 
well as the Lévy jump perturbations are incorporated in all compartments of the suggested model. First, the 
existence and uniqueness of a global positive solution are proven. Next, the stochastic dynamic properties of the 
stochastic solution around the deterministic model equilibria are investigated. Finally, the theoretical results are 
reinforced by some numerical simulations.   

Introduction 

Infectious diseases modeling has captivated the interest of many 
research works during the last recent years [1,6,2–5,7]. The basic SIR 
model representing the dynamics behavior of the three main pop-
ulations that represent the susceptible (S), the infected (I) and the 
recovered (R), was firstly proposed in 1927 by Kermack and Mc Ken-
dricks [8]; the suggested model has played an important role in starting 
different research works in disease dynamics field. Understanding the 
interaction dynamics between the different infection components be-
comes then an important issue to prevent many serious infectious dis-
ease outbreaks. For instance, several mathematical models have been 
used to better understand the behavior of various viral infections, such 
as the hepatitis B virus (HBV) [6,10,9,11,12] human immunodeficiency 
virus (HIV) [1,14,2,13,15,3,4] or hepatitis C virus (HCV) [16,19,18,17]. 

COVID-19 is a recent pandemic disease that was behind a great 
disaster worldwide. Since there is still no efficient vaccine against 
COVID-19, substantial number of researches are undertaken in order to 
understand the disease mechanism, reduce the disease spread and find 
some solutions to this serious infection. As it was established, COVID-19 
is the recent form of coronavirus infection induced by the already known 

severe acute respiratory syndrome SARS-CoV-2 [20–23]. This recently 
discovered disease can be transmitted from an infected to any close 
unprotected person; likewise the susceptible can become an infected 
individual when touching any contaminated area [24]. Hence, isolating 
infected persons from the other susceptible population becomes more 
and more an important mean to reduce and overcome COVID-19 
propagation. 

Recently, different models have been investigated to study COVID- 
19. For instance, the risk estimation, the infection evolution and the 
prediction of COVD-19 infection is studied [25–28]; the authors con-
cludes that for ensuring a quick ending of the epidemic, the in-
terventions strategy and self-protection measures should always be 
maintained. The meteorological role and policy measures on COVD-19 
spread were studied in [29,30]; it was concluded that the policy strat-
egy has reduced the infection and the meteorological role can be 
considered as an important factor in controlling COVID-19. The effect of 
quarantine on coronavirus was discussed in [31]; the results confirm the 
importance of reducing contact between the infected and other 
individuals. 

Since the isolation strategy is an important tool to reduce the 
infection, adding another component representing the isolated in-

* Corresponding author. 
E-mail addresses: z.hammouch@fste.umi.ac.ma (Z. Hammouch), n.sooppy@psau.edu.sa (K.S. Nisar).  

Contents lists available at ScienceDirect 

Results in Physics 

journal homepage: www.elsevier.com/locate/rinp 

https://doi.org/10.1016/j.rinp.2021.103994 
Received 28 November 2020; Received in revised form 15 February 2021; Accepted 16 February 2021   

mailto:z.hammouch@fste.umi.ac.ma
mailto:n.sooppy@psau.edu.sa
www.sciencedirect.com/science/journal/22113797
https://www.elsevier.com/locate/rinp
https://doi.org/10.1016/j.rinp.2021.103994
https://doi.org/10.1016/j.rinp.2021.103994
https://doi.org/10.1016/j.rinp.2021.103994
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinp.2021.103994&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results in Physics 23 (2021) 103994

2

dividuals (Q ) to the classical SIR model becomes primordial; and the 
new epidemiological model will be under SIQR abbreviation [32]. 

To investigate the dynamics of COVID-19 in this paper, we subdivide 
the total population into four different epidemiological classes in which 
their descriptions are defined later. The parameters used in the co- 
infection model are summarized in Table 1,2, and the schematic dia-
gram of the compartmental COVID model is shown in Fig. 1. 

The SIQR deterministic system of equations may take the following 
form: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt

(

t
)

= λ − ζS (t) − βS (t)I (t),

dI

dt

(

t
)

= βS (t)I (t) − (ζ + υ)I (t),

dQ

dt

(

t
)

= υI (t) − (ζ + κ + d)Q (t),

dR

dt

(

t
)

= κQ (t) − ζR (t),

(1)  

where λ is the birth average of the susceptibles, their mortality rate is 
denoted by ζS . The susceptible become infected at a rate βSI , the 
death rate of infected population is denoted by ζI ; the infected become 
isolated at rate υI . The death rate of the isolated individuals due to the 
infection is represented dQ and due to others means is ζQ . Finally, the 
isolated become recovered at rate κQ ; the death rate of the recovered is 
denoted by ζR . 

