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ABSTRACT
Background  Although intravesical BCG is the standard 
treatment of high-grade non-muscle invasive bladder 
cancer (NMIBC), response rates remain unsatisfactory. 
In preclinical models, rapamycin enhances BCG vaccine 
efficacy against tuberculosis and the killing capacity of 
γδ T cells, which are critical for BCG’s antitumor effects. 
Here, we monitored immunity, safety, and tolerability of 
rapamycin combined with BCG in patients with NMIBC.
Methods  A randomized double-blind trial of oral 
rapamycin (0.5 or 2.0 mg daily) versus placebo for 1 month 
was conducted in patients with NMIBC concurrently 
receiving 3 weekly BCG instillations (NCT02753309). The 
primary outcome was induction of BCG-specific γδ T cells, 
measured as a percentage change from baseline. Post-
BCG urinary cytokines and immune cells were examined 
as surrogates for local immune response in the bladder. 
Secondary outcomes measured were adverse events 
(AEs) and tolerability using validated patient-reported 
questionnaires.
Results  Thirty-one patients were randomized (11 
placebo, 8 rapamycin 2.0 mg, and 12 rapamycin 0.5 mg). 
AEs were similar across groups and most were grade 1–2. 
One (12.5%) patient randomized to 2.0 mg rapamycin 
was taken off treatment due to stomatitis. No significant 
differences in urinary symptoms, bowel function, or 
bother were observed between groups. The median 
(IQR) percentage change in BCG-specific γδ T cells from 
baseline per group was as follows: −26% (−51% to 24%) 
for placebo, 9.6% (−59% to 117%) for rapamycin 0.5 mg 
(versus placebo, p=0.18), and 78.8% (−31% to 115%) 
for rapamycin 2.0 mg (versus placebo, p=0.03). BCG-
induced cytokines showed a progressive increase in IL-8 
(p=0.02) and TNF-α (p=0.04) over time for patients on 
rapamycin 2.0 mg, whereas patients receiving placebo 
had no significant change in urinary cytokines. Compared 
with placebo, patients receiving 2.0 mg rapamycin had 
increased urinary γδ T cells at the first week of BCG 
(p=0.02).
Conclusions  Four weeks of 0.5 and 2.0 mg oral 
rapamycin daily is safe and tolerable in combination 
with BCG for patients with NMIBC. Rapamycin enhances 
BCG-specific γδ T cell immunity and boosts urinary 
cytokines during BCG treatment. Further study is needed 

to determine long-term rapamycin safety, tolerability and 
effects on BCG efficacy.

INTRODUCTION
BCG is one of the first FDA-approved cancer 
immunotherapy agents. BCG treatment of 
bladder cancer was initially described in 
1976.1 Half a century later, BCG continues 
to be the standard of care and the most 
effective therapy for bladder cancer in two 
scenarios: (1) to eradicate carcinoma in situ 
(CIS) and (2) to prevent disease relapse after 
endoscopic removal of papillary Ta and T1 
bladder tumors.2 3 Despite BCG efficacy in 
treating bladder cancer, up to 40% patients 
do not respond to therapy and there are no 
approved combination strategies that boost 
BCG efficacy.4

Several properties of the mammalian 
target of rapamycin(mTOR) inhibitor, rapa-
mycin, support testing in combination with 
BCG in patients with non-muscle invasive 
bladder cancer (NMIBC). First, rapamycin 
enhances BCG antigen presentation by 
promoting autophagy, thereby improving the 
vaccine efficacy of BCG against tuberculosis 
in preclinical models.5 6 Induction of BCG 
immunity during BCG treatment of bladder 
cancer, determined by purified protein deriv-
ative (PPD) testing, is associated with an 
improved clinical response.7 Thus, boosting 
of BCG specific immunity by rapamycin could 
improve BCG’s antitumor efficacy. Lack of 
efficacy of BCG is likely multifactorial, but 
may be related to age-dependent decline 
in immune function. As mTOR inhibition 
improves antigen-specific immunity,8 9 rapa-
mycin could facilitate CD4+ and CD8+ T cell 
responses critical for BCG efficacy,10 resulting 
in improved BCG efficacy in elderly persons,11 
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an important consideration for bladder cancer patients 
who have a median age of 70 at diagnosis.12 mTOR inhi-
bition can also improve T cell memory.13 For example, 
rapamycin boosts the immune response against EL4 
lymphoma when combined with the immune checkpoint 
inhibitor anti-CTLA-4 and a tumor vaccine.14

