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ABSTRACT

Objective To systematically review and critically evaluate
prediction models developed to predict tuberculosis (TB)
treatment outcomes among adults with pulmonary TB.
Design Systematic review.

Data sources PubMed, Embase, Web of Science and
Google Scholar were searched for studies published from
1 January 1995 to 9 January 2020.

Study selection and data extraction Studies that
developed a model to predict pulmonary TB treatment
outcomes were included. Study screening, data extraction
and quality assessment were conducted independently
by two reviewers. Study quality was evaluated using the
Prediction model Risk Of Bias Assessment Tool. Data
were synthesised with narrative review and in tables and
figures.

Results 14739 articles were identified, 536 underwent
full-text review and 33 studies presenting 37 prediction
models were included. Model outcomes included death
(n=16, 43%), treatment failure (n=6, 16%), default

(n=6, 16%) or a composite outcome (n=9, 25%). Most
models (n=30, 81%) measured discrimination (median
c-statistic=0.75; IQR: 0.68-0.84), and 17 (46%) reported
calibration, often the Hosmer-Lemeshow test (n=13).
Nineteen (51%) models were internally validated, and six
(16%) were externally validated. Eighteen (54%) studies
mentioned missing data, and of those, half (n=9) used
complete case analysis. The most common predictors
included age, sex, extrapulmonary TB, body mass index,
chest X-ray results, previous TB and HIV. Risk of bias
varied across studies, but all studies had high risk of bias
in their analysis.

Conclusions TB outcome prediction models are
heterogeneous with disparate outcome definitions,
predictors and methodology. We do not recommend
applying any in clinical settings without external validation,
and encourage future researchers adhere to guidelines for
developing and reporting of prediction models.

Trial registration The study was registered on the
international prospective register of systematic reviews
PROSPERO (CRD42020155782)

BACKGROUND

Tuberculosis (TB) is one of the top 10 causes
of death worldwide and a leading cause of
death from an infectious disease. In 2018,
10 million people developed TB and 1.45
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Strengths and limitations of this study

» Prediction models for tuberculosis treatment out-
comes have the potential to inform interventions or
treatment management protocols to promote cure
among patients with tuberculosis at the greatest
risk of unsuccessful treatment outcomes, but the
methods and clinical utility of existing models had
not been formally evaluated.

» This was the first systematic review of prediction
models for tuberculosis treatment outcomes.

» The review used a comprehensive search strat-
egy, conducted thorough bias assessment with
the Prediction Model Risk of Bias Assessment Tool
(PROBAST) tool, and offers recommendations for fu-
ture model development and validation studies for
predicting tuberculosis treatment outcomes.

» Evidence synthesis and quality assessment were
limited by incomplete reporting in primary studies,
as well as heterogeneities in study populations, such
as multidrug resistance and age.

» External validation studies or studies written in lan-
guages other than English, Spanish, Portuguese or
French were excluded.

million people died from it globally, despite
widespread availability of curative treatment.'
Global treatment success was 85% for all new
and relapse patients with TB in 2018. For HIV-
associated TB, it was 75%. These proportions
are lower than the End TB Strategy target of
>90% treatment success.”

Heeding early recognition that Mycobacte-
rium tuberculosis develops resistance rapidly
in response to single-drug therapy, TB has
been treated with combination regimens
for more than 50 years.” Aside from weight-
based dosing, the WHO and other TB guide-
lines authorities recommend a standardised
approach for treatment of almost all patients
with TB.*® The current recommendation
for drug-susceptible TB includes 2 months
of isoniazid, rifampin, pyrazinamide, and
ethambutol, followed by 4 months of isoni-
azid and rifampin.
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Due to the long duration of TB treatment, it would be
beneficial to understand early predictors of unsuccessful
TB treatment outcomes to identify patients needing
tailored treatment approaches, such as directly observed
therapy (DOT) or extended treatment course. Research
suggests that individual characteristics, such as HIV, age,
undernutrition, diabetes, TB disease severity, extrapul-
monary TB, history of TB, adherence, alcohol use and
adverse drug reactions, are associated with unsuccessful
TB treatment outcomes, but results vary by setting and
patient population.”™