On the hand, stochastic quantification of several real life phe-
nomena have been much helpful in understanding the random nature 
of their incidence or occurrence. This also helped in finding solutions 
to such problems arising from them either in form of minimization of 
their undesirability or maximizing their rewards. Besides, the infec-
tious diseases are exposed to randomness and uncertainty in terms of 
normal infection progress. Therefore, the stochastic modeling are more 
appropriate comparing to the deterministic models; considering the 
fact that the stochastic systems do not take into account only the 
variable mean but also the standard deviation behavior surround it. 
Moreover, the deterministic systems generate similar results for initial 
fixed values, but the stochastic ones can give different predicted re-
sults. Several stochastic infectious models describe the effect of white 
noise on viral dynamics have been deployed [33,7,34]. Recently and in 
the same context, a stochastic SIQR model is studied in [35], the au-
thors introduce the Brownian perturbation to the four components of 
the model and study the different conditions of extinction and 
persistence of the infection. Both of white and telegraph noises were 
taken into consideration to study SIQR model [36], sufficient different 
conditions to establish persistence in mean were studied. 

In addition to the cited random noises, Lévy jumps present an 
important tool to model many real dynamical phenomena [37,38]. 
Indeed, because of the unpredictable stochastic properties of the disease 
progression, infection dynamical model may know sudden significant 
perturbations in the disease process [39]. Then, it will be more reasonable 
to illustrate those sudden fluctuations through an introduction of the Lévy 
jump behavior into the infection model. For instance, Berrhazi et al. [40] 
studied, recently, a stochastic SIRS model under Lévy jumps fluctuations 
and considering bilinear function describing the infection. The unique-
ness of global solution was established, also through suitable Lyapunov 
functions, it was demonstrated that the stochastic stability of steady states 
depends on some sufficient conditions for persistence or extinction of the 
studied infection. Motivated by the previous works, we will consider in 
this paper the following stochastic SIQR model driven by Lévy noise: 

Table 1 
The sensitivity indices of R0.  

Parameters Sensitivity index 

λ  1 
β  1 
ζ  − 2.39  
υ  0.921  
κ  0.514  
d 0.334   

Table 2 
The used parameters for the numerical simulations.  

Parameters Fig. 2 Fig. 3 references 

λ  1785.205  1785.205  [43] 
ζ  0.35  0.49  – 
β  0.13  0.13  [43] 
υ  2.7× 10− 4  0.03  – 

κ  0.15  0.35  [43] 
d 0.038  0.038  [43] 
σ1  10− 4  10− 5  – 

σ2  2× 10− 4  2× 10− 4  – 

σ3  2× 10− 4  2× 10− 3  – 

σ4  2× 10− 4  2× 10− 4  – 

q1(u) − 0.04  − 0.04  – 
q2(u) − 0.006  − 0.006  – 
q3(u) − 0.008  − 0.008  – 

q4(u) − 0.009  0.009  –  

Fig. 1. The transfer diagram for the SIQR model.  

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS (t)= (λ − ζS (t) − βS (t)I (t))dt+σ1S

(

t
)

dW1

(

t
)

+

∫

U
q1

(

u
)

S

(

t −
)

Ñ
(

dt,du
)

,

dI (t)= (βS (t)I (t) − (ζ+υ)I (t))dt+σ2I

(

t
)

dW2

(

t
)

+

∫

U
q2

(

u
)

I

(

t −
)

Ñ
(

dt,du
)

,

dQ (t)= (υI (t) − (ζ+ κ+d)Q (t))dt+σ3Q

(

t
)

dW3

(

t
)

+

∫

U
q3

(

u
)

Q

(

t −
)

Ñ
(

dt,du
)

,

dR (t)= (κQ (t) − ζR (t))dt+σ4R

(

t
)

dW4

(

t
)

+

∫

U
q4

(

u
)

R

(

t −
)

Ñ
(

dt,du
)

,

(2)   
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where Wi(t) is a standard Brownian motion defined on a complete 
probability space (Ω,F , (F t)t⩾0,P)with the filtration (F t)t⩾0 satisfying 
the usual conditions. We denote by S (t − ),I (t − ) , Q (t − ) and R (t − )

the left limits of S (t),I (t),Q (t) and R (t) respectively. N(dt, du) is a 
Poisson counting measure with the stationary compensator ν(du)dt,
Ñ(dt, du) = N(dt, du) − ν(du)dt with ν(U) < ∞ and σi is the intensity of 
Wi(t). The jumps intensities are represented by q i(u) with i = 1,…,4. 

The present work will be organized as follows. The next section is 
devoted to establish the existence and uniqueness of the global positive 
solution to the studied model (2). We calculate the basic reproduction 
number and the different problem equilibria in Section “The basic 
reproduction number and equilibria”. The stochastic behavior of the 
solution of the disease-free equilibrium is studied in Section “The sto-
chastic property around the free-infection equilibrium”. The dynamics 
of the solution of the endemic equilibrium is studied in Section “The 
stochastic property around the endemic equilibrium”. The sensitivity 
analysis is presented in Section “Sensitivity analysis”. The final part of 
this paper is dedicated to some numerical results in order to support the 

theoretical findings. 

