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Protein aggregation: in silico algorithms and applications
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Abstract
Protein aggregation is a topic of immense interest to the scientific community due to its role in several neurodegenerative
diseases/disorders and industrial importance. Several in silico techniques, tools, and algorithms have been developed to predict
aggregation in proteins and understand the aggregation mechanisms. This review attempts to provide an essence of the vast
developments in in silico approaches, resources available, and future perspectives. It reviews aggregation-related databases,
mechanistic models (aggregation-prone region and aggregation propensity prediction), kinetic models (aggregation rate predic-
tion), and molecular dynamics studies related to aggregation. With a multitude of prediction models related to aggregation
already available to the scientific community, the field of protein aggregation is rapidly maturing to tackle new applications.
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Introduction

The human proteome consists of more than 20,000 proteins
with diverse sizes, compositions, structures, and functions.
Almost every cellular activity depends on the conformation
and concentration of proteins. Normal cellular processes are
tightly aligned with proteostasis, which involves synthesis,
folding, trafficking, and degradation of the protein. Internal
or external perturbations that disturb the proteostasis could
lead to loss of protein functions, to changes in protein turnover
rate and protein concentration, and potentially to undesirable
consequences such as deposition of protein aggregates in the
affected tissues and organs. Protein aggregation, which can be
fibrillar or amorphous, has been studied over several decades
(Astbury et al. 1935; Green and Hughes 1955; Kyle and Bayrd
1975) from both physiochemical and pathological

perspectives. The recent surge of interest in protein aggrega-
tion is attributed to two crucial applications: the association of
cross β -s ter ic z ipper– r ich aggrega tes in human
proteinopathies and the development of protein-based thera-
peutic molecules.

Protein and peptide therapeutics are promising classes of
medicines with vast and growing clinical applications. Protein
therapeutics include monoclonal antibodies (mAb), hor-
mones, vaccines, enzymes, growth factors, fusion proteins,
and so on (Leader et al. 2008; Kintzing et al. 2016; Lagassé
et al. 2017; Usmani et al. 2017). The manufacturing of these
biotherapeutics is tedious and often complicated by protein
instability and aggregation. As a result, developability assess-
ments and optimization to increase protein stability and solu-
bility as well as decrease viscosity and aggregation have be-
come a critical step in biotherapeutic drug discovery and de-
velopment (Wang et al. 2009; Zurdo 2013; Li et al. 2016; Jain
et al. 2017). The aggregation propensity of a biopharmaceuti-
cal can potentially affect its solubility and the viscosity of its
liquid formulations. Low solubility and high viscosity often
translate to difficulties in drug delivery, manufacturing, and
storage (Roberts 2014). In order to assess and improve the
developability, several in silico approaches have been devel-
oped for designing and optimizing therapeutic proteins and
peptides (Nichols et al. 2015; Agrawal et al. 2016).

Neurodegenerative diseases such as Parkinson’s,
Alzheimer’s, prion, etc. are characterized by progressive ner-
vous system dysfunction (Iadanza et al. 2018). Despite diverse
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risk factors such as ageing, environmental factors, and genetic
mutations, the accumulation of intracellular and extracellular
proteinaceous deposits is considered the key factor.
Amyloidosis refers to a group of diseases associated with the
deposition of amyloid fibrils leading to pathogenesis (Benson
et al. 2018; Ke et al. 2020). However, the word ‘amyloid’was
derived from the Latin word ‘amylum’ for starch, and the
amyloid deposits are made up of long, 50- to 200-Å-wide,
β-sheet–rich protein fibrils (Kyle and Bayrd 1975). The char-
acteristics and location of these deposits and the symptoms
associated with the disease vary depending on the protein
involved in the amyloidosis (Gertz 2018). For example, amy-
loid light-chain (AL) amyloidosis, one of the common amy-
loidosis, consists of deposition of immunoglobulin light
chains in the kidney and heart (Dogan 2017).

Apart from the role in human pathology and ageing, pro-
tein aggregates have been found to also play functional roles
in several organisms: For example, Curlin inE. coli to mediate
host interaction and Ure2p in Saccharomyces cerevisiae to
regulate nitrogen intake (Chiti and Dobson 2006). The ability
of a protein to form amyloid fibrils is attributed to the
aggregation-prone region (APR) in the protein sequence
(Ventura et al. 2004; Esteras-Chopo et al. 2005). These
APRsmediate intermolecular self-interactions leading to cross
β-steric zipper formation, which forms the stable core of fi-
brillar macromolecular structures found in amyloid deposits
(Nelson et al. 2005; Sawaya et al. 2007).