In addition to conventional αβ T cells, γδ T cells are 
critical to BCG’s vaccine15 and antitumor activity.16 Unlike 
CD4+ and CD8+ T cells, γδ T cells recognize antigens in 
a major histocompatibility complex-unrestricted manner 
and are an important component of innate immune 
responses.17 γδ T cells are required for effective BCG treat-
ment of mouse bladder cancer16 and BCG enhances cyto-
toxicity of γδ T cells against human bladder cancer.18 Our 
group and others have shown that rapamycin increases 
the proliferative capacity and effector function of γδ T 
cells.19–21 Moreover, rapamycin boosts human γδ T cell-
mediated killing of human squamous cell carcinoma in a 
mouse xenograft model.20 Thus, rapamycin modulation 
of γδ T cells could boost BCG antitumor immunity.

These observations prompted testing of rapamycin in 
combination with BCG to treat bladder cancer. To inves-
tigate whether rapamycin affects γδ T cells in humans as 
predicted and to examine the safety and tolerability of 
rapamycin during routine BCG treatment, we conducted 
a randomized double-blind placebo-controlled clinical 
trial of oral rapamycin (0.5 mg or 2.0 mg) plus intravesical 
BCG in individuals with NMIBC. We tested the specific 
hypothesis that rapamycin would boost BCG-specific γδ 
T cells, measured as a percentage change from baseline.

MATERIALS AND METHODS
Clinical trial design and schema
A double-blind, randomized, placebo-controlled trial was 
conducted and patient registration occurred between 
June 2016 and August 2018 (figure 1). Eligibility criteria 
included patients with NMIBC (that is, stage CIS, Ta, 
or T1) receiving intravesical maintenance TICE BCG. 
Patients were randomized to receive one of three agents 
using a 1:1:1 allocation ratio, including oral rapamycin 
(0.5 mg), oral rapamycin (2.0 mg), or placebo for 4 weeks 
starting immediately following a cystoscopy confirming 
no evidence of visible bladder tumors. During the month 
of study drug administration, patients also received intra-
vesical maintenance BCG, including three weekly full-
strength BCG treatments beginning approximately 1 week 
after starting study drug. The study was registered with ​
clinicaltrials.​gov (ID: NCT02753309) prior to activation.

A randomization list was generated using a computer-
based pseudorandom number generator (https://
www.​sealedenvelope.​com/​simple-​randomiser/​v1/​lists). 
Randomization was created with block size=11 and subjects 
were randomly assigned to receive placebo or one of two 
doses of oral rapamycin: 0.5 mg daily or 2.0 mg daily. 
Placebo and rapamycin tablets were reconstituted into a 
coated capsule by the pharmacist to conceal the identity 
of the agent. Rapamycin blood levels were quantified on 

day 30 of study, which was not a trough or peak draw but 
was considered random in relation to rapamycin dosing.

Safety and tolerability assessment
Safety. We assessed treatment safety using adverse event 
(AE) evaluation. AE data including onset, resolution, 
severity, attribution, and treatment (if necessary) were 
collected at each study visit. Study visits include baseline 
(day 1), intravesical BCG visits (days 7, 14, and 21), and 
follow-up (days 28 and 90). AEs were categorized and 
graded using the Common Terminology Criteria for 
Adverse Events V.5.0 and confirmed by the study prin-
cipal investigator.