The existence and uniqueness of global positive solution 

The existence and uniqueness of the problem (2) global positive so-
lution is guaranteed by the next following theorem. 

Theorem 1. For any initial condition in R4
+, the model (2) has a unique 

global solution (S (t),I (t),Q (t),R (t)) ∈ R4
+ almost surely. 

Proof. First, we know that the diffusion and the drift are locally Lip-
schitz functions, therefore for any initial condition 
(S (0),I (0),Q (0),R (0)) ∈ R4

+, we have the existence of a unique local 
solution (S (t),I (t),Q (t),R (t)) for t ∈ [0, te), where te is the time of 
explosion. 

In order to demonstrate that this solution is globally defined, we 
need to check that te = ∞ a.s. Firstly, we will demonstrate that (S (t),
I (t),Q (t),R (t)) do not tend to infinity for a bounded time. Let m0 > 0, 
be sufficiently a large number, in such manner that (S (0),I (0),Q (0),

R (0)) be within the interval 
[

1
m0
,m0

]

. We define, for each integer m⩾m0, 

the stopping time 

tm = inf
{

t ∈
[

0, te

)/

S

(

t
)

∕∈

(
1
m
,m

)

orI
(

t
)

∕∈

(
1
m
,m

)

orQ
(

t
)

∕∈

(
1
m
,m

)

orR
(

t
)

∕∈

(
1
m
,m

)}

,

where tm is an increasing number when m↑∞. Let t∞ = limm→∞tm, where 
t∞⩽te a.s. We need to show that t∞ = ∞ which means that te = ∞ and 
(S (t),I (t),Q (t),R (t)) ∈ R4

+ a.s. Assume the opposite case is verified, i. 
e. t∞ < ∞ a.s. Therefore, there exist two constants 0 < ∊ < 1 and T > 0 
such that P(t∞⩽T)⩾∊. 

Therefore, there exists an integer m1⩾m0 such that 
P(tm⩽T)⩾∊forallm⩾m1. 

Let’s now consider the following functional 

V (S (t),I (t),Q (t),R (t)) =
(

S − a − alog
(

S

a

))

+(,I − 1 − log(,I ))

+(Q − 1 − log(Q ))+(R − 1 − log(R )),

with a is a positive constant. 
Let m⩾m0 and T > 0 be arbitrary. For any 0⩽t⩽tm ∧ T = min(tm,T). 

From Itô’s formula, we will have   

where 

LV =
(

1 −
a

S

)
(λ − ζS (t) − βS (t)I (t)) +

aσ2
1

2

+

(

1 −
1

I

)

(βS (t)I (t) − (ζ + υ)I (t)) +
σ2

2

2

+

(

1 −
1
Q

)

(υI (t) − (ζ + κ)Q (t)) +
σ2

3

2

+

(

1 −
1
R

)

(κQ (t) − ζR ) +
σ2

4

2

+

∫

U
[q1(u) − log(1 + q1(u)) ]ν

(

du
)

+

∫

U
[q2(u) − log(1 + q2(u)) ]ν

(

du
)

+

∫

U
[q3(u) − log(1 + q3(u)) ]ν

(

du
)

+

∫

U
[q4(u) − log(1 + q4(u)) ]ν

(

du
)

,

therefore, we will have 

dV (S ,I ,Q ,R ) = LV dt + σ1(S − a) dW1 + σ2(I − 1) dW2 + σ3(Q − 1) dW3 + σ4(R − 1) dW4 

+

∫

U
[q1(u)S − alog(1 + q1(u)) ]Ñ

(

dt, du
)

+

∫

U
[q2(u)I − log(1 + q2(u)) ]Ñ

(

dt, du
)

+

∫

U
[q3(u)Q − log(1 + q3(u)) ]Ñ

(

dt, du
)

+

∫

U
[q4(u)R − log(1 + q4(u)) ]Ñ

(

dt, du
)

, (3)   
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LV ⩽λ + ζ + aζ + (aβ − ζ)I + (ζ + υ) + (ζ + κ)

+
aσ2

1

2
+

σ2
2

2
+

σ2
3

2
+

σ2
4

2

+

∫

U
(aq1(u) − alog(1 + q1(u)) )ν

(

du
)

+

∫

U
(q2(u) − log(1 + q2(u)) )ν

(

du
)

+

∫

U
(q3(u) − log(1 + q3(u)) )ν

(

du
)

+

∫

U
(q4(u) − log(1 + q4(u)) )ν

(

du
)

,

by choosing a = ζ
β, we will get 

LV ⩽λ + ζ +
ζ2

β
+ (ζ + υ) +

(

ζ + κ
)

+
ζσ2

1

2β
+

σ2
2

2
+

σ2
3

2
+ 4M′ = M,

where 

M′=max
{∫

U

ζ
β
(q1(u)− log(1+q1(u)))ν

(

du
)

,

∫

U
(q2(u)− log(1+q2(u)))ν

(

du
)

,

∫

U
(q3(u)− log(1+q3(u)))ν

(

du
)

,

∫

U
(q4(u)− log(1+q4(u)))ν

(

du
)}

.