Databases for protein aggregation

The exponential increase in the experimental data related to
protein aggregation in the last few years has led to the neces-
sity of storing and curating the information related to protein
aggregation. Currently, there are several databases available to
assist the scientific community (Table 1). These specialized
protein aggregation–related databases contain comprehensive,
extended knowledge from literature. Fibril_one (Siepen and
Westhead 2002) was the first amyloidogenic protein database
containing 250 mutations and 50 experimental conditions
associated with 22 proteins. Lopez de la Paz and Serrano
(2004) curated the amyloidogenic peptides by systematically
mutating the residues of amyloidogenic STVIIE peptide. The
dataset was extended with the inclusion of peptides from in-
sulin, β2-microglobulin, amylin, tau protein, etc. (Thompson
et al. 2006). Goldschmidt et al. (2010) predicted the aggrega-
tion profile of 76 genomes and created the ZipperDB data-
base. WALTZ-DB (Beerten et al. 2015) is a collection for
experimentally known amyloid-forming hexapeptides, char-
acterized using electron microscopy, dye binding, and
Fourier transform infrared spectroscopy. WALTZ-DB was
recently updated to WALTZ-DB 2.0 (Louros et al. 2020) by
expanding the hexapeptide sequence dataset and adding new

structural information. Angarica et al. (2014) developed the
database PrionScan for predicted prion-like domains in com-
plete proteomes. Around the same time, Shobana and
Pandaranayaka (2014) constructed the integrated database
ProADD for the diseases caused by protein aggregation along
with the proteins involved in aggregation. The AmyLoad
(Wozniak and Kotulska 2015) database compiled
amyloidogenic and non-amyloidogenic sequence fragments
from various sources (Conchillo-Solé et al. 2007;
Fernandez-Escamilla et al. 2004; Goldschmidt et al. 2010)
as well as from literature. AmyPro (Varadi et al. 2018) is a
recently developed comprehensive database on precursor pro-
teins and their aggregation-prone regions.

Thangakani et al. (2016) developed the comprehensive da-
tabase CPAD on experimentally verified aggregating proteins,
aggregation-prone regions of different lengths, and aggrega-
tion kinetics. CPAD has been updated recently to CPAD 2.0
and includes a new category of aggregation-related structures
(Rawat et al. 2020a). AmyloBase (Belli et al. 2011) was the
first resource for the aggregation kinetics experiments.
AMYPdb (Pawlicki et al. 2008) curates the structural infor-
mation of amyloidogenic proteins and currently has 1200
structures from 31 amyloidogenic protein families. The pro-
tein families are clustered based on amyloidogenic sequence
pattern. PDB_Amyloid (Takács et al. 2019) is a recently de-
veloped database containing a list of amyloid structures and
globular structure entries with an amyloid-like substructure.
AL-Base (Bodi et al. 2009) is a curated database of light-chain
sequence of antibodies derived from patients with light-chain
(AL) amyloidosis.

In silico methods and tools for protein
aggregation

Over the last few decades, several computational techniques
and tools have been developed to address protein aggregation.
These tools and techniques can be broadly classified into three
classes: (a) APR and aggregation propensity prediction, (b)
aggregation kinetics prediction, and (c) molecular simulation
techniques.

Aggregation-prone region and aggregation
propensity prediction

Amyloid fibrils are composed of a cross-β steric zipper motif
(Fig. 1), which consists of stacked β-strands with interdigitat-
ing side chains and axially oriented backbone hydrogen bonds
(Sunde and Blake 1997). Nucleation of the cross-beta steric
zipper motif (Sawaya et al. 2007) and its assembly into amy-
loid fibrils depend on several extrinsic factors such as temper-
ature, pH, and protein and ionic concentration aswell as on the
intrinsic ones such as amino acid composition and sequence
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patterning of short aggregation-prone regions (APRs),
which are typically 5–15 residues long (Chiti et al.
2002a). Interestingly, in a recent study, Yagi-Utsumi
et al. (2020) demonstrated the effect of gravity on amy-
loid fibril morphology and fibrillation kinetics of amyloid
β through experiments under microgravity conditions.
Further, mutations in APRs and their flanking residues
alter protein aggregation propensity, aggregation kinetics,

and also the morphologies of its aggregates (Sipe and
Cohen 2000; López de la Paz and Serrano 2004).
Insertion of such aggregating peptides in globular proteins
triggers aggregation (Ventura et al. 2004). For example,
Fig. 2 shows the Cryo-EM structure of an amyloid fibril
formed by the lambda light chain (AL55) of the IGLV6-
57 germline gene (Swuec et al. 2019). The fibrils were
isolated from deposits of amyloid light-chain (AL) cardiac