Tolerability. We measured tolerability based on changes 
in patient score of two validated bladder cancer ques-
tionnaires: (1) American Urologic Association Symptom 
Score (AUASS) administered weekly during intravesical 
BCG treatment, immediately prior to BCG and at day 
28 from registration; (2) Bladder Cancer Index (BCI) 
quality of life (QoL) administered at baseline on the day 
of registration, days 28 and 90 following registration. 
Together, AUASS and BCI QoL scores measure function 
and bother (inconvenience) of urinary, bowel, and sexual 
health functions. BCI scores were calculated by standard-
izing Likert scale question responses to a 0 to 100 scale, 
where a score of 100 indicated the patient answered ‘no 
problem/bother’ to all questions; thus, higher scores 
represent better health states. AUASS and BCI scores 

Figure 1  Clinical trial schema. AE, adverse event; DHT, 
delayed hypersensitivity test.

https://www.sealedenvelope.com/simple-randomiser/v1/lists
https://www.sealedenvelope.com/simple-randomiser/v1/lists


3Ji N, et al. J Immunother Cancer 2021;9:e001941. doi:10.1136/jitc-2020-001941

Open access

were compared over time using a two-way analysis of vari-
ance with Tukey’s multiple comparison test.

Human biospecimen processing and storage
As described previously,18 blood was collected into 
heparin anticoagulated sterile tubes and centrifuged 
to remove plasma. Peripheral blood mononuclear cells 
(PBMCs) were isolated from the remaining whole blood 
by Ficoll-Paque (GE Healthcare) centrifugation and cryo-
preserved at −150°C until analyzed. Urine was collected 
4–6 hours following BCG instillation weekly during induc-
tion and centrifuged to pellet down cells. Both urine cell 
pellets and aliquoted supernatants were stored immedi-
ately at −150°C and −80°C respectively until assayed.

BCG stock preparation
As described previously,18 TICE BCG organisms were 
cultured and prepared as follows: one vial of lyophilized 
BCG vaccine was reconstituted with 1 mL of sterile phos-
phate buffered saline. Approximately 50 µL of homog-
enous BCG suspension was then transferred into a T-25 
flask with 5 mL of 7H9 broth (BD) containing 0.2% glyc-
erol, 10% ADC Growth Supplement (5% bovine serum 
albumin, 2% dextrose and 0.9% NaCl; EMD Millipore) 
and 0.05% Tween-80 (Fisher Bioreagent) and cultured 
at 37°C with 5% CO2 for 7 days. When the BCG culture 
became turbid but with few visible clumps, the contents 
were transferred into a sterile 850 cm2 roller bottle (Cell-
treat Scientific Product) with up to 250 mL 7H9 broth 
with supplements. The BCG culture was kept on a roller 
at 30 rpm at 37°C with 5% CO2 for approximately 7 days 
when the culture started to form clumps and reached an 
OD600 absorbance of 0.8. BCG suspension was pelleted, 
washed with 7H9 broth, and aliquoted into 1 mL vials and 
stored at −80°C. After 48 hours, three vials of BCG were 
thawed, and each was diluted in 10-fold series to spread 
on a 7H10 agar plate (BD). Colony-forming unit (CFU) 
of frozen BCG stock were calculated based on the dilution 
that formed distinguishable individual colonies (20–100 
CFU at 1–2 mm diameter) after culturing for 2 weeks at 
37°C with 5% CO2.

Simultaneous detection of PBMC proliferation and IFNγ 
production in response to BCG
PBMCs (1×106) were labeled with carboxyfluorescein 
succinimidyl ester (CFSE) (Molecular Probes, Life Tech-
nologies) and expanded with an optimal dose of live 
TICE BCG (multiplicity of infection/MOI 0.1) in 1 mL of 
cR-10 containing 10% heat-inactivated human AB serum 
(MP Biomedicals), or resting in medium alone for 7 days 
at 37°C with 5% CO2 as described.18 On day 7, cell suspen-
sions were mixed 1:500 with Cell Activation Cocktail 
(phorbol myristate acetate/PMA, ionomycin and Golgi 
blocker cocktail, BioLegend) for 5 hours. Cells were then 
processed for total live cell count (Vi-CellXR, Beckman 
Coulter) and staining with fluorochrome-conjugated 
anti-human CD3 mAb (clone: HIT3a, BioLegend), CD4 
mAb (clone: OKT4, BioLegend), CD8 mAb (clone: 

RPA-T8, BioLegend) and γδ T cell receptor (TCR) mAb 
(clone: B1, BioLegend), followed by fixation and perme-
abilization with Cytofix/Cytoperm buffer (BD) prior to 
intracellular staining with fluorochrome-conjugated anti-
human IFN-γ mAb (clone: 4S.B3, BioLegend). Data were 
acquired with an LSR II cytometer and analyzed using 
FACS Diva software (both BD). Absolute numbers (AN) 
of proliferated functional (defined as both CFSElo and 
IFN-γ+) CD4+, CD8+, and γδ T cells were calculated by 
multiplying total viable cells recovered after 7-day culture 
by percentages of proliferated functional T cell subsets.