Prediction models, defined as any combination or
equation of two or more predictors to estimate an indi-
vidualised probability of a specific endpoint within a
defined period of time, are increasingly common in
TB research.!’ The large number of recent prediction
models for TB outcomes highlights the common desire
to identify patients with TB at greatest risk of an unsuc-
cessful treatment outcome. However, to date, there has
not been a formal synthesis or quality assessment of
existing prediction models for TB treatment outcomes,
which is essential to determine whether they should be
used to inform care and may help guide development of
future models. Thus, we conducted a systematic review to
identify, describe, compare and synthesise clinical predic-
tion models designed to predict TB treatment outcomes
among persons with pulmonary TB.

METHODS AND ANALYSIS

All steps of the systematic review were carried out
according to guidelines set by Cochrane Prognosis
Methods Group (PMG) and PROGnosis RESearch
Strategy (PROGRESS).'** Reporting adhered to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA, online supplemental file 1).
This study was preregistered on Open Science Frame-
work (OSF, https://osf.io/rz3wp) and the international

prospective register of systematic reviews (PROSPERO:
CRD42020155782).

Study eligibility criteria

The review question was defined according to the PICOTS
(Population, Intervention, Comparator, Outcomes,
Timing, Setting) framework (online supplemental file 2).
In brief, the goal was to identify prognostic models devel-
oped to predict TB treatment outcomes among pulmo-
nary TB cases. The main endpoint was unsuccessful TB
treatment outcome, defined by the WHO as the combina-
tion of death, treatment failure, loss to follow-up and/or
not evaluated, as compared with successful TB treatment
outcome, defined as the combination of cure or treat-
ment completion (table 1).”® Loss to follow-up was some-
times referred to as default or treatment abandonment.

Inclusion criteria were: (1) prognostic model studies
with or without external validation'® ; (2) study popu-
lation included adult, drug-susceptible, pulmonary,
TB cases; (3) written in English, Spanish, Portuguese
and French; (4) published between 1 January 1995 and
9 January 2020; (5) treatment outcome was one of the
following: cure, treatment completion, death, treatment
failure, loss to follow-up or not evaluated.

Exclusion criteriawere: (1) predictive value of more than
one variable was evaluated but not combined in a predic-
tion model; (2) study population was only multidrug-
resistant (MDR) TB cases, only extrapulmonary TB cases
or only children (<18 years old); (3) outcome was eval-
uated during treatment such as: 2-month smear/culture
conversion, acquired resistance, adverse events, quality of
life; (4) long-term outcomes, such as relapse, recurrence
or post-treatment mortality.

The decision to include only articles in English, Spanish,
Portuguese and French was based on study team capabil-
ities. The dates reflect modern TB treatment practice;
first-line TB treatment regimens were not available until
the early 1990s.'” '® Articles that included a combination

Table 1 WHO definition of treatment outcomes for patients with TB

Outcome Definition

Treatment completion

Completion of treatment without evidence of failure, but without documentation of a negative sputum

smear or culture in the last month of treatment and/or on at least one previous occasion, either
because tests were not done or because results are unavailable

Cure
one previous occasion

Treatment success
Treatment failure
Death

Loss to follow-up
months or more

Bacteriologic confirmation of a negative smear or culture at the end of TB treatment and on at least

Composite of cured and treatment completed

Sputum smear or culture is positive at month 5 or later during treatment

Patient with TB who dies for any reason before starting or during the course of treatment

Patient with TB who did not start treatment or whose treatment was interrupted for 2 consecutive

Not evaluated (transfer Patient with TB for whom no treatment outcome was assigned, which includes cases who ‘transferred
out) out’ to another treatment unit as well as cases for whom the treatment outcome is unknown to the

reporting unit

TB, tuberculosis.
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of drug-susceptible and drug-resistant cases, or a combi-
nation of children and adults were included.

Search strategy and selection criteria

The following electronic databases were searched on 9
January 2020: PubMed, Embase, Web of Science and the
first 200 references from Google Scholar. This combina-
tion of databases achieved best overall recall for system-
atic reviews in a recent study.' Clinicaltrials.gov and
retractiondatabase.org were also searched for unpub-
lished research. Reference lists of retrieved articles were
checked to identify eligible studies.