Table 1 Protein aggregation
databases Database Link Reference

FIbril_one* http://www.bioinformatics.leeds.ac.uk/group/
online/fibril_one

Siepen and Westhead (2002)

ZipperDB https://services.mbi.ucla.edu/zipperdb/ Goldschmidt et al. (2010)

WALTZ-DB 2.0 http://waltzdb.switchlab.org/ Louros et al. (2020)

PrionScan http://webapps.bifi.es/prionscan Angarica et al. (2014)

ProADD* http://bicmku.in/ProADD Shobana and
Pandaranayaka (2014)

AmyLoad http://comprec-lin.iiar.pwr.edu.pl/amyload/ Wozniak and Kotulska (2015)

AmyPro https://amypro.net/#/ Varadi et al. (2018)

CPAD 2.0 https://web.iitm.ac.in/bioinfo2/cpad2/ Rawat et al. (2020a)

AmyloBase http://150.217.63.
173/biochimica/bioinfo/amylobase/pages/view.html

Belli et al. (2011)

AMYPdb http://amypdb.genouest.org/e107_plugins/amypdb_
project/project.php

Pawlicki et al. (2008)

PDB_Amyloid https://pitgroup.org/amyloid/ Takács et al. (2019)

AL-Base http://albase.bumc.bu.edu/aldb Bodi et al. (2009)

*The database is no longer available online as per last access on 1 October 2020

Fig. 1 Structural model of an
amyloid fibril: a) amyloid fibril of
an 11-residue fragment (125–
135) of transthyretin protein
(PDB: 3ZPK, UniProt ID:
P02767), b) a protofibril , c)
intersheet steric zipper formation,
and d) the intersheet hydrogen
bonds along the fibril axis
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amyloidosis patients through autopsy. The APRs identi-
fied by several APR prediction proteins cluster in the
sequence region 17–38. The ability of the APRs to dictate
the fates of even large proteins has attracted considerable
research efforts.

Several computational methods have been developed to
identify the aggregation-prone regions (APRs) in proteins
and peptides and predict protein aggregation propensity
(Meric et al. 2017) (Fig. 3). These methods can be classified
based on their application and the features used to predict
(Table 1). Broadly, these methods can be divided into
sequence- and structure-based methods depending on the in-
put data required for the prediction.

Sequence-based approaches to predict protein aggregation

Sequence-based approaches to predict aggregation in
proteins rely on features such as amino acid physio-
chemical properties, sequence patterns, statistically de-
rived propensity values, knowledge-based scoring func-
tions, secondary structure propensities, residue-residue
contact potentials, and threading. Pattern matching is
the simplest of all the sequence approaches. Lopez de
la paz and Serrano (2004) carried out experiments on
peptide STVIIE through positional scanning mutagenesis
and identified sequence patterns of hexapeptides, which
form amyloid-like fibrils in vitro. However, the patterns

Fig. 2 Structure and predicted APRs in lambda light chain (A55): a
structure of AL55 modelled using ABodyBuilder (Leem et al. 2016), b
cryo-EM structure of AL55 amyloid protofibril (PDB: 6HUD), and c
residue contacts in the fibril. The atoms constituting APRs (17–38)

predicted using WALTZ, PASTA2, ANuPP, FishAmyloid, and
MetAmyl (consensus) are highlighted as spheres. ChimeraX was used
for visualization (Goddard et al. 2018)

Fig. 3 Various APR and aggregation propensity prediction tools
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Table 2 Summary of available methods to predict APR and aggregation propensity of proteins

Methods Features Application‡ Link Reference

(a) Sequence-based features

Sequence pattern

Amyloidogenic
pattern

Pattern derived from positional scanning
mutagenesis experiments on amyloidogenic
peptide STVIIE

APR – Lopez de la Paz and
Serrano (2004)