Human urinary cytokine—luminex assay
Urine samples were diluted 1:20 with high-performance 
liquid chromatography grade water and measured for 
urinary creatinine level according to the manufactur-
er’s instructions using the Creatinine Colorimetric Assay 
Kit (Cayman Chemical) and a Synergy 2 plate reader 
(BioTek).18 Undiluted or diluted (1:1) samples were also 
run in duplicates using a Milliplex MAP 6-plex human 
cytokine panel (Millipore), and analyzed using FLEXMAP 
3D and xPONENT software (Luminex). Average cyto-
kine concentration of each urine sample was normalized 
based on its creatinine level to correct for bladder urine 
volume (at 100 mg/dL creatinine).

Human urine cells flow cytometry assay
Cryopreserved patient post-BCG urine cells were thawed 
and resuspended in cR-10 media at 10×106 cells/mL then 
passed through 100 µm strainer. Urine cell suspensions 
were either directly stained with flow cytometry anti-
body (for T cells and activation markers) or incubated 
with PMA/Ionomycin/Golgi Blocker (BioLegend, Cell 
Activation Cocktail) for 4 hours, followed by cell surface 
staining for T cells and then intracellular staining for cyto-
kines. Flow staining antibodies/dye used were as follows: 
Fc blocker/Human TruStain FcX (BioLegend), fixable 
viability dye eFluor455UV (Thermo Fisher Scientific/
eBioscience), anti-human CD45 (BioLegend, clone HI30), 
anti-human CD3, anti-human CD4, anti-human CD8, 
anti-human γδ TCR, anti-human TCR Vγ9 (BioLegend, 
clone B3), anti-human TCR Vδ2 (BioLegend, clone 
B6), anti-human CCR2 (BioLegend, clone KO36C2), 
anti-human CD44 (BioLegend, clone IM7), anti-human 
CD107a, anti-human CD56 (BioLegend, clone 5.1H11), 
anti-human IFNγ, anti-human TNFα, anti-human Gran-
zyme B (BioLegend, clone GB11), anti-human Perforin 
(BioLegend, clone dG9). Fixed and stained urine cell 
samples were then passed through a 35 µm filter cap on 
a flow tube to remove any remaining debris before they 
were analyzed on an LSR II cytometer (BD).

Statistics
A three-arm randomized study of the immune effects 
of rapamycin in patients undergoing maintenance BCG 
therapy for bladder cancer was conducted. The primary 
study objective was to determine the effect of rapamycin 
on γδ T cell effector function in response to BCG. The 
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sample size was calculated based on the primary immune 
endpoint, which was the number of BCG-specific γδ T 
cells (ie, γδ T cells that proliferated and produced IFN-γ 
in response to live BCG) in paired blood samples (base-
line and post-treatment) among rapamycin-treated and 
placebo subjects. We tested the hypothesis that rapamycin-
treated (either 0.5 mg or 2.0 mg daily for 4 weeks) patients 
would have a significantly increased mean percentage 
change in number of BCG-specific γδ T cells following 
treatment compared with patients that took the placebo. 
Our preliminary data, conducted in patients with bladder 
cancer receiving BCG without rapamycin, found a mean 
percentage increase in BCG-specific γδ T cells of 11.25% 
(SD 6.3%). Based on convincing preliminary laboratory 
findings and on published observations,11 we anticipated 
that rapamycin would result in an absolute increase of 
8.5% in BCG-specific γδ T cells corresponding to total 
number change in BCG-specific γδ T cells of 19.5% (SD 
6.3%). Our estimates rendered a necessary sample size 
of 30 completers, including 10 patients per treatment 
group, which achieves 81.4% power to detect a difference 
of 0.085 between placebo and rapamycin (at either dose) 
using a two-sided t-test at a significance level of 0.05. The 
SD in the placebo and treatment groups were assumed to 
be approximately equal. The study was blinded, and the 
random allocation was 1:1:1, and we allowed for one addi-
tional patient per group. Thus, the total enrolment per 
arm was targeted to be 11+11+11=33 with 30 completers. 
Sample size calculation was performed with Power Anal-
ysis and Sample Size (PASS) software.