Integrating both sides of the Eq. (3) between 0 and tm∧T, we get   

This leads to 

0 ⩽E(V (S (tm ∧ T),I (tm ∧ T),Q (tm ∧ T),R (tm ∧ T)) )
⩽V (S (0),I (0),Q (0),R (0)) + ME[tm ∧ T]
⩽V (S (0),I (0),Q (0),R (0)) + MT.

(4) 

Set Ωm = tm⩽T for m⩾m1. From (3), we obtain P(Ωm)⩾∊. Noting that 
for every ω ∈ Ωm, there exists S(tm,ω) or I(tm,ω) or Q(tm,ω) or R(tm,ω)

equals to either m or 1/m, 
V (S (tm,ω),I (tm,ω),Q (tm,ω),R (tm,ω)) is not less than either 

m − 1 − log
(

m
)

or
1
m
− 1+ log

(

m
)

.

This fact implies that, 

V (S (tm,ω),I (tm,ω),Q (tm,ω),R (tm,ω))⩾(m − 1 − log(m)) ∧

(
1
m
− 1

+ log
(

m
))

.

It follows from (4) that 

where IΩm denotes the indicator function of Ωm, letting m→∞, we will 
have 

lim
m→∞

P

(

tm⩽T
)

= 0.

Since T > 0 is arbitrary, then 

P(t∞ < ∞) = 0.

So, 

P(t∞ = ∞) = 1.

Therefore, the model has a unique global solution (S (t),I (t),Q (t),
R (t)) a.s. □ 

∫ tm∧T

0
dV (S (t), I (t),Q (t),R (t))dt⩽

∫ tm∧T

0
M dt + σ1

∫ tm∧T

0

(

S −
ζ
β

)

dW1

(

t
)

+ σ2

∫ tm∧T

0

(

I − 1
)

dW2

(

t
)

+σ3

∫ tm∧T

0

(

Q − 1
)

dW3

(

t
)

+ σ4

∫ tm∧T

0

(

R − 1
)

dW4

(

t
)

+

∫ tm∧T

0

∫

U

[
q1

(
u
)

S −
ζ
β

log(1 + q1(u))
]
Ñ
(

dt, du
)

dt

+

∫ tm∧T

0

∫

U
[q2(u)I − log(1 + q2(u)) ]Ñ

(

dt, du
)

dt

+

∫ tm∧T

0

∫

U
[q3(u)Q − log(1 + q3(u)) ]Ñ

(

dt, du
)

dt

+

∫ tm∧T

0

∫

U
[q4(u)R − log(1 + q4(u)) ]Ñ

(

dt, du
)

dt.

V (S (0),I (0),Q (0),R (0)) + MT⩾E(IΩm (ω)V (S (tm,ω),I (tm,ω),Q (tm,ω),R (tm,ω)) )

⩾P

(

tm⩽T
)[

(m − 1 − log(m)) ∧

(
1
m
− 1 + log

(

m
))]

,
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The basic reproduction number and equilibria 

The model basic reproduction number (1) is given by R0 =
λβυ

ζ(ζ+υ)(ζ+d+κ). Its biological meaning stands for the average number of 
secondary infected individuals generated by only one infected person at 
the start of the infection process. The problem (1) has a unique free- 

infection equilibrium E f =
(

λ
ζ,0, 0,0

)
and an endemic equilibrium 

E
*
= (S

*
,I *,Q *,R *) given as follows 

S
*
=

υ + ζ
β

,

I
*
=

λβ − ζ(υ + ζ)
β(υ + ζ)

,

Q
* =

ζR0

β2λ
(βλ − ζ(υ + ζ)),

R
* =

ζκR0

υβ2λ
(βλ − ζ(υ + ζ)).

Following the same reasoning as in [41,32] concerning the equilibria 
stability of the deterministic SIQR model, we can establish that E f is 
globally asymptotically stable when R0⩽1. Besides, when R0 > 1,E f 

losses it stability and the other equilibrium E * becomes stable. 

The stochastic property around the free-infection equilibrium 

Around the free-infection equilibrium E f , we have the following 

stochastic property. 

Theorem 2. If R0⩽1 and 

l1 = 2ζ − 2σ2
1 − 6

∫

U
q2

1

(

u
)

ν
(

du
)

⩾0,

l2 = 2ζ − 2σ2
2 − 3

∫

U
q2

1

(

u
)

ν
(

du
)

⩾0,

l3 = 2ζ − 2σ2
3 − 3

∫

U
q2

1

(

u
)

ν
(

du
)

⩾0,

l4 =
λζ(16υ − (ζ + κ + d)

4υκ
⩾0,

then, 

lim
t→+∞

sup
1
t

E

{∫ t

0

((
S

(
η
)
−

λ
ζ

)2
+ I

2
(

η
)

+ Q
2
(

η
)

+ R

(

η
))

dη
}

⩽
M1

ρ1
,

where 

M1 =

(

σ2
1 + 6

∫

U
q2

1

(

u
)

ν
(

du
))(λ

ζ

)2  

and 

ρ1 = min{l1, l2, l3, l4}.