Search terms relating to the ‘prediction model’ compo-
nent of the search were adapted from a PubMed search
strategy that captured prediction model studies with sensi-
tivity of 98%.% That component was combined with terms
relating to TB treatment outcomes. The search strategy,
developed in PubMed, was adapted for all other data-
bases with assistance from a reference librarian (online
supplemental file 3).

Article selection was conducted in three stages. The first
stage was automatic deduplication and title screening,
carried out using reviools in RStudio (V.1.2).% Remaining
articles were imported into Covidence, a web-based soft-
ware platform that streamlines systematic reviews, where
abstracts (Stage 2) and full text (Stage 3) were manu-
ally screened.” Stages 2 and 3 were carried out by two
independent reviewers (LP and FR). Discordance was
discussed between reviewers, and if consensus was not
reached, a third party arbitrated (one of TS, VCR, PR,
DL). In stage 3, reasons for exclusion were documented
according to PRISMA.

Data analysis

Data from selected studies were recorded using a data-
base designed in REDCap (Vanderbilt University).” **
Data extraction was informed by the CHecklist for critical
Appraisal and data extraction for systematic Reviews of
prediction Modelling Studies (CHARMS) and the Predic-
tion Model Risk of Bias Assessment Tool (PROBAST).!02%0
CHARMS checklist and PROBAST are shown in online
supplemental files 4 and 5, respectively.

Quality assessment and applicability of included studies
was assessed using PROBAST by dual independent
review.'® ** PROBAST was specifically designed to assess
risk of bias of prediction model studies, which included
identifying deficiencies in study design, conduct or
analysis that led to inaccurate estimates of predictive
performance. PROBAST has four domains: participants,
predictors, outcome and analysis with 20 total signalling
questions. Each question was answered on the scale: yes,
probably yes, no, probably no, no information. Domains
were scored aslow, high and unclear risk of bias. PROBAST
also guides assessment of applicability of participants,
predictors, and outcomes from each included study to
the review question.

Results were summarised narratively and in tables
and figures. Meta-analysis was not possible due to lack
of external validation and use of disparate predictors,
outcome definitions and modelling methods. For studies
that presented multiple models with the same set of
predictors and outcomes, but different methods, the
best-performing method was included in data synthesis.
For studies presenting multiple models with different sets
of predictors (ie, baseline data vs longitudinal data), the
model developed using only baseline data was included.
If studies developed multiple models for different
outcomes or with different populations, all models were
included. To further evaluate the impact of study popula-
tion heterogeneities on prediction model performance,
we additionally examined results after stratifying studies
by inclusion/exclusion of MDR and younger age groups.

Patient and public involvement

Neither patients nor the public were involved in the
design, conduct, or reporting of the research, as it was
not feasible or appropriate for this systematic review.
The study protocol is publicly available at https://osf.io/

rz3wp.

Role of the funding source

The funder of the study had no role in study design, data
collection, data analysis, data interpretation or writing of
the report. The corresponding author had full access to
all the data in the study and had final responsibility for
the decision to submit for publication.

RESULTS

Study selection

The search identified 14739 unique studies. After
excluding irrelevant titles, 6426 abstracts were screened,
536 articles underwent full-text review, and 33 model
development studies presenting 37 prediction models
were included (figure 1).

Study characteristics

Of the 33 studies, most were retrospective cohorts (n=25,
76%), three (9%) were prospective cohort studies, two
(6%) were case—control studies and three (9%) were
nested case—control studies. Data from nearly half of
studies (n=16, 48%) were collected from surveillance
systems; 11 (33%) studies used a data collection form
developed specifically for their study and 6 (18%) studies
extracted data from medical records. Median sample size
was 803 (IQR: 291-4167). Full details on included studies
are in table 2.

