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Efficient and bright warm-white
electroluminescence from lead-free metal halides
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Solution-processed metal-halide perovskites are emerging as one of the most promising
materials for displays, lighting and energy generation. Currently, the best-performing per-
ovskite optoelectronic devices are based on lead halides and the lead toxicity severely
restricts their practical applications. Moreover, efficient white electroluminescence from
broadband-emission metal halides remains a challenge. Here we demonstrate efficient and
bright lead-free LEDs based on cesium copper halides enabled by introducing an organic
additive (Tween, polyethylene glycol sorbitan monooleate) into the precursor solutions.
We find the additive can reduce the trap states, enhancing the photoluminescence quantum
efficiency of the metal halide films, and increase the surface potential, facilitating the hole
injection and transport in the LEDs. Consequently, we achieve warm-white LEDs reaching an
external quantum efficiency of 3.1% and a luminance of 1570 cd m~2 at a low voltage of 5.4
V, showing great promise of lead-free metal halides for solution-processed white LED
applications.
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etal-halide perovskites have received considerable atten-

tion due to their unique properties, for example solution

processibility and good optoelectronic properties! 3. After
the rapid progress in the past few years, the efficiency of single-color
lead-halide perovskite LEDs is approaching those of the best-
performing organic LEDs*. However, efficient white perovskite
LEDs remain a significant challenge. Mixing single-color perovskite
material with organic compound”® and stacking perovskite layers
with various colors® have been used to achieve white lead-halide
perovskite LEDs, but the peak EQE is only 0.22%°. Alternatively,
various metal halides possessing broadband white-light emission,
such as two-dimensional lead halide perovskite!9-12, lead-free halide
double perovskite!3, and cesium copper halides!4, have been devel-
oped to be emitters in white LEDs. However, there is no report of
electroluminescence (EL) efficiency from those materials yet and the
maximum luminance of the device is only around 70 cd m—219,
which mainly due to their unfavorable electronic properties!>14, or
low photoluminescence quantum efficiencies (PLQEs)!®. Among
them, solution-processable cesium copper iodides seem promising for
white LED applications, because they usually have high PLQEs with
broad visible emission from self-trapped excitons or reorganized
excited states, and relatively good air stability!>-20, However, the
electronic properties of the cesium copper iodides are unfavorable for
LEDs since the charge transport is poor due to the large effective
mass of carriers!4, and the charge injection is difficult due to the large
bandgaps!>2!, Here we find that the optoelectronic properties of the
cesium copper iodides can be significantly enhanced by simply
chemisorbing ether groups onto the metal-halide surfaces acting as
electron donors. Based on this strategy, we first demonstrate efficient
and bright warm-white EL based on lead-free halides.

Results

Efficient and bright LEDs based on lead-free metal halide. The
emitting layers were prepared by spin-coating a precursor solu-
tion of cesium iodide (CsI), copper(I) iodide (Cul), and poly-
ethylene glycol sorbitan monooleate (Tween) with a molar ratio
of 1:1:0.006 dissolved in dimethyl sulfoxide (DMSO) (14 wt.%)
(see “Methods” section for details). The X-ray diffraction (XRD)
data show that the as-prepared film is a mixture of zero-
dimensional Cs;Cu,ls and one-dimensional CsCu,l; (Fig. la).
As shown in Fig. 1b, the peaks at 12.3°, 15.1°, 23.9°, 24.7°, 25.5°,
26.2°, 27.0°, 28.1° and 30.6°, correspond to the Cs;Cu,I5 phase!©,
and the peaks at 10.6°, 13.4°, 26.0°, and 29.2°, associate with the
CsCu,I; phase!”. The PL spectrum shows a broad and white-light
emission range from ~390 to ~740 nm (Fig. 1c), with a Com-
mission Internationale de I'Eclairage (CIE) color coordinate of
(0.42, 0.47). There are two distinct peaks at 437 and 570 nm in the
PL spectrum, which can be assigned to the emission from excited-
state structural reorganization and self-trapped exciton of the
Cs3Cu,ls and CsCu,l;, respectively!>17. This assignment is con-
sistent with the longer transient PL lifetime at 440 nm (1100 ns)
and shorter transient PL lifetime at 578 nm (60 ns) (Supple-
mentary Fig. 1a)!>17. The PL excitation (PLE) spectra measured
at different emission wavelengths show that the PL emissions of
Cs;Cu,ls and CsCu,l; crystals stem from their absorption peaks
at 287 and 314 nm (Fig. 1d and Supplementary Fig. 2a) respec-
tively, consistent with the absorption spectra!>1¢, Notably, the
optical properties of the film are very stable in the air. After
keeping the deposited film in the air for over 1500 h, there is no
degradation of the PL intensity (Supplementary Fig. 1b), con-
sistent with previously reported good stability of Cs;Cu,ls and
CsCu,l; in the literature!>17. Importantly, with Tween in the
precursor, both XRD, PL, and PLE peak positions of cesium
copper iodides are identical to those without Tween (Fig. 1c
and Supplementary Fig. 2), indicating that the Tween did not