Amino acid properties

AGGRESCAN† Aggregation propensity scale for amino acids
derived from in vivo experiments on
amyloidogenic proteins

APR, AP http://bioinf.uab.es/aggrescan/ Conchillo-Solé et al.
(2007)

Zyggregator Amino acid scales for α-helix and β-sheet
formation, hydrophobicity and charge, hy-
drophobic pattern, and presence of
Gatekeeper residues

APR – Tartaglia and
Vendruscolo
(2008)

Pafig§,* 41 amino acid physicochemical properties APR http://www.mobioinfor.cn/pafig/ Tian et al. (2009)

PAGE Aromaticity, β-propensity, charge,
polar-nonpolar surfaces, and solubility

APR – Tartaglia et al. (2005)

WALTZ†,§ PSSM, physicochemical properties,
position-specific pseudoenergy terms

APR https://waltz.switchlab.org/ Maurer-Stroh et al.
(2010)

AbAmyloid†,* Amino acid composition, dipeptide
composition, and physicochemical properties

AP http://iclab.life.nctu.edu.tw/abamyloid Liaw et al. (2013)

FoldAmyloid† Packing density and hydrogen bond probability
obtained from protein structures

APR, AP http://bioinfo.protres.ru/fold-amyloid/ Garbuzynskiy et al.
(2010)

SALSA β-Strand
Contiguity (β‐
SC)

β-strand propensity APR Zibaee et al. (2007)

APPNN§ 7 amino acid physicochemical and biochemical
properties

APR http://cran.r-project.
org/web/packages/appnn/index.html

Família et al. (2015)

Amylogram†,§ 17 amino acid properties such as size of
residues, hydrophobicity, solvent surface
area, frequency in β-sheets, contactivity, and
contact site propensities

AP http://www.smorfland.uni.wroc.
pl/shiny/AmyloGram/; http://github.
com/michbur/AmyloGramAnalysis

Burdukiewicz et al.
(2017)

ANuPP† Atom compositions of peptides and protein
segments

APR, AP https://web.iitm.ac.in/bioinfo2/ANuPP/ Prabakaran et al.
(2020)

Secondary structure propensity

TANGO†,§ Segment β-sheet probability derived from em-
pirical and statistically derived energy func-
tions

APR, AP http://tango.crg.es/ Fernandez-Escamilla
et al. (2004)

SecStr† Secondary structure preference APR http://biophysics.biol.uoa.gr/SecStr/ Hamodrakas et al.
(2007)

NetCSSP† Residue interaction and solvation energy
obtained using AMBER forcefield

APR http://cssp2.sookmyung.ac.kr/ Kim et al. (2009)

Archcandy§ Scoring function derived for steric tension,
electrostatic interactions, packing, and
hydrogen bond formation

Zipper – Ahmed et al. (2015)

BetaSerpentine† β-arches (β‐strand‐loop‐β‐strand motif from
Archcandy), compatibility of β-arches,
compactness

Zipper https://bioinfo.crbm.cnrs.fr/index.php?
route=tools&tool=25

Bondarev et al.
(2018)

Residue-pair occurrence and contact preference

BETASCAN† Pairwise probability tables to identify hydrogen
bond forming residues in strand pairs

APR http://betascan.csail.mit.edu Bryan et al. (2009)

AmyloidMutants† Potential energy scoring function derived from
observed residue/residue interactions in PDB

APR, Zipper http://amyloid.csail.mit.edu/ O’Donnell et al.
(2011)

STITCHER†,* Scoring function addressing enthalpic and
entropic changes in protofibril formation, and
BETASCAN strand pair predictions

Zipper http://stitcher.csail.mit.edu Bryan et al. (2012)

PASTA 2† Hydrogen-bonding energy function for residue
pairs derived from beta-strand structures

APR, Zipper http://old.protein.bio.unipd.it/pasta2/ Walsh et al. (2014)

GAP† APR http://www.iitm.ac.in/bioinfo/GAP/
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are specific to certain hexapeptides and did not cover
several new amyloid-forming peptides that were report-
ed over the years.