Thirteen (41%) studies took place in Asia, eight (25%)
in Africa, six (19%) in Europe, four (12%) in North
America and one (3%) included sites in Europe and
Argentina. Fewer than half (n=14, 45%) took place in
high-burden TB settings." One study did not report study
location (tables 2 and 3).
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Figure 1
Analyses

Reporting of population characteristics varied by study
(table 4). Among 18 studies that reported a measure of
central tendency (mean or median) for age, the median
of those measures was 41 years (IQR: 37-49). Of 17
studies that reported the minimum age of participants,
seven (41%) had a minimum age of 15, one (6%) had
a minimum age of 16, one (6%) had a minimum age
of 17 and the remainder had minimum age of 18. Eigh-
teen studies reported including persons living with HIV
(PLWH); 5 of these included only patients with TB/
HIV. Thirteen studies reported including persons with
diabetes; one of which included only TB/DM. Eight
studies reported including some participants with MDR,
though prevalence of MDR was low in all studies. Ten
studies included only hospitalised patients, and in 14
studies, all participants were on directly observed therapy
(DOT).

Model characteristics
Model outcomes included death (n=16, 43%), treatment
failure (n=6, 16%), default (n=6, 16%) or a composite
outcome (n=9, 25%, tables 2 and 5). The complete
outcome definition for all included studies is in online
supplemental file 6.

Most models were developed using clinical/epidemi-
ologic predictors (n=34, 92%), two (5%) used multiple
biomarkers and one (3%) used adherence data. The
most common candidate predictors were age, sex,

PRISMA flow chart of inclusion process. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-

extrapulmonary TB, smear result, body mass index (BMI),
X-ray findings and previous TB. The most common
predictors retained in the final models were age, sex,
extrapulmonary TB, BMI, chest X-ray results, previous TB
and HIV (figure 2).

Only three models (8%) used survival analysis; most
models used logistic regression (n=29, 78%) and five
(14%) used a machine-learning approach. More than half
of studies (n=19, 51%) considered variables for inclusion
in the multivariable model based on unadjusted associa-
tions with the outcome. Model building methods varied
widely between models (table 5).

Only 19 (51%) models were internally validated,
including 10 (53%) splitsample validation, 5 (26%)
bootstrap resampling and 4 (21%) cross-validation. Six
(16%) models were externally validated. Many models
(n=30, 81%) reported discrimination with c-statistic
(concordance statistic) or area under the receiver oper-
ating characteristic (AUROC), which are equivalent and
quantify the ability of the model to distinguish between
patients who do and do not develop an outcome. Only
17 (46%) reported calibration, the agreement between
observed and predicted outcomes. Most studies assessed
calibration with Hosmer-Lemeshow tests (n=13, 77%);
only two studies provided a calibration plot, the preferred
reporting method for prediction model studies,"® 7% and
one reported the calibration slope (table 2). Models were
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Studies reporting N (%) or median
Characteristics characteristic, n (%) Categories (IQR)

Study duration, years 32 (97) - 4 (2-7)

Retrospective cohort 25 (76)

Non-nested case—control 2 (6)

National registry or surveillance system 13 (39)

Regional registry or surveillance system 2 (6)

Study region 32 (97) Africa 8 (25)

Europe 6 (19)

South America 0(0)

High burden TB setting” 31 (94) All 143 (42)

None 17 (55)

Missing indicator method 4 (22)

Simple imputation 2(12)

Other 1(5)

2 4(12)

4 2(6)

Reasons for multiple models 8 (24) Different outcomes 1(12)
developed

Different methods 2 (25)

Different populations and outcomes 1(12)

*Determined based on study location and WHO list of 30 countries with high-burden TB in the 2019 Global Tuberculosis Report (1).
TB, tuberculosis.

presented a variety of ways, the most common of which  participants, predictors, outcome and analysis domains
was a weighted risk score (n=16, 43%); details on model ~ and assessment of applicability are shown in figure 4.

presentation are in online supplemental file 7. More than half of the studies were at low risk of bias for
. the population and outcomes domains, but all studies
Quality assessment were at high risk of bias in the analysis domain.