change the crystal structure of the mixture. However, we can
observe that both the XRD and PL peak intensities are enhanced
with Tween. The results are consistent with the literature that the
non-ionic surfactant Tween molecules in precursor solution can
tune the crystallization and reduce the defects of CsPbBr; per-
ovskites?2. Scanning electron microscope (SEM) measurement
also shows that the film with Tween forms a discrete film with
larger grains than that of without Tween (Fig. le and Supple-
mentary Fig. 2c). This leads to a higher PLQE of 30% than 18%
in the control sample. These results suggest that the Tween
can facilitate the growth of high-quality Cs;Cu,ls and CsCu,l;
crystals, and we will explain the reason below. In addition,
the cross-sectional scanning transmission electron microscope
(STEM) image shows Tween forms a ~9 nm organic insulating
layer between the discrete cesium-copper-halide crystallites
(Supplementary Fig. 3), which can prevent the leakage current in
LED device?. And the discrete structure can carry over to top
layers, which is beneficial for light outcoupling in LEDs*23.

The LED device structure is ITO/poly (3,4-ethylenedioxythio-
phene):poly (styrenesulfonate) (PEDOT:PSS, 30 nm)/metal halides
(~60 nm)/1,3,5-Tri(m-pyridin-3-ylphenyl) benzene (TmPyPB, 45
nm)/lithium fluoride (LiF, 1 nm)/aluminum (Al, 100 nm) (Fig. 2a)
(see “Methods” section for detailed fabrication process). The
device shows a broad EL spectrum with a peak at 565nm and a
full width at half maximum (FWHM) of 121 nm (Fig. 2b), which
has a CIE color coordinate of (0.44, 0.53) and a correlated color
temperature of around 3650 K in the warm-white region?4. The
device maintains unchanged EL spectra at different bias voltages,
exhibiting good color stability. The LED turns on at a low voltage
of 2.7V (corresponding to a luminance of 1cd m~2). After that,
the current density and luminance increase quickly. These features
are very different from the literature!31>21, suggesting the carrier
injection and transport properties are significantly enhanced in
our lead-free metal-halide LED device. The device shows a
brightness up to 1570cdm™2 at a low voltage of 54V and
external quantum efficiency (EQE) of 3.1%, representing the first
efficient and bright warm-white LEDs based on lead-free metal
halide (Supplementary Table 1). Moreover, the device shows
decent reproducibility, with an average EQE of 1.8%. We highlight
that the impressive LED performance mainly benefits from the
inclusion of Tween. Without Tween, the device performance
is very poor, with a brightness of 35cdm™2 and a peak EQE
of 0.04% (Supplementary Fig. 4), which is similar to the
literature!>21. Furthermore, as changing the ratio of CsL:Cul to
1:2 to form a CsCu,l;-rich film (Supplementary Fig. 5a), the LED
device exhibits a large leakage current and very low luminance due
to the poor film morphology (Supplementary Fig. 5b, ¢, f). On the
contrary, when increasing the ratio of CsI:Cul to 3:2 to form a
Cs;Cu,ls-dominant film, the unfavorable energy level alignment
and low carrier mobility of Cs3Cu,Is would also reduce the EQE of
devicel®.