Significance of urinary cytokine changes over time in 
each group of patients was assessed by linear regression 
analysis run on slope over weeks 1, 2, and 3. Differences 
in the change of BCG-specific responding T cell subsets 
in periphery at day 28 over baseline, or week 1 T cell 
subset percentages in the urine among patient groups 
were all assessed by t-test or Mann-Whitney test based on 
normality testing. P values are two-sided and p<0.05 was 
considered statistically significant. Statistical analyses were 
performed with GraphPad Prism 5–6 or Stata IC/10.1.

RESULTS
Of the 33 patients enrolled, two subjects withdrew from 
the study prior to starting treatment. Therefore, a total 
of n=31 patients are included in the cohort analysis, 
including two patients who withdrew from protocol treat-
ment secondary to AEs (table 1). The cohort included 27 
(87%) men and 4 (13%) women. The majority of patients 
were non-Hispanic whites (n=23, 74%), while 8 (26%) 
Hispanics participated. Disease stage prior to treatment 
included pure CIS in 9 (29%), pure Ta in 19 (61%), pure 
T1 in 4 (13%), and mixed disease stage in 6 (19%) of the 
patients.

AEs and rapamycin blood levels are shown in online 
supplemental table 1. The median (IQR) rapamycin 
blood concentration for patients treated with 0.5 and 
2.0 mg was 2.3 ng/mL (IQR, 1.7–5 ng/mL) and 3.05 ng/

mL (1.8–10.7 ng/mL), respectively. Grade 1–2 AEs were 
observed in 21 patients (68%) and grade 3 AE occurred 
in 1 patient (4%), designated unrelated to rapamycin. 
No grade 4–5 AEs occurred. The number of AEs were 
similar between groups (table 2 and online supplemental 
table 2). The most common Grade 1 AEs were hematuria, 
dysuria, urinary frequency, and urgency (online supple-
mental table 1). Two patients (one receiving placebo and 
one receiving 2.0 mg rapamycin) experienced moderate 
(grade 2) mouth ulcers and/or sores, and were taken off 
treatment. Notably, AE severity was not associated with 
measured rapamycin blood concentration and no differ-
ence in moderate (grade 2) AEs was observed between 
groups (p=0.59). No difference was found in tolerability 
based on urinary function or bother during initial 4 weeks 
of the study (figure 2A–C) or bowel function or bother 
among all three groups (figure 2D,E).

The trial was not designed to assess treatment efficacy. 
Recurrence-free survival was similar between groups 
(p=0.35, (online supplemental figure 1). However, 
post-BCG induction of urinary cytokines, especially IL-2 
and IL-8, is associated with a favorable response to BCG 
and is used as an early measure of treatment efficacy.22–25 
No significant change in urinary IFN-γ occurred in any 
treatment groups (figure 3). Post-BCG urinary IL-8 levels 
progressively increased for all study groups, but this trend 
was statistically significant only for the rapamycin 2.0 mg 
group (figure  3). In this group, IL-8 increased from 
an average level of 1025 pg/mL (week 1) to 2659 pg/
mL (week 2), and then 4205 pg/mL at week 3 of BCG 
therapy (p=0.02, figure  3). In addition, a significant 
increase in post-BCG urinary TNF-α was observed for 
patients receiving 2.0 mg rapamycin (figure 3). Interest-
ingly, a progressive decrease in urinary IL-2 over time 
was observed for all groups and this trend was signifi-
cant for patients receiving 0.5 mg rapamycin; this group 
had a substantially higher initial (week 1) urinary IL-2 
compared with the other groups (figure 3).