Grading of PROBAST signalling questions is summarised
in figure 3, and the summary risk of bias for the
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Table 4 Study population characteristics of 33 included studies

Included?
Characteristics Yes No Unknown Median (IQR)*, n
Aget - - 15 41 (37-49), n=18
HIV 18 7 8 23% (10-100), n=17
Diabetes 13 1 19 12% (5-21), n=11
MDR 8 7 18 1% (1-3), n=8
Other drug resistance 12 1 20 6% (4-12), n=10
Extrapulmonary TBt 22 4 7 11%(4-17), n=16
Previous TB 20 1 12 19% (9-30), n=17
DOT 14 0 19 100% (100-100), n=14
Hospitalised patients 13 1 19 100% (100-100), n=10

*Other than age (which is reported in years), this is the percentage of the population that has the characteristic among studies that include
patients with the characteristic. For example, among the 18 studies that include persons with HIV, 17 report how many people had HIV and

among those, the median percentage of the population with HIV is 23%.

1Based on the measure of central tendency reported in the study (mean: n=11; median: n=7).
FForms of extrapulmonary TB differ by study but included some of the following: miliary, meningeal, pleural, peritoneal, disseminated, blood/

bone, abdominal.

DOT, directly observed therapy; MDR, multidrug resistance; TB, tuberculosis.

Common sources of population bias included use of
non-nested case—control design,” * nested case—control
design without proper estimation of baseline risk,” ** or
inappropriate inclusion/exclusion criteria.™® ** Sources
of predictor bias included lack of standardised assess-
ment of key predictors (ie, HIV, diabetes, chest X-ray
scoring)? *?1 #7061 timing of data collection/availability
that would limit the intended use of the model.” * *’
Within the outcomes domain, sources of bias included
subjective® or non-standard™ *® outcome measures and
inconsistent outcome ascertainment.*

Bias in the analysis domain was widespread. More than
half of the models included were likely overfit due to low
events pervariableratios (table 5). Onlysix studies handled
continuous and categorical variables appropriately (ie, did
not dichotomise continuous variables, considered non-
linearity of continuous variables).”" **** Most studies used
complete case analysis or did not mention missing data;
no study used multiple imputation in their main anal-
ysis. One study with low amounts of missing data (<5%)
conducted sensitivity analysis with multiple imputation.**
A different study excluded only two people out of a total
sample size of 1007 with missing data, which would have
little impact on model performance.” Fewer than half
(n=14) of studies avoided univariable predictor selection,
and only three studies used survival analysis, appropriately
accounting for censoring.”® * ** Performance measures
were appropriately reported (ie, calibration assessed with
plot and discrimination assessed with c-statistic/AUROC)
in three studies.”! ** 7 Only two studies estimated opti-
mism (degree to which data are overfit) or accounted for
potential overfitting with penalisation of model parame-
ters.”” *! Ten studies appropriately presented their model
with model coefficients or nomograms, which prevents

bias from rounding or transforming model coefficients to
generate a risk score.”** ¥ 373845 4755

About half of the models (n=19, 51%) were applicable
to the review question in all domains. However, unclear
reporting of target population or predictor and outcome
definitions limited assessment of applicability for several
studies.? 49505657 Additionally, studies that included only
hospitalised patients with specific laboratory parameters
may not be routinely available in the clinical setting.* ****
Results from analyses stratified by inclusion of patients
with MDR and minimum age <18 are presented in online
supplemental file 8.

DISCUSSION

In this comprehensive, systematic review of predic-
tion models for pulmonary TB treatment outcomes, we
identified 33 model development studies presenting
37 prediction models. Although diagnostic prediction
models for prevalent TB were previously systemati-
cally reviewed, this is the first review of TB treatment
outcomes.” The included prediction models were devel-
oped for predicting death, treatment failure, default or a
composite unfavourable outcome during TB treatment.
Most models reported good performance (c-statistic/
AUROC >0.7), but all were evaluated to have high risk
of bias due to poor reporting, exclusion of missing data,
weak methodologic approaches, lack of calibration assess-
ment and limited validation. Population heterogeneities,
such as differences in inclusion/exclusion of individ-
uals with MDR and younger ages, and varying predictor
and outcome definitions limited comparisons between
models.
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Studies reporting N (%) or median
Characteristics characteristic, n (%) Categories (IQR)

Composite 8 (22)

Treatment failure 6 (16)

Unfavourable outcome 6 (16)

Other* 1)

Events per candidate variablet 30 (81) - 6 (3—11)

Predictor types 37 (100) Clinical/epidemiologic 34 (92)