The roles of additive containing ether group in cesium copper
iodides. The scanning Kelvin probe microscope (SKPM) mea-
surements show that the metal-halide film with Tween has a
higher and more uniform surface potential (contact potential
difference) than the control film (Fig. 3). The average surface
potential of the Tween sample is 248 mV, while that of the control
film is only 10mV. This shift in surface potential is in good
accordance with the values obtained by ultraviolet photoelectron
spectroscopy (UPS), which shows a change in work function from
4.62 to 4.17 eV after adding Tween (Supplementary Fig. 6a),
indicating a shallower Fermi level. In addition, the valence band
with respect to the Fermi level is shifted from 0.84 to 0.90 eV
compared with the control sample, leading to the valence band
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Fig. 1 Characterizations of cesium-copper-iodide films with Tween. a Schematic diagram of the emitter material, which is a mixture of Cs3Cu,ls and
CsCus,ls crystallites. The Tween molecule can chemisorb onto cesium copper iodides. b XRD pattern compared to the calculated XRD patterns of Cs3Cusls
and CsCusls. * and # denote the diffraction peaks corresponding to Cs3Cusls and CsCusls. € PL spectra. The inclusion of Tween enhances the PL intensity.
d Normalized PLE spectra at various emission wavelengths. e SEM image. Scale bar, 1 pm.

shifted by 0.39 eV toward the vacuum. A schematic flat-band
energy level diagram for our devices is shown in Supplementary
Fig. 6b, although there are likely complex band-bending and
interactions that will occur close to the interfaces. However, the
diagram is able to show that Tween can reduce the energetic
barrier for hole injection owing to the shallow valence-band
energy level of the emitting layer. After the inclusion of Tween,
the hole current increases over ten times, as confirmed by the
current density-voltage (J-V) measurement of the hole-only
device (Supplementary Fig. 6¢). We note that normally the hole
mobility in cesium copper iodides is much lower than electron
mobility!4, which has been a major issue to achieve efficient
LEDs. In our case, the current of hole-only device is over two
orders of magnitude higher than that of the electron-only device
(Supplementary Fig. 6d). Apart from the enhanced hole current,
this can also result from the difficulty in achieving electron
injection due to the large conduction band offset between the
emitting layer and the electron-transporting TmPyPB layer
(Supplementary Fig. 6b). Therefore, we believe that the charge

recombination in the metal halides must happen near the inter-
face of TmPyPB, and the enhanced hole injection and transport is
critical to reduce the turn-on voltage and increase the current
density of the LED devices (Fig. 2c).

Next, we further investigate why Tween can enhance the
electronic properties of the cesium-copper-iodide films. To
reveal the interaction between Tween molecules and cesium
copper iodides, we performed Fourier transform infrared (FTIR)
spectroscopy measurement. We can observe peaks at 1122, 2866,
and 2924 cm™! in Tween film (Fig. 4a), which are attributed to
the C-O-C and C-H stretching vibrations, respectively. After
adding CsI to Tween, the relative intensity of C-H stretching
vibration peaks changes, and the C-O-C absorption moves to
lower wavenumber at 1107 cm~!. Similar results are also
observed in the Tween:CsI:Cul sample. The FTIR result suggests
that there is a chemical interaction between Cs and the C-O-C
bond of Tween. This interaction is further confirmed by X-ray
photoelectron spectroscopy (XPS) measurements. Figure 4b
shows that the Cs 3d and I 3d peaks of Tween:Csl film are
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Fig. 2 Characterizations of cesium-copper-iodide LEDs with Tween. a Schematic diagram of the device structure. b EL spectra of the device under
different voltages. Inset, the photograph of LED with the logo of IAM. The substrate area is 12 mm x 12 mm. ¢ Dependence of current density and luminance
on the driving voltage. Before turning on, the device shows low current density, indicating suppressed leakage current by the thin organic layer between
crystallines?. After that, the luminance increases quickly and reaches a luminance of 1570 cd m—2 at a low voltage of 5.4 V. d EQE versus current density.
The LED reaches a peak EQE of 3.1%. e Histogram of peak EQEs. Statistics of 91 devices show an average peak EQE of 1.8% with a relative standard