Proof. We set X
(

t) = S

(
t) − λ

ζ,Y (t
)
= I (t

)
,V (t

)
= Q (t

)
and R (t)

= Z (t), then the model (2) becomes  

We consider the following functional 

F
(
X ,Y ,V ,Z

)
= (X + Y + V )

2
+ c1Y + c2V + c3Z ,

where c1, c2 and c3 are three constants that will be determined later. 
By using Itô’s formula, we have  

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX (t) =
(
− ζX

(
t
)
− βX

(
t
)

Y

(
t
)
− β

λ
ζ

Y

(
t
))

dt + σ1

(
X

(
t
)
+

λ
ζ

)
dW1

(
t
)

+

∫

U
q1

(

u
)(

X

(
t −

)
+

λ
ζ

)
Ñ
(

dt, du
)

,

dY (t) =
(

βX

(
t
)

Y

(
t
)
+ β

λ
ζ

Y

(
t
)
−
(

ζ + υ
)

Y

(
t
))

dt + σ2Y

(

t
)

dW2

(

t
)

+

∫

U
q2

(

u
)

Y

(

t −
)

Ñ
(

dt, du
)

,

dV (t) = (υY (t) − (ζ + κ + d)V (t))dt + σ3V

(

t
)

dW3

(

t
)

+

∫

U
q3

(

u
)

V

(

t −
)

Ñ
(

dt, du
)

,

dZ (t) = (κV (t) − ζZ (t))dt + σ4Z

(

t
)

dW4

(

t
)

+

∫

U
q4

(

u
)

Z

(

t −
)

Ñ
(

dt, du
)

.

dF = LF dt + 2(X + Y + V )
(

σ1

(
X +

λ
ζ

)
dW1 + σ2Y dW2 + σ3V dW3

)
+ c1σ2Y dW2

+c2σ3V dW3 + c3σ4Z dW4 +

∫

U

(
q1

(
u
)(

X +
λ
ζ

)
+ q2

(
u
)

Y + q3

(
u
)

V

)2
Ñ
(

dt, du
)

+2(X + Y + V )

∫

U
q1

(

u
)(

X +
λ
ζ

)
Ñ
(

dt, du
)

+ c1

∫

U
q2

(

u
)

Ñ
(

dt, du
)

+c2

∫

U
q3

(

u
)

Ñ
(

dt, du
)

+ c3

∫

U
q4

(

u
)

Ñ
(

dt, du
)

,

(5)   
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where  

Now, we choose c1 = 4ζ
β and c2 =

λ(16υ− (ζ+κ+d)
4υ(ζ+κ+d) and c3 =

λ(16υ− (ζ+κ+d)
4υκ , 

we get c1β − 4ζ = 0, c2υ − c1

(

ζ+υ − β λ
ζ

)
=

4ζ(ζ+υ)
β (R0 − 1

)

and 

c3κ − c2(ζ + κ + d) = 0, since R0⩽1 , 2ab⩽a2 +b2 and (a + b + c)2⩽3a2 +

3b2 + 3c2. We will obtain  

Therefore 

LF⩽ − l1X
2
− l2Y

2
− l3V

2
− l4Z +M1,

where 

M1 =

(

σ2
1 + 6

∫

U
q2

1

(

u
)

ν
(

du
))(λ

ζ

)2
.

Integrating both sides of the Eq. (5) between 0 and t and taking into 
account expectation, we have 

0⩽E(F(X (t),Y (t),V (t),Z (t)) )

⩽E

{∫ t

0

(

− l1

(
S

(
τ
)
−

λ
ζ

)2
− l2I (τ)2

− l3Q (τ)2
− l4R

(

τ
))

dτ
}

+F(X (0),Y (0),V (0),Z (0)) + M1t,

let now ρ1 = min{l1, l2, l3, l4}, then 

E

{∫ t

0

((
S

(
τ
)
−

λ
ζ

)2
+ I (τ)2

+ Q (τ)2

+ R

(

τ
))

dτ
}

⩽
F(X (0),Y (0),V (0),Z (0))

ρ1
+

M1

ρ1
t,

we conclude that 

lim
t→+∞

sup
1
t

E

{∫ t

0

((
S

(
τ
)
−

λ
ζ

)2
+ I (τ)2

+ Q (τ)2
+ R

(

τ
))

dτ
}

⩽
M1

ρ1
.

□ 

Remark 1. From our last result, one can conclude that when R0⩽1, the 

solution fluctuates around the free steady state E f . 

The stochastic property around the endemic equilibrium 

The infection steady state E * has the following stochastic property. 