Urine immune cells reflect the constituency of bladder-
infiltrating immune cells, thereby providing a surrogate 
and non-invasive measurement of bladder tumor envi-
ronment effects and immune response to treatment.26 
No significant difference in the percentage of urinary 
CD4+ or CD8+ T cells was observed between the treatment 
groups during the study (figure  4A). However, patients 
treated with rapamycin at either 0.5 or 2.0 mg daily expe-
rienced a significant increase in urinary γ9δ2 T cells 
compared with patients receiving placebo (figure  4A). 
Compared with other lymphocytes in the urine, γ9δ2 T 
cells are rare—the mean percentage is less than 0.01% 
even after BCG restimulation. However, these cells were 
significantly increased in patients treated with rapamycin. 
The average percentage of urinary γ9δ2 T cells were 4–5-
fold higher than placebo (0.05% in 0.5 mg rapamycin 
group and 0.06% in 2.0 mg rapamycin group). Compared 
with patients receiving placebo, patients receiving 0.5 mg 
of rapamycin showed an approximate fivefold increase in 
the average percentage of activated CD44+ and CD107a+ 

https://dx.doi.org/10.1136/jitc-2020-001941
https://dx.doi.org/10.1136/jitc-2020-001941
https://dx.doi.org/10.1136/jitc-2020-001941
https://dx.doi.org/10.1136/jitc-2020-001941
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https://dx.doi.org/10.1136/jitc-2020-001941
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degranulating (ie, functionally active) urinary γδ T cells 
(figure  4B). CD107a+ mean fluorescence intensity of 
degranulating γδ T cells, which is proportional to the 
number of exocyted granules per cell, was also signifi-
cantly increased in the rapamycin 0.5 mg group compared 
with the placebo group (figure 4C,D). Because γδ T cells 
can regulate natural killer (NK) cell antitumor func-
tion,27 28 we examined effects of rapamycin on NK cells. 
While rapamycin did not appear to affect the number 
of urinary NK cells (figure  4A), the NK cell activation 

marker CD56 was significantly increased in its expression 
on urinary NK cells from patients treated with 2.0 mg of 
rapamycin in contrast to CD44 expression (figure 4E,F). 
These data indicate that rapamycin largely induces innate 
effector immunity in the bladder environment, including 
γδ T cell proliferation/activation and NK cell activation, 
without significant effects on bladder CD4+ or CD8+ T 
cells.

Durable BCG-specific immunity requires T cells with 
long-term homeostatic proliferation capacity that can 

Table 1  Baseline and pathologic characteristics of study patients

Characteristic Placebo Rapamycin (0.5 mg) Rapamycin (2.0 mg)

Number of patients 11 12 8

Mean (range) age, years 71 (39–87) 71 (56–90) 73 (62–86)

Sex

 � Male 8 11 8

 � Female 3 1 0

Race

 � Asian 1 0 0

 � Black or African American 0 0 0

 � White 10 12 8

 � Other 0 0 0

Ethnicity

 � Non-Spanish 8 8 7

 � Spanish/Hispanic/Latino 3 4 1

Pathologic stage

 � CIS 2 3 0

 � Ta 7 5 4

 � T1 0 3 1

 � CIS+Ta 0 1 2

 � CIS+T1 1 0 0

 � Ta+T1 1 0 1

Grade

 � Low 1 2 0

 � High 8 9 4

 � Low+high 2 1 4

Bladder cancer history

 � Mean (range) time (months) from TURBT 19 (3–49) 15 (3–36) 18 (3–45)

 � Mean (range) time (months) from last pre-enrolment 
BCG

4 (1–9) 6 (1–42) 7 (1–20)

 � Prior non-BCG intravesical therapy 2 4 3

 � Prior BCG failure* 5 7 3

Disease status

 � Primary 6 3 3

 � Recurrent 5 9 5

*Using FDA classification as described here: US Food and Drug Administration. BCG-unresponsive non-muscle invasive bladder cancer: 
developing drugs and biologics for treatment guidance for industry. Office of Communications, Division of Drug Information, Silver Spring, 
MD. 2018:1-0.
CIS, carcinoma in situ; TURBT, transurethral resection of bladder tumor.
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proliferate and produce effector cytokines in response 
to BCG antigen.29–33 The study’s primary endpoint was to 
assess rapamycin’s effect on the number of BCG-specific 
T cells in circulation and their capability for functional 
expansion, estimated using CFSE dilution to track 
lymphoproliferation combined with IFN-γ production 
in response to co-culturing the cells with live TICE BCG 
(figure  5A) as described.18 34 Compared with patients 

receiving placebo, the group treated with 2.0 mg rapa-
mycin experienced a significant increase in the number of 
BCG-specific γδ T cells over baseline (p=0.03) (figure 5B). 
Patients receiving 0.5 mg daily rapamycin also experi-
enced an increase in the number of BCG-specific γδ T 
cells compared with the placebo group, but this differ-
ence was not statistically significant (p=0.18) (figure 5B). 
The median (IQR) percentage change in BCG-specific γδ 