Amino acid properties Amino acid properties such as hydro-
phobicity, size, surface area, charge, aromaticity, contact

frequency, beta-sheet propensity, and several other physio-
chemical properties are used for the identification of
aggregation-prone regions. AGGRESCAN uses the amino ac-
id aggregation-propensity scale derived from in vivo experi-
ments on amyloidogenic proteins (Conchillo-Solé et al. 2007).
These propensity values were used to identify the

Table 2 (continued)

Methods Features Application‡ Link Reference

Residue pair potential derived from hexapeptide
sequences

Thangakani et al.
(2014)

FISH Amyloid† Residue cooccurrence matrix derived from
amyloidogenic and non-amyloidogenic pep-
tides of length (4–10)

APR http://comprec-lin.iiar.pwr.edu.
pl/fishInput/

Gasior and Kotulska
(2014)

AgMata§ Statistical potentials derived for residue position
secondary structure probability and
interaction energy

APR https://bitbucket.org/bio2byte/
agmata

Orlando et al. (2020)

Threading- and forcefield-based approach

3D PROFILE
(ZipperDB)†

Microcrystal structure of the NNQQNY peptide
and atomic-level potential
ROSETTADESIGN

Zipper,
Zipper3D

https://services.mbi.ucla.
edu/zipperdb/submit

Thompson et al.
(2006)

Pre-Amyl* Template ensemble obtained from microcrystal
structure of the NNQQNY peptide and KBP,
atom distance-dependent knowledge-based
residue pairwise potential

Zipper,
Zipper3D

ftp://mdl.ipc.pku.edu.
cn/pub/software/pre-amyl/

Zhang et al. (2007)

CORDAX† Thermodynamic stability calculated by
threading over 140 amyloid fibril cores

Zipper,
Zipper3D

https://cordax.switchlab.org/ Louros et al. (2020)

PATH Modeller Dope score and Rosetta (REF15) en-
ergy values from homology models of 7
template structures

Zipper,
Zipper3D

https://github.
com/KubaWojciechowski/PATH

Wojciechowski and
Kotulska (2020)

Consensus approach

AMYLPRED2† Consensus predictor includes outputs from
AGGRESCAN, NetCSSP, AmyloidMutants,
Pafig, Amyloidogenic Pattern, SecStr,
Average Packing Density , TANGO,
Beta-strand contiguity, WALTZ,
Hexapeptide Conformational Energy

APR http://aias.biol.uoa.gr/AMYLPRED2/ Tsolis et al. (2013)

MetAmyl† Consensus predictor includes PAFIG, SALSA,
WALTZ, and FoldAmyloid

APR http://metamyl.genouest.org/ Emily et al. (2013)

(b) Structure-based features

Accessible surface area and surface patches

SAP Residue hydrophobicity, solvent accessible area
over time obtained from MD

APP – Chennamsetty et al.
(2009)

Developability
index

SAP and PROPKA values AP – Lauer et al. (2012)

Aggscore Hydrophobic and hydrophilic patches obtained
using atom partial charges and logP values

APR – Sankar et al. (2018)

AGGRESCAN3D
2.0†,§

AGGRESCAN residue score, exposed surface
area, FoldX energy-minimized protein struc-
ture or Ensemble from CABS-flex simula-
tions

AP http://biocomp.chem.uw.edu.
pl/A3D2/; https://bitbucket.
org/lcbio/aggrescan3d

Kuriata et al. (2019)

†Available as webserver
§ Available as stand-alone tool
* Server or stand-alone is not available/accessible (last checked: Sep 2020)
‡Applications were grouped into (a) APR: identification of APR and peptides in protein sequence, (b) Zipper: prediction of Zipper–strand orientation
and residue pairing, (c) Zipper 3D: prediction or modelling of protofibril or cross-β spine models, and (d) AP: quantification of protein aggregation
propensity
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aggregation-prone regions through a sliding-window ap-
proach. Zyggregator uses amino acid scales for α-helix and
β-sheet formation, charge, hydrophobicity, and also hydro-
phobic pattern and presence of gatekeeper residues
(Tartaglia and Vendruscolo 2008). WALTZ uses a hybrid
approach, combining a position-specific scoring matrix de-
rived from amyloidogenic peptides and amino acid physico-
chemical properties and position-specific pseudoenergy
values obtained from modelled structures (Maurer-Stroh
et al. 2010). ANuPP is an ensemble classifier that consists of
nine logistic regression models trained independently on
groups of amyloidogenic peptides to address the diversity in
aggregation nucleation, propagation, and fibrillation process-
es. ANuPP uses atom composition as features to represent
sequence segments (Prabakaran et al. 2020).