Theorem 3. If R0 > 1, 

l5 =
(8ζ − d)(8ζ + 2d)

16ζ + 2d
− σ2

1 − 4
∫

U
q2

1

(

u
)

ν
(

du
)

⩾0,

l6 =
(8ζ − d)(8ζ + 2d)

16ζ + 2d
− σ2

2 − 4
∫

U
q2

2

(

u
)

ν
(

du
)

⩾0,

l7 =
d
2
− σ2

1 − 4
∫

U
q2

1

(

u
)

ν
(

du
)

⩾0,

l8 =
(8ζ − d)(8ζ + 2d)

16ζ + 2d
− σ2

4 − 4
∫

U
q2

4

(

u
)

ν
(

du
)

⩾0  

and 

8ζ − d⩾0,

then, 

LF = 2(X + Y + V )( − ζX − ζY − (ζ + κ + d)V ) + σ2
1

(
X +

λ
ζ

)2

+c1

(
βX + β

λ
ζ
−
(

ζ + υ
))

Y + σ2
2Y

2

+c2(υY − (ζ + κ + d)V ) + σ2
3V

2
+ c3(κV − ζZ )

+

∫

U

(
q1

(
u
)(

X +
λ
ζ

)
+ q2

(
u
)

Y + q3

(
u
)

V

)2
ν
(

du
)

= − 2ζX
2
− 2ζY

2 − 2
(
ζ + κ + d

)
V

2
+
(
c1β − 4ζ

)
XY −

(
4ζ + κ + d

)(
XV + YV

)

+
(

c2υ − c1

(
ζ + υ − β

λ
ζ

))
+ (c3κ − c2(ζ + κ + d))V − c3ζZ + σ2

1

(
X +

λ
ζ

)2

+σ2
2Y

2 + σ2
3V

2
+

∫

U

(
q1

(
u
)(

X +
λ
ζ

)
+ q2

(
u
)

Y + q3

(
u
)

V

)2
ν
(

du
)

.

LF⩽ −

(

2ζ − 2σ2
1 − 6

∫

U
q2

1

(

u
)

ν
(

du
))

X
2
−

(

2ζ − 2σ2
2 − 3

∫

U
q2

2

(

u
)

ν
(

du
))

Y
2

−

(

2ζ − 2σ2
3 − 3

∫

U
q2

3

(

u
)

ν
(

du
))

V
2
−

λζ(16υ − (ζ + κ + d)
4υκ

Z

+

(

σ2
1 + 6

∫

U
q2

1

(

u
)

ν
(

du
))(λ

ζ

)2
.
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lim
t→+∞

sup
1
t

E

{∫ t

0

(
(S (τ) − S

*
)

2
+
(
(I (τ) − I

*
)

2
+
(
(Q (τ) − Q

*)
2

+
(
(R (τ) − R

*
)

2 )dτ
}

⩽
M2

ρ2
,

where 

M2 = σ2
1S

*2
+ σ2

2I
*2
+ σ2

3Q
*2
+ σ2

4R
*2
+ 3

∫

U
q2

1

(

u
)

S
*2
+ q2

2

(

u
)

I
*2

+ q2
3

(

u
)

Q
*2
+ q2

4

(

u
)

R
*2ν

(

du
)

and 

ρ2 = min{l5, l6, l7, l8}.

Proof. First, let the following function: 

G(S ,I ,Q ,R ) =
1
2
(S − S

*
+ I − I

*
+ Q − Q

* + R − R
*
)

2
,

By using Itô’s formula, we will have  

with  

Since 

λ = ζ(S *
+ I

* + Q
* + R

*
)+ dQ

*,

therefore,   

then,   

Using the inequalities 2ab⩽a2 +b2, (a + b + c + d)2⩽4a2 +4b2 +4c2 

+4d2 and 2ab⩽a2

∊ +∊b
2 with ∊ = 8ζ+d

d , we will obtain   

LG = (S − S
*
+ I − I

*
+ Q − Q

* + R − R
*
)(λ − ζ(S + I + Q + R ) − dQ )

+
1
2
σ2

1S
2
+

1
2
σ2

2I
2
+

1
2
σ2

3Q
2 +

1
2
σ2

4R
2 +

∫

U

1
2
(q1(u)S + q2(u)I + q3(u)Q + q4(u)R )

2ν
(

du
)

.

dG = LG dt + (S − S
*
+ I − I

*
+ Q − Q

* + R − R
*
)(σ1S dW1 + σ2I dW2 + σ3Q dW3

+ σ4R dW4) +

∫

U

1
2
(q1(u)SS + q2(u)I + q3(u)Q + q4(u)R )

2

+(S − S
*
+ I − I

*
+ Q − Q

* + R − R
*)(q1(u)S + q2(u)I + q3(u)Q + q4(u)R )Ñ

(
dt, du

)
,

(6)   

LG = (S − S
*
+ I − I

*
+ Q − Q

* + R − R
*
)( − ζ(S − S

*
+ I − I

*
+ Q − Q

* + R − R
*
)