Biomarker 2(5)

Survival analysis 3(8)

Method for considering predictors in 36 (97) All candidate predictors 12 (32)
multivariable models

Based on clinical relevance 1(3)

Selection of predictors during modelling 31 (84) Full model approach 2 (6)

Backwards elimination 5(16)

Random Forest 1@

Bayesian model averaging 3(10)

P value for consideration in model 17 (46) 0.01 2(12)

0.11 1 (6)

0.25 5 (29)

0.1 9 (45)

0.2 1(5)

Bootstrap 5 (26)

Continued

—h
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Table 5 Continued

Studies reporting
characteristic, n (%)

Characteristics

N (%) or median

External validation 6 (16)
Calibration 17 (46)
Discrimination 30 (81)
Classification 18 (49)
Model presentation 34 (92)

Categories (IQR)
Cross-validation 4 (21)
Temporal 1(17)
Geographic 14)
Setting 4 (67)
Calibration plot] 2(12)
Calibration slopef 1(6)

Hosmer-Lemeshow goodness 13 (77)

of fit p valueq|

0.51 (0.20-0.79)

Calibration tableq| 2(12)
Mean absolute errorf| 1 (6)
C-statistic (AUROC)] 30 (100)

0.75 (0.68-0.84)
Log rank testq| 2 (5)
Sensitivity* 14 (78)

70(54, 78)
Specificity™* 13 (72)

75 (71-88)
Accuracy 2(11)
Othertt 2(11)
Risk score 16 (43)
Model coefficient 8 (22)
Nomogram 2 (6)
ORs/relative scores 4 (12)
Survey tool 1)

*Outcome is a value from 1 to 5 (1=patient completed the treatment course in frame of DOTS, 2=cured, 3=quit treatment, 4=failed treatment

and 5=death).

TPrevalence of outcome in the population used to develop the prediction model (ie, derivation/development subset if split-sample technique
was used or full sample if the model was not validated or if bootstrap/cross-validation was used).
FOnly five studies report the exact number of predictors considered. Otherwise, the number of candidate predictors was estimated from the

provided tables or lists of candidate predictors in the source paper.

§Other methods of determining which variables to consider for prediction model include: principal components analysis (n=1), screening for
multicollinearity via correlation coefficient (n=1), one study used a combination of a priori and selection via univariable association, and the

other used machine-learning preprocessing (n=1).

fISums to more than 100%, because some studies report multiple measures of calibration or discrimination.

**Based on the following cut-off methods: Youden (n=4) concordance probability (n=1), estimated at nearest 0,1 for studies that present a
range of sensitivity and specificity in a table or figure (n=4), or unknown (n=5).

11Other includes one study that reports false positive rate and one study that includes a graph of sensitivity versus specificity.

AUROC, area under receiver operating characteristic; c-statistic, concordance statistic; TB, tuberculosis.

More than half of the models included in the review
were developed in low-burden TB settings, and none
were developed specifically in South America. Predic-
tion of TB treatment outcome is especially important in
high-burden TB settings, where resources may be limited,
and risk assessment can guide resource allocation toward
patients who need the most involved care.

Common risk factors included in the models were
consistent with well-established risk factors for poor TB
treatment outcomes, including age, sex, HIV, extrapul-
monary TB, baseline smear results and previous TB

treatment. Among studies that included PLWH, only
three considered factors related to management/severity
of HIV, such as receipt of antiretroviral therapy, CD4
cell count or viral load, which likely impacted TB treat-
ment outcomes.” ** °! Laboratory values or metabolic
biomarkers, such as haemoglobin, haemoglobin Alc or
random blood glucose, may also be associated with treat-
ment outcome and worth considering as candidate predic-
tors. There is increasing evidence that diabetes impacts
TB treatment outcomes, but caution is warranted about
how to best define diabetes in the context of a prediction

Peetluk LS, et al. BMJ Open 2021;11:€044687. doi:10.1136/bmjopen-2020-044687
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Variable
Figure 2 Most common predictors considered and
included. Considered: the predictor as evaluated as a
candidate predictor prior to multivariable modelling. Included:
the predictor was considered and subsequently included in
the final multivariable model. BMI, body mass index; MDR,
multidrug resistant; TB, tuberculosis.

model to ensure consistency and reproducibility across
studies.” Behavioural characteristics, such as tobacco use,
alcohol use and drug use were rarely included in final
prediction models and are difficult to collect objectively,
suggesting their role in prediction models for TB treat-
ment outcomes may be limited.