Secondary structure preference The propensity to form β-
sheet is one of the key features of amyloid-fibril-forming pep-
tides and proteins, and this has been extensively used in de-
veloping prediction algorithms. TANGO uses various empir-
ically and statistically derived potential functions to estimate
the probability of a segment to formβ-strand-mediated aggre-
gates (Fernandez-Escamilla et al. 2004). In theory, TANGO
compares the probability of a segment to be in various sec-
ondary structural states such as α-helix, β-sheet, coil, and
turn. Conformational switch from other secondary states to
β-sheet formation is the principle behind SecStr and
NetCSSP (Hamodrakas et al. 2007; Kim et al. 2009).

Residue-pair occurrence and contact preference Cross-β
spine made of steric zippers is a common feature of all amy-
loid fibrils. These steric zippers consist of interdigitating side
chains and axial hydrogen bonds and strengthen the supramo-
lecular structure of amyloid fibrils. In addition, the stacking of
aromatic residues and ladders of hydrogen bonds formed by
Asn, Gln, Thr, and Ser residues adds additional stability to the
structure. These residue-residue interactions are seen as cru-
cial for an APR and thus used in various prediction methods.
GAP uses position-specific residue-pair energy potential de-
rived from amyloid and amorphous β-aggregating
hexapeptide sequences to identify amyloidogenic peptides
(Thangakani et al. 2014). PASTA2 and BETASCAN use
residue-residue probabilities and scoring functions for β-
sheet hydrogen bond formation and contact derived from pro-
tein structure databases. Apart from predicting the APR
stretch on the protein sequence, these approaches can predict
the β-strand orientation and pairing between residues.

Threading and forcefield Thompson et al. (2006) used the
crystal structure of the cross-β spine of peptide NNQQNY
to identify APR segments in amyloidogenic proteins. Each
hexapeptide from a given protein sequence was mapped onto
an ensemble of steric zipper templates and scored

subsequently. The assumption behind this 3D profile method
is the conserved cross-β motif in amyloid fibrils of diverse
proteins. Apart from identifying amyloidogenic peptides and
regions in protein sequence, the approach is capable of
predicting orientation between strands forming the zipper.

Structure-based approaches

Structure-based methods such as SAP, developability index,
AGGRESCAN3D, and Aggscore require protein structure as
input (Chennamsetty et al. 2009; Lauer et al. 2012; Zambrano
et al. 2015; Sankar et al. 2018). These methods predominantly
take account of the solvent accessibility of protein residues
and atoms to estimate surface hydrophobicity. In addition to
the static structure, short molecular dynamics (MD) simula-
tions are performed to calculate the ensemble statistic over
time. Unlike sequence-based methods, structure-based
methods account for the folding and native state of a protein.
At the same time, the limited timescale of MD simulations
also biases the prediction of a single protein structure in its
native state. This approach may not hold for highly dynamic
proteins with multiple metastable states and disorder regions.

Comparison of APR prediction tools

Table 2 lists the various APR and aggregation propensity predic-
tion tools that have been published to date. We selected ten
prediction tools from the literature that were accessible as a
webserver or stand-alone application and easily applicable to
large datasets for a comparative evaluation. Table 3 lists the
performance of these APR prediction tools in distinguishing be-
tween APR and non-APR segments in a dataset of 37
amyloidogenic proteins. The dataset was extracted from
AmyPro database (Varadi et al. 2018) at 40% sequence identity
cut-off. Segment OVerlap (SOV) scores: SOVAPR, SOVnon-APR,
SOVaverage, and SOVoverall are used for evaluation (Zemla et al.
1999). Similar to secondary structure assessments, SOV scores
the prediction performance based on the overlap between the
predicted and actual segments instead of residue-wise compari-
son. Overall, the consensus methods, Amylpred2 andMetAmyl,
showed better performance over other methods. ANuPP and
TANGO scored better than other methods with SOVoverall of
50.2 and 48.1, respectively. Though several tools showed a good
overall score, they exhibited an imbalance between SOVAPR and
SOVnon-APR. Similar assessments were performed based on a
dataset of 142 amyloid-like fibril-forming hexapeptides from
WALTZ-DB 2.0 (Louros et al. 2020). In spite of the imbalance
in sensitivity and specificity, ANuPP and AGGRESCAN scored
better than other methods (data not included). These results high-
light the need for more robust methods to identify APRs
accurately.
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Aggregation kinetic prediction tool

Aggregation kinetics measure how fast/slow the proteins will
aggregate under given experimental conditions. The aggrega-
tion mechanisms, curve fitting, and experiments related to
aggregation kinetics have been reviewed earlier in the litera-
ture (Morris et al. 2009; Hirota et al. 2019). In this section, we
have focused on the role of biophysical features and experi-
mental conditions in determining aggregation kinetics.