deviation of 23.5%.

shifted by 0.3 eV towards lower binding energy compared to that
of the pristine CsI film, while the peak associated with O 1s in
Tween moves from 532.8 to 533.0 eV in the Tween:CsI sample
(Supplementary Fig. 7a). Similar shifts are also observed in the
CsI:Cul sample with Tween. On the contrary, the Tween additive
has no effect on the Cul spectra (Supplementary Fig. 7b). This
opposite shift of Cs 3d and O 1s peaks is consistent with the
formation of chemical bonds between Cs ions and oxygen atoms.

Density-functional theory calculation (see “Methods” section for
details) shows that Tween can modify the crystallographic facets of
CsCu,l; and Cs;Cu,l5 through the interaction between oxygen and
Cs ions (Supplementary Fig. 8a, b)?>26. Notably, as the large spatial
distribution of Cs™ in low-dimensional structure allows the offset of
Cst within the lattices?’-28, the calculation shows beside the charge
transfer between Tween and inorganic crystal through isolated Cs
ions, the jodide to copper charge transfer and d-s transitions also
occur within the Cu-I clusters (Supplementary Fig. 8¢, d). This

indicates that Tween can enhance the charge transport not only on
the surface but also in the bulk of crystals*®39, which is consistent
with the enhanced current density in electron- and hole-only
devices with Tween (Supplementary Fig. 6¢, d). Furthermore, the
calculation shows that after the inclusion of additive, the work
functions of CsCu,l; and Cs;Cu,ls are reduced by 0.47 eV (from
401 to 3.54eV) and 041 eV (from 5.12 to 4.71 eV), respectively,
corresponding with the SKPM and UPS measurement results (Fig. 3
and Supplementary Fig. 6a). In addition, the additive can eliminate
the sub-gap states caused by the CsT and the dangling bonds on the
exposed surface (Supplementary Fig. 8e, f), which indicates the
oxygen atoms from the additive can saturate the dangling bonds
and coordinate with the exposed CsT, leading to reduced trap states
and enhanced PL efficiency.

Moreover, we find that the chemical interaction between Tween
and Cs can also directly influence the crystallization process of the
cesium copper iodides. We carried out synchrotron-based in situ
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Fig. 4 Characterizations of interaction between Tween and cesium copper iodides. a FTIR spectra. The spectrum of Tween shows peaks at 2866 and
2924 cm~1 ascribed to the C-H stretching vibrations, and a peak at 1122 cm~1 ascribed to C-O-C stretching vibration. After adding Tween to Csl, the
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Csl:Cul films. After adding Tween to Csl, the Cs 3d and | 3d peaks of Csl shift to the lower binding energy. ¢, d Time-resolved GIWAXS profiles of samples
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1.88 A= (around 33s). After the inclusion of Tween, the CsCu,ls appears at 46's, which is 4 s later than the Cs3Cusls.
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grazing-incidence wide-angle X-ray scattering (GIWAXS) measure-
ments during the spin-coating process. Figure 4c, d and
Supplementary Fig. 9 show that there forms Cs;Cu,Is and CsCu,l;
almost at the same time (33s) for the sample without Tween. In
contrast, due to the electrostatic interaction between Tween and
Csl, the Cs3;Cu,l;5 forms at around 42 s in Tween-based halides, and
then the CsCu,l; appears 4 s later. This suggests that the chemical
interaction between Tween and Cs can retard the nucleation of
cesium copper iodides during the spin-coating process, which leads
to films with enhanced crystallinity (Fig. 1b and Supplementary
Fig. 9). We note that similar additive-enhanced crystallinity has
been observed in lead halide perovskites3!.