− d(Q − Q
*
) ) +

1
2
σ2

1S
2
+

1
2
σ2

2I
2
+

1
2
σ2

3Q
2 +

1
2
σ2

4R
2

+

∫

U

1
2
(q1(u)S + q2(u)I + q3(u)Q + q4(u)R )

2ν
(

du
)

,

LG = − ζ(S − S
*
+ I − I

*
+ Q − Q

* + R − R
*
)

2
− d(Q − Q

*)
2
+ d(Q − Q

*)(S − S
*
)

+d(Q − Q
*
)(I − I

*
) + d(Q − Q

*
)(R − R

*
) +

1
2
σ2

1S
2
+

1
2
σ2

2I
2

+
1
2

σ2
3Q

2 +
1
2

σ2
4R

2
+

∫

U

1
2
(q1(u)S + q2(u)I + q3(u)Q + q4(u)R )

2ν
(

du
)

.
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Since 8ζ − d > 0, therefore (8ζ − d)(8ζ + 2d) > 0, which implies 

LG⩽ − l5(S − S
*
)

2
− l6(I − I * )

2
− l7(Q − Q

*)
2
− l8(R − R

*)
2
+M2,

where 

M2 = σ2
1S

*2
+ σ2

2I
*2
+ σ2

3Q
*2
+ σ2

4R
*2
+ 3

∫

U
q2

1

(

u
)

S
*2
+ q2

2

(

u
)

I
*2

+ q2
3

(

u
)

Q
*2
+ q2

4

(

u
)

R
*2ν

(

du
)

.

Integrating both sides of the Eq. (6) between 0 and t and taking 
expectation, we will get  

let ρ2 = min{l5, l6, l7, l8}, then 

therefore, 

lim
t→+∞

sup
1
t

E

{∫ t

0

(
(S (τ) − S

*
)

2
+ (I (τ) − I

*
)

2
+ (Q (τ) − Q

*)
2

+ (R (τ) − R
*
)

2 )dτ
}

⩽
M2

ρ2
.

□ 

Remark 2. From our last finding, one can conclude that when R0 > 1 
the solution will fluctuate around the steady state E *. 

Sensitivity analysis 

The sensitivity analysis is used principally to determine which model 
parameter can change significantly infection dynamics. This allows to 
detect the parameters that have a high impact on the basic reproduction 
number R0. To perform such analysis we will need the following 
normalized sensitivity index of R0 with respect to any given parameter θ: 

φθ =
∂R0

∂θ
θ

R0
,

therefore, we obtain 

φλ = 1,

φβ = 1,

φυ =
ζ

ζ + υ,

φd =
− d

ζ + d + κ
,

φκ =
− κ

ζ + d + κ
,

LG⩽ −

(
(8ζ − d)(8ζ + 2d)

16ζ + 2d
− σ2

1 − 4
∫

U
q2

1

(

u
)

ν
(

du
))

(S − S
*
)

2

−

(
(8ζ − d)(8ζ + 2d)

16ζ + 2d
− σ2

2 − 4
∫

U
q2

2

(

u
)

ν
(

du
))

(I − I * )
2

−

(
d
2
− σ2

4 − 4
∫

U
q2

3

(

u
)

ν
(

du
))

(Q − Q
*)

2

−

(
(8ζ − d)(8ζ + 2d)

16ζ + 2d
− σ2

4 − 4
∫

U
q2

4

(

u
)

ν
(

du
))

(R − R
*
)

2
+ σ2

1S
*2
+ σ2

2I
*2

+σ2
3Q

*2
+ σ2

4R
*2
+ 3

∫

U
q2

1

(

u
)

S
*2
+ q2

2

(

u
)

I
*2
+ q2

3

(

u
)

Q
*2

+ q2
4

(

u
)

R
*2ν

(

du
)

.

0⩽E(G(S (t),I (t),Q (t),R (t)) )

⩽E

{∫ t

0

(
− l5(S (τ) − S

*
)

2
− l6(I (τ) − I

*
)

2
− l7(Q (τ) − Q

*)
2
− l8(R (τ) − R

*
)

2 )dτ
}

+G(S (0),I (0),Q (0),R (0)) + M2t,

E

{∫ t

0

(
(S (τ) − S

*
)

2
+ (I (τ) − I

*
)

2
+ (Q (τ) − Q

*)
2
+ (R (τ) − R

*
)

2 )dτ
}

⩽
M2

ρ2
t

+
G(S (0),I (0),Q (0),R (0))

ρ2
,
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and 

φζ = −
(ζ + υ)(ζ + d + κ) + ζ(ζ + d + κ) + ζ(ζ + υ)

(ζ + υ)(ζ + d + κ)
.

From Table 1, we observe that the parameters λ, β and υ are positive 
sensitivity indices and the other remaining parameters ζ, κ and d are 
negative sensitivity indices. We remark that the parameters λ, β and υ 
have large magnitude, in their absolute values, which means that they 
are the most sensitive parameters of our model equations. This indicates 
that any increase of the parameters λ, β and υ will cause an increase of 
the basic reproduction number, which have as consequence of an in-
crease of the infection. Oppositely, an increase of the parameters ζ, d and 
κ will decrease R0 which leads to a reduce of the infection. 