Table 2  AEs were similar across treatment groups

Placebo
n=11
n (%)

Rapamycin (0.5 mg)
n=12
n (%)

Rapamycin (2.0 mg)
n=8
n (%) P value

Any AEs 6 (55%) 8 (67%) 7 (88%) 0.31

Grade 1 (Mild) 4 (36%) 7 (58%) 5 (63%) 0.44

Grade 2 (Moderate) 2 (18%) 1 (8%) 2 (25%) 0.59

Grade 3 (Severe) 1 (9%)* 0 0 N/A

*Severe AE requiring hospitalization but not related to the study drug. Number of patients and percentage of each group experiencing any AE, 
as well as the most severe AE experienced by each patient (if any). P, χ² test, significance 5%.
AE, adverse event.

Figure 2  Rapamycin is tolerated during intravesical BCG treatment. (A) AUA symptom scores tracked over the first 4 weeks 
of treatment. Mean±SEM. (B) BCI QoL questionnaire scores assessing urinary (B) function and (C) bother (inconvenience) and 
bowel habit (D) function and (E) bother (inconvenience). BCI scores were calculated by standardizing Likert scale question 
responses to a 0 to 100 scale, where a score of 100 indicated the patient answered ‘no problem/bother’ to all questions. 
Mean±SEM. AUA, American Urologic Association; BCI, Bladder Cancer Index; QoL, quality of life.
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T cells from baseline per group was −26% (−51% to 24%) 
for placebo group, 9.6% (−59% to 117%) for rapamycin 
0.5 mg group (versus placebo, p=0.18), and 78.8% (−31% 
to 115%) for rapamycin 2.0 mg group (versus placebo, 
p=0.03). No significant changes were observed in circu-
lating BCG-specific CD4+ or CD8+ T cells in patients taking 
either dose of rapamycin (figure 5B). These data support 
rapamycin induction of BCG-specific γδ T cell immunity 
without significant effects on conventional T cells.

DISCUSSION
In this study, rapamycin at a dose of 0.5 or 2.0 mg daily 
for 4 weeks, was tolerated when given in combination 
with intravesical BCG in patients with high-grade NMIBC. 
Rapamycin-related side effects were generally mild in 
severity and the AE profile was not unexpected based 
on contemporary clinical studies of intravesical BCG 
monotherapy.35 The study met its primary endpoint in 
demonstrating a greater increase in peripheral blood 
BCG-specific γδ T cells in subjects receiving 2.0 mg rapa-
mycin compared with subjects receiving placebo. Further, 
the effects of rapamycin on circulating immune cells 
were analogous to changes observed in the local bladder 
environment, including γδ T cell proliferation and acti-
vation without significant effects on conventional T cell 
immunity. Importantly, rapamycin boosted BCG-specific 

immunity in patients during the maintenance phase of 
BCG treatment, indicating that rapamycin could help 
provide sustained BCG-specific immunity for patients 
with bladder cancer.

The safety and tolerability of rapamycin demonstrated 
in this patient population form the foundation for 
further study in this indication. At the low doses tested 
(ie, ≤2.0 mg daily), oral rapamycin was well-tolerated with 
no treatment-related grade ≥3 AEs noted. We specifically 
measured patient-reported urinary and bowel bother and 
function with genitourinary- and bladder cancer-specific 
validated questionnaires, which were not adversely 
affected in subjects receiving rapamycin compared with 
placebo. One subject receiving rapamycin discontinued 
treatment due to stomatitis, but this toxicity may be miti-
gated by strategies such as dexamethasone mouthwash.36 
These data support the tolerability and feasibility of a 
short-course of rapamycin co-administered with BCG.