The above experimental and simulation results consistently
suggest the chemical interaction between the C-O-C bond in
Tween and Cs is the key to the fabrication of efficient Cs-Cu-I
LED devices through multiple roles, which include enhanced
crystallinity, increased surface potential, enhanced charge trans-
port and reduced trap states of the Cs-Cu-I films as well as
working as insulators in the forming island structures to prevent
leakage current. To test the generality, we fabricated the LEDs
based on polyethylene oxide (PEO) additive, which is a polyether
compound and shows similar chemical interaction with Cs, as
confirmed by FTIR measurement (Supplementary Fig. 10a).
Interestingly, the resulted PEO-based LED also exhibits improved
peak EQE of 1.7% and maximum luminance of 890 cd m—2,
without further optimization of the device fabrication process
(Supplementary Fig. 10b, c). We believe that the performance of
our cesium-copper—iodide LEDs could be further enhanced by
optimizing device structure to reduce the electron injection
barrier, and introducing new additives to passivate defects and
boost the PLQEs as demonstrated in lead-based perovskites®2>,

Discussion

It is interesting to observe that introducing foreign organic mole-
cules into the precursor solution of cesium copper halides can result
in profound changes in the optoelectronic properties of the formed
metal-halide films. This change can be understood in terms of
enhanced crystallinity, charge transfer, increased surface potential,
and reduced defect states. Solution-processed efficient and
bright warm-white LEDs based on the cesium copper iodides were
demonstrated by using this simple approach. Considering the
variety of both organic molecules and metal halides, we believe that
the approach we developed can be extended to explore rich
optoelectronic devices based on metal halides.

Methods

Device fabrication and characterization. PEDOT:PSS (Clevios P VP 4083) was
spin-coated onto ITO-coated glass substrates as a hole-transporting layer. The
precursor solution of cesium copper halides was prepared by dissolving CsI, Cul,
and polyethylene glycol sorbitan monooleate (Tween 80) with a molar ratio of
1:1:0.006 in DMSO (14 wt.%). The metal-halide films were prepared by spin-
coating the precursor solution onto the PEDOT:PSS films and annealed at 100 °C
for 5 min. Finally, the TmPyPB, LiF and Al electrodes were thermally evaporated.
The substrate size is 12 by 12 mm?, and every single device area is 3 mm?2. The
measurement of LEDs was carried out using an integration sphere in a nitrogen-
filled glovebox3233,

Film characterizations. All the films were prepared on PEDOT:PSS substrate as in
the device. The SEM images were collected with a JEOL5 JSM-7800F SEM. The
STEM images of ITO/PEDOT:PSS/metal halides/Au device were obtained on an
FEI Titan G2 80-200 ChemiSTEM operated at 200 keV.

The absorbance spectra were measured by using a UV-vis spectrophotometer
with an integrating sphere (PerkinElmer, Lambda 950). The PL and PLE spectra
were obtained by using a Fluorescence spectrometer (Hitachi, F7100). A
fluorescence spectrometer with an integrating sphere (Edinburgh Instruments,
FLS980) was used to measure the PLQE?*. The films were excited by a 285 nm
excitation beam from a xenon lamp. Time-resolved PL measurements were carried
out by using a spectrometer (Edinburgh Instruments, FLS980), with 280 and
310 nm pulsed lasers.

XRD patterns were performed using a Bruker D8 Advance. FTIR spectra were
collected by using a Thermo Scientific Nicolet iS50 with a reflection accessory.