The detailed in vitro analysis of mutants of acylphosphatase
(AcP) revealed the role of charge, hydrophobicity, and second-
ary structure propensity towards altering aggregation kinetics
(Chiti et al. 2002a; Chiti et al. 2002b). Further, they derived the
first empirical equation to predict the change in aggregation
kinetics upon point mutation using the physicochemical fea-
tures of proteins (Chiti et al. 2003). Subsequently, several stud-
ies on different amyloidogenic proteins analysed the role of
physicochemical properties on protein aggregation such as hy-
drophobicity (Calamai et al. 2003; Fink 1998; Hilbich et al.
1992), β-strand propensity (Tartaglia et al. 2004; Família
et al. 2015; Tjernberg et al. 2002; Fernandez-Escamilla et al.
2004), polarity (Tartaglia et al. 2004; Polanco et al. 2015),
charge (Tartaglia et al. 2004; Calamai et al. 2003; Tjernberg
et al. 2002), aromaticity (Tartaglia et al. 2004; Azriel and Gazit
2001; Gazit 2002), and stability (Fink 1998; Ramírez-Alvarado
et al. 2000; Brito et al. 2003).

The aggregation kinetics assays have shown that the rate of
aggregation is sensitive to even a small change in experimen-
tal conditions such as protein or buffer concentration, pH,

temperature, ionic concentration, seeding, or agitation
(Brudar and Hribar-Lee 2019; Hortschansky et al. 2005;
Morel et al. 2010; Ow and Dunstan 2013). Currently, there
are few in silico methods available to predict the absolute
aggregation rate or change in aggregation rate upon point
mutation (Table 4) as discussed below.

Methods to predict change in aggregation rate upon point
mutation

Chiti et al. (2003) first proposed a mathematical equation (Eq.
1) to predict the change in aggregation rate using intrinsic
protein sequence features, which includes change in the hy-
drophobicity of the polypeptide chain (ΔHydr.), propensity to
convert from α-helical to β-sheet structure (ΔΔGcoil −α +
ΔΔGβ − coil), and change in overall charge (ΔCharge).

ln
υmut

υwt

� �
¼ AΔHydr:þ B ΔΔGcoil−α þΔΔGβ−coil

� �
þ CΔCharge ð1Þ

where A, B, and C in the above equation are constants, which
are estimated by fitting the equation to experimental change in
the aggregation rate. The model achieved a correlation of 0.85
on a set of 27 mutations found in short peptides or natively
unfolded proteins, including amylin, amyloid β-peptide, tau,
and α-synuclein. This model has some limitations, including
(i) smaller dataset size, (ii) inability to predict aggregation

Table 3 Performance of APR
identification algorithms and
tools

SOVAPR SOVnon-

APR

SOVoverall SOVaverage

AGGRESCAN 34.3 36.5 32.4 35.4

Amyloidogenic pattern 14.9 53.4 44.1 34.2

Amylpred2 29.5 41.1 34.8 35.3

ANuPP 45.2 52.3 50.2 48.7

FishAmyloid 14.5 45.2 37.5 29.9

MetAmyl 43.1 33.4 31.5 38.2

NetCSSP 32.9 35.9 32.7 34.4

Pre-Amyl 32.9 36.4 34.3 34.7

FoldAmyloid 30.2 41.5 35.2 35.8

Pafig 30.9 25.8 25.2 28.3

Pasta2 (85% specificity) 13.2 24.9 23.2 19.1

Pasta2 (90% specificity) 12.2 25.7 23.6 18.9

SALSA Strand contiguity 29.8 45.1 39.4 37.5

SecStr 12.0 47.6 38.5 29.8

TANGO 19.1 57.8 48.1 38.5

WALTZ 44.4 28.9 28.7 36.6

Segment OVerlap scores (SOVAPR, SOVnon-APR, SOVoverall, and SOVaverage) are used to evaluate the prediction
of APRs in proteins (Zemla et al. 1999). SOVaverage was calculated as an average of SOVAPR and SOVnon-APR
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kinetics for mutations involving proline residues due to unde-
fined values for change in β-sheet propensity (ΔΔGβ − coil),
and (iii) inability to predict the aggregation kinetics for resi-
dues, for which α-helical propensity is predicted zero by the
AGADIR server (Muñoz and Serrano 1994).