In addition to enhancing γδ T cell function, rapamycin 
could enhance bladder NK cell activity, either directly 
or via γδ T cell induction. γδ T cells regulate antitumor 
NK cell function,27 28 including against human bladder 
cancer.18 Both γδ T cells and NK cells are required for 
BCG’s antitumor efficacy.16 37 We reported that bladder-
infiltrating NK cells expressing high levels of CD56 
had increased functional capacity than their CD56dim 

Figure 3  Rapamycin (2.0 mg daily) increases urinary IL-8 and TNF-α during intravesical BCG. Cytokines in post-BCG urine 
weeks 1–3 of BCG maintenance treatment detected by Luminex. P value, linear regression on slope over time for each group. 
Mean±SEM.
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counterparts.38 Although rapamycin had no effect on the 
number or percentage of urinary NK cells, rapamycin did 
increase the CD56 expression on NK cells, which supports 
a favorable NK cell phenotype in bladder tumors.

Given these data on the favorable immune modulation, 
safety, and tolerability of rapamycin coadministered with 
BCG, further studies of this combination are indicated 
in NMIBC. Future studies should assess the durability of 
immune cell modulation, including effects on γδ T cells and 
NK cells in the absence of ongoing rapamycin therapy. In 
murine models, low-dose intermittent rapamycin has been 
shown to increase lifespan and contribute to cancer preven-
tion.39 40 Reducing the dose of rapamycin and restricting 
the dosing to a more intermittent regimen may improve its 

safety profile. For example, intermittent rapamycin dosing 
decreased its negative effects on glucose metabolism and 
the immune system relative to daily rapamycin treatment.41

Because rapamycin enhances BCG antigen peptide 
processing and presentation,5 initiating rapamycin earlier 
in the course of BCG therapy (ie, during BCG induction) 
could enhance BCG-specific immunity even further. 
Additionally, there may be a role for rapamycin coadmin-
istered with BCG in patients who have already experi-
enced BCG failure, where the current standard is radical 
cystectomy. There are numerous strategies currently 
being investigated to salvage patients BCG unresponsive 
NMIBC. Rapamycin plus BCG may be studied as an alter-
native or in combination with such approaches.

Figure 4  Increased urinary γδ T cells in response to BCG treatment in patients treated with rapamycin. (A) Percentage of each 
T cell subset and (B) activated or degranulating γδ T cells were analyzed among cells collected from week 1 post-BCG urine 
pellets by flow cytometry. Expression level of (C,D) CD107a and CD44 on γδ T cells and (E,F) CD44 and CD56 on NK cells from 
week 1 post-BCG urine pellets were also shown as MFI. γδ T cell, CD4+ and CD8+ T cell populations were gated under live 
CD45+ and CD3+ cells in urine, and NK cells were gated as CD45+CD3+CD56+ cells. P value indicates t-test or Mann-Whitney 
test, based on normality, for placebo versus rapamycin-treated group. Mean±SEM. MFI, mean fluorescence intensity.
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We observed a high variability of rapamycin blood 
levels in treated patients. Further improvement in toler-
ability is possible with rapamycin dose adjustment based 
on measuring whole blood trough levels as is currently 
done for transplant patients or by using microencapsu-
lated rapamycin which protects the agent from stomach 
digestion.42 While this trial was not designed to demon-
strate the clinical efficacy of rapamycin combined with 
BCG, based on our prior work showing that the anti-
tumor effect of BCG is mediated through γδ T cells, the 
urinary cytokine and immune cell changes observed with 
this combination are promising. Another limitation of 
the study was the absence of information on pretreat-
ment urinary immune cells and cytokine levels, which are 
important measures as internal controls. Incorporation 
of pretreatment urinary data in future studies will aid 
the ability to correlate both baseline and BCG-induced 
immune parameters with clinical outcomes.

In summary, rapamycin had an acceptable safety profile 
in patients with high-grade NMIBC at doses 0.5 or 2.0 mg 
daily for 4 weeks. The immunomodulatory effects of rapa-
mycin in blood and urine were encouraging and further 
plans for phase II testing of long-term eRapamycin plus 
intravesical BCG are underway (​ClinicalTrials.​gov Identi-
fier: NCT04375813).
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