UPS spectra were recorded using a multifunctional photoelectron spectrometer
(AXIS ULTRA DLD) with a He I ultraviolet radiation source (21.2 eV). XPS spectra
were collected on a Thermo Scientific K-Alpha™. The films were prepared on SiO,/
PEDOT:PSS substrates and all the XPS measurements were calibrated using the C
1s line. The SKPM measurements were carried out by using Asylum Research
Cypher S. To eliminate test errors, all SKPM measurements were performed with
the same probe.

The in situ GIWAXS measurements were conducted at the National
Synchrotron Radiation Research Center (NSRRC), Hsinchu®°. The wavelength of
the X-ray was 1.240 A (10keV) and the sample to detector distance was calibrated
with a lanthanum hexaboride (LaBs) sample. The incident angle was 1° and a
C9728DK area detector was used to collect the scattering signals. After the
perovskite precursor was dropped on the substrate, concomitant GIWAXS
measurements and sample spinning could be triggered simultaneously, and the
spin-coating process was conducted in an air-tight chamber under N, flow.

Single-crystal growth and characterization of Cs;Cu,ls and CsCuls. The
precursor solution of Cs;Cu,ls crystals was prepared by dissolving 0.9 mmol Csl
and 0.5 mmol Cul in 300 uL DMSO. The crystals were grown by a slow vapor
saturation of the antisolvent method3®. The precursor solution was placed inside a
jar filled with MeOH as an antisolvent. After keeping at room temperature for
3-4 days, Cs;Cu,l; crystals with a size of about 5 mm were obtained. The CsCu,l;
crystals were prepared using a similar method except for the 0.5 mmol CsL.

Single-crystal XRD data were obtained by using a Bruker APEX-II CCD
diffractometer (Mo Ka radiation, A = 0.71073 A). Data reduction and absorption
corrections were performed with the SAINT and SADABS software packages,
respectively. Structures were solved by direct methods using the SHELXL-2014
software package. The atoms were anisotropically refined using a full-matrix least-
squares method on F2.

First-principles calculations. All calculations were performed by using the
density-functional theory (DFT) and the projector-augmented wave (PAW)/plane-
wave method as implemented in the Vienna Ab initio Simulation Package3”-3.
The Perdew, Burke, and Ernzerhof (PBE) functional is used’. Calculations were
carried out with plane-wave basis using a plane-wave kinetic energy cutoff of
400 eV, and with a uniform 4 x 4 x 7 k-point grid for CuCu,l; (010) bulk model,
4x1x7 k-point grid for CuCu,l; (010) surface model and 4 x 4 x 1 k-point grid
for CusCu,ls (001) surface model. Four formula units are employed for all the
calculations. We started with experimental-determined crystal structures and
carried out the structural relaxations until the changes of total energy reaching
0.05 eV/A. The total energy is converged to within 1 x 10~ eV for each electronic
self-consistent loop.

We used a four-layer slab with 1 x 1 surface supercell for CsCu,l; (010) surface
(10.48 x 6.06 A) and Cs;Cu,ls (001) surface (10.10 x 11.57 A). Two repeated
functional part -OCH,CH,O- of Tween terminated with methyl and hydrogen
was simplified as an additive to investigate the interaction between the additive and
Cu-based compounds. A vacuum layer of 20 A is used to separate images along the
surface normal direction.

The adsorption energies were calculated by the following equation:

E, = Edsorbed — Edecoupled (1)

where E,, Eydsorbed> and the Egecouplea Tepresents the adsorption energy, the energy
of the adsorbed configuration, and the total energy of two distinct part without any
interaction in the adsorbed configuration.

The calculations show that the surface energies for Cs-terminated (010) surface
and Cu-terminated (010) surface are 0.453 and 5.564 eV A~2 respectively,
suggesting the exposure of (010) surface terminated Cs atoms is more stable than
Cu atoms and there should be a strong interaction between Cs and Tween.
Therefore, the calculations only consider the preferred interaction between Tween
and Cs site.

Data availability
The data that support the finding of this study are available from the corresponding
author upon reasonable request.
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