Additionally, several studies excluded participants with
HIV, diabetes, extrapulmonary TB or MDR TB, because
these factors negatively influence treatment outcomes.
However, careful consideration should be given to inclu-
sion/exclusion criteria in prediction model studies,
given that information should be available at the time of
intended model use, which may not always hold for these
aforementioned factors.”” This is especially questionable
for MDR, given that conventional drug-susceptibility
testing results are not available for several weeks after TB
diagnosis; though more recent advances in rapid molec-
ular methods such as GeneXpert or line-probe assays
offer rapid screening.”'

TB researchers should thoughtfully consider how to
appropriately handle complexities of censoring and
competing risks in TB outcomes research. Only three
studies in this review used survival analysis, despite the
long duration of TB treatment outcome assessment and
relatively high rates of losses to follow-up across studies,
and no studies considered competing risks, such as death
due to other causes.” Losses to follow-up were frequently
excluded, which can lead to selection bias.

Though all included studies were at high risk of bias
in the analysis domain, we want to highlight two studies

N v 30- B :
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. Probably no é’ 20~ o
| I3 10-

o
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Abdelbary / 2017 - Death -
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Pefura-Yone / 2017 -
Podlekareva / 2013 -

Rodrigo / 2012~
Sauer/ 2018
Thompson / 2017 -
Valade / 2012
Wang /2019 -
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Zhang / 2019 -

5 5
3 3

predictors3 |

<]
2
5

anal
anal

PROBAST Question
Figure 3 Heatmap of signalling questions from risk of bias
assessment with PROBAST. PROBAST questions (additional
details in online supplemental file 5) Participants 1: what
study design was used and was it appropriate? Participants
2: were all inclusion and exclusion criteria appropriate?
Predictors 1: were predictors defined as assessed the
same way for all participants? Predictors 2: were predictor
assessments made without knowledge of data outcome?
Predictors 3: are all predictors available at the time the model
was intended to be used? Outcome 1: was the outcome
determined appropriately? Outcome 2: was the outcome pre-
specified or standard? Outcome 3: were predictors excluded
from outcome definition? Outcome 4: was the outcome
defined and determined in a similar way for all participants?
Outcome 5: was the outcome determined without predictor
information? Outcome 6: was the time interval between
predictor assessment and outcome determination
appropriate? Analysis 1: were there a reasonable number of
participants with the outcome? Analysis 2: were continuous
and categorical variables handled appropriately? Analysis
3: were all enroled participants included in the analysis?
Analysis 4: were participants with missing data handled
appropriately? Analysis 5: was selection of predictors
based on univariable analysis avoided? Analysis 6: were
complexities in data (censoring, competing risks, sampling
of control participants) accounted for appropriately?
Analysis 7: were relevant model performance measures
evaluated appropriately? Analysis 8: were model overfitting,
underfitting, and optimism in the model performance
accounted for? Analysis 9: do predictors and their assigned
weights in the final model correspond to the results from the
reported multivariable analysis?.

with some exemplary characteristics."' * Pefura-Yone et
al'' provide clear explanations of study design, inclusion /
exclusion criteria and data collection procedures; TB
diagnosis and treatment outcome definitions were stan-
dard.”” Non-linearity of continuous variables was consid-
ered with restricted cubic splines, and no continuous
variables were categorised or dichotomised; the final

14

Peetluk LS, et al. BMJ Open 2021;11:6044687. doi:10.1136/bmjopen-2020-044687


https://dx.doi.org/10.1136/bmjopen-2020-044687

Population 10 (27%)

Predictors 14 (38%)

Outcomes

Risk of Bias

12 (32%)

Analysis

Population

Predictors

Applicability

Outcome 6 (16%)

20 30
Count
B High [ Low
Figure 4 Summary of risk of bias and applicability
assessment with PROBAST. PROBAST, Prediction Model
Risk of Bias Assessment Tool.