Fig. 2 illustrates the contour plot of R0, we observe that for β = 1 and 
υ = 0 the value of R0 reaches the maximum value 5.11× 103. By 
decreasing β and υ from 1 to 0, we remark that the value of R0 decreases 
also and tends toward 8.75 × 10− 3 (corresponding to β = 0; υ = 0). 
This result reflects the impact of these two key parameters in controlling 
the infection. 

From the contour plot of R0 given in Fig. 3, we observe that for β = 1 
and κ = 0 the value of R0 reaches the maximum value 1.03× 103. When 
the parameter κ is increased from 0 to 1 and the parameter β is decreased 
also from 1 to 0, we observe that f R0 gradually decreases and tends to 

the limit value 1.93 × 10− 1 (corresponding to β = 0; κ = 1). Hence, the 
parameters x and y play an essential role in controlling the infection 
spread. 

The last contour plot of R0 in illustrated in Fig. 4. We observe that 
when β = 1 and d = 0 the value of R0 reaches its maximal value of 5.74×

102. By decreasing β from 1 to 0 and increasing d from 0 to 1, we observe 
that the value of R0 gradually decreases and tends towards 1.57 × 10− 1 

(corresponding to β = 0; d = 1). This confirm the impact of the β and 
d in controlling the progression of the infection. 

Numerical simulations and discussion 

This section will illustrate our mathematical results by different 
numerical simulations. To this end, we will apply the algorithm given in 
[42] to solve the system (2). The parameters of our model representing 
the infection and the recovery rates are estimated from COVID-19 
Morocco case [43]. The different used values of our parameters in our 
numerical simulations are given in Table 1. 

Figure 5 shows the dynamics of COVID-19 infection during the 
period of observation for the case of the disease extinction. From this 
figure, we clearly observe that the curves representing to the deter-
ministic model converge towards the endemic-free equilibrium Ef =
(
5.1 × 102, 0,0, 0

)
. The curves that represent the stochastic model 

Fig. 2. Contour plot of R0 depending on β and υ.  

Fig. 3. Contour plot of R0 depending on β and κ.  
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fluctuate around the curves representing the deterministic ones. More-
over, it will be worthy to notice that in this case, the susceptible increase 
to reach their maximum and the other SIQR components that are the 
infected, the quarantined (the isolated) and the recovered vanish which 
means that the disease dies out. Within the used parameters in this figure 
(see Table 1), we have R0 = 0.95 < 1 which indicates the die out of the 
infection. This is consistent with our theoretical findings concerning the 
extinction of SIQR infection. 

The evolution of the infection for both the deterministic model and 
the stochastic with Lévy jumps model is illustrated in Fig. 6 in the case of 
the disease persistence. Regarding the depicts of this figure, we can see 
that the plots corresponding to the deterministic model converge to-
wards the endemic equilibrium E* =

(
4, 3.42 × 103, 117.17,83.69

)
. The 

fluctuation around the endemic equilibrium E* is clearly remarked for 
the stochastic numerical results. We note that in this epidemic situation, 

Fig. 4. Contour plot of R0 depending on β and d.  
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Fig. 5. The evolution of the infection when R0 = 0.95.  
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all the four SIQR compartments, i.e. the susceptible, the infected, the 
quarantined (the isolated) and the recovered remain at constant level 
which means that the disease persists. Within the used parameters in this 
figure (see Table 1), we have R0 = 31.12 > 1 which indicates the 
persistence of the infection. This is consistent with our theoretical 
findings concerning the infection persistence. 

Conclusion 

In this present work, a stochastic coronavirus model with Lévy noise 
is presented and analyzed. We have given a four compartments SIQR 
model representing the interaction between the susceptible, the infec-
ted, the quarantined (the isolated) and the recovered. A white noise as 
well as a Lévy jump perturbations are incorporated in all model com-
partments. We have proved the existence and the uniqueness of the 
global positive solution for the stochastic COVID-19 epidemic model 
which ensures the well-posedness of our mathematical model. By using 
some appropriate functionals, we have shown that the solution fluctu-
ates around the steady states under sufficient conditions. Different nu-
merical results support our theoretical findings. Indeed, the extinction of 
the disease is observed for the basic reproduction number less than 
unity. However, the persistence of the disease is observed for the basic 
reproduction number greater than one. Moreover, the fluctuation of the 
stochastic solution around the disease-free equilibrium is observed for 
the extinction case and the fluctuation of the stochastic solution around 
the endemic equilibrium is observed for the persistence case. 
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Differ Eqs 2015;27:215–36. 

[38] Zhang X, Jiang D, Hayat T, Ahmad B. Dynamics of a stochastic SIS model with 
double epidemic diseases driven by Lévy jumps. Physica A 2017;471:767–77. 
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