0 10

Unclear

model includes four predictors that are easy to collect
and routinely assessed in most TB control programmes,
especially those in high-burden settings. The perfor-
mance of the model was internally validated with boot-
strap validation, and the discrimination (c-statistic=0.808)
was corrected for optimism. Model calibration was
presented graphically with calibration plots. The final
model was presented as a nomogram with instructions for
use, which facilitates use in external validation studies.
Gupta-Wright and colleagues developed and externally
validated a clinical risk score to predict mortality in high-
burden, low-resource settings.*” They used clinical trial
data with very low amounts of missing data for model
development, and externally validated the clinical risk
score with data collected independently from two other
studies (a clinical trial and a prospective cohort). Given
high amounts (42%) of missing data in the validation
cohort, they conducted sensitivity analysis using multiple
imputation for missing data; the c-statistic differed slightly
between complete case and multiple-imputation analyses
in the validation cohort (0.68 vs 0.64). Candidate predic-
tors were based on a priori clinical knowledge, previous
literature, and required variables were objective, repro-
ducible and available in low-resource settings, consistent
with recommended approaches.”® * ** Additionally, they
reported model performance with the c-statistics and
calibration plots for development and validation cohorts,
and reported results according to TRIPOD (transparent
reporting of a multivariable prediction model for indi-
vidual prognosis or diagnosis) guidamce.27 * Regardless,
each of these models requires external validation prior to
use in clinical practice.

There are several limitations of this study. Data
extraction was subject to reporting in the primary study,
which varied widely and was often incomplete, leading
to challenges evaluating differences in model perfor-
mance due to heterogeneities in study populations.
Additionally, though most studies reported discrim-
ination, few presented a calibration curve, arguably
the most important measure of model performance,
further inhibiting assessment and comparison of model
performance.” ® We did not include external validation
studies, which is an essential step for translation to clin-
ical practice. However, several studies in the review did
not include the full model equation, which impedes their
ability to be externally validated. On searching for studies
that externally validated prediction models in this review,
we found three studies®® " that evaluated the same model
(TBscore).™ Briefly, these studies evaluated the ability of
TBscore to monitor treatment response in a new setting,”
refined the instrument (TBscorell) using exploratory
factor analysis,”” and then evaluated TBscorell for use
in patients with TB/HIV.®® To our knowledge, no other
studies included in the review were externally validated
by other sources. Finally, we excluded 10 studies that were
not available in English, Spanish, Portuguese or French;
all abstracts were available in English, and none reported
model performance metrics, so they likely would have
been excluded for different reasons regardless.

The findings of this review not only serve as a compre-
hensive overview of existing TB outcome prediction
models but can act as a resource for future model devel-
opment and validation of prediction models for TB treat-
ment outcomes. We encourage researchers to focus future
TB outcome prediction models on easily collected and
readily available predictors that are widely generalisable.
We highlight age, sex, extrapulmonary TB, BMI, chest
X-ray results, previous TB and HIV as common predictors
of TB treatment outcomes. Additionally, when building a
new prediction model, it is recommended to first prune
the set of considered predictors based on expert opinion
and previous literature, rather than univariable analysis or
variable selection processes® * * Future model develop-
ment or validation studies should adhere to the TRIPOD
guidelines, which provide a 22-item checklist and aims
to improve the reporting of prediction model develop-
ment studies.?” *® We also encourage researchers consider
PROBAST criteria to limit bias in design and conduct of
prognostic studies.

Prediction models are an important tool in TB manage-
ment. They can lay the foundation for future impact
studies by providing risk estimation to target novel treat-
ment approaches, resource allocation or intensive case
management towards patients who are least likely to
achieve cure and most likely to benefit from interven-
tion, especially in high-burden and low-resources areas.
Use of prediction models can potentially help guide TB
treatment practices to achieve the End TB Strategy goal
of >90% treatment success, but methodologic rigour
and detailed reporting must be improved. Though our
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findings suggest that none of the existing models are
ready for clinical application without extensive external
validation, we hope they direct future researchers to
make use of guidelines for development and reporting of
prediction models.
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