Rawat et al. (2018) developed the method AggreRATE-
Disc (Discrimination of Aggregation Rate change Upon
Mutation) using sequence-based features to predict the aggre-
gation rate enhancer or mitigator mutations using machine
learning. It is developed using a support vector machine
(SVM)–based classifier on 220 point mutations from 25 pro-
teins. The model grouped the mutations based on the local
secondary structure conformation at the mutation site (helix,
strand, and coil) and achieved an average prediction accuracy
of ~ 82% using leave-one-out cross-validation. AggreRATE-
Disc identified a unique set of sequence-based features that
influence the aggregation rate in each mutation site conforma-
tional class. For example, changes in protein stability and
flexibility in the helical region influence the rate of aggrega-
tion. Similarly, the aggregation rate is mainly affected by
charge, polarity, and β-strand propensity when the mutations
fall in the β-strand regions. For other mutation sites falling
under the coil category, such as bends, turns, and disordered
regions, aggregation rates are affected by both helical tenden-
cy and aggregation propensity.

The AggreRATE-Pred model (Rawat et al. 2020b) was an
improvement over AggreRATE-Disc, which included
structure-based features to predict the quantitative change in
aggregation rate. The statistical model is developed by com-
bining four different regression equations, which is generated
by classifying the data based on polypeptide length and local
secondary structure conformation at the mutation site, and
fitting of the regression equation. The dataset of 183 point
mutations in 23 amyloidogenic proteins was primarily divided
into two groups: (i) short peptides (length < 40 residues) and
(ii) long polypeptides and proteins (length ≥ 40 residues). The
long polypeptide and protein dataset are further classified to

helix, strand, and coil class based on local secondary structure
conformation, similar to the previous study (Rawat et al.
2018). The statistical model achieved an average correlation
coefficient of ~ 0.82 and an average MAE of ~ 0.43 on the
training dataset. The regression analysis showed the impor-
tance of local structural context, thermodynamic stability
changes, and effect of neighbour residues at the mutation site.

Methods to predict the absolute aggregation rate

DuBay et al. (2004) improved Eq. 1 to predict the absolute
aggregation rate of polypeptides using intrinsic features, such
as hydrophobicity (Ihydr), alternating hydrophobic-hydrophilic
residue pattern (Ipat), and absolute value of net charge (Ich), and
extrinsic features, pH (EpH), ionic strength (Eionic), and poly-
peptide concentration (Econc). Themathematical formula for the
prediction of the absolute rate of aggregation is given in Eq. 2.

log kð Þ ¼ α0 þ αhydrIhydr þ αpatIpat þ αchI ch þ αpHEpH

þ αionicEionic þ αconcEconc ð2Þ
where log(k) is the logarithm in base 10 of the aggregation rate
(k) in units of s−1. α values are constants estimated by fitting
the equation on experimental data of 79 mutations. The model
has achieved a correlation of 0.92 on the training dataset of 79
proteins/peptides. However, the model was prone to biasness
due to limited availability of the aggregation rates, where 59
out of 79 data points were point mutation variants of
acylphosphatase (AcP) protein.

Tartaglia et al. (2005) proposed a sequence-based algorithm
to predict the aggregation rate and aggregation-prone regions in
protein/polypeptide sequences. The aggregation propensity
(πil) of the sequence is calculated using position-dependent fac-
tors (Φil) and composition-dependent factors (φil).

πil ¼ Φilφil ð3Þ

Table 4 Summary of available methods to predict aggregation kinetics

Prediction model Prediction for Performance
(training dataset)*

Availability

Chiti’s (Chiti et al. 2003) Point mutation r=0.85 (27) Eq. 1

DuBay’s (DuBay et al. 2004) Protein/peptides r=0.92 (79) Eq. 2

Tartaglia’s (Tartaglia et al. 2005) Protein/peptides r=0.95 (90) Eqs. 3–6

Yang’s (Yang et al. 2019) Protein/peptides r ~0.96 (140) –

AggreRATE-Disc (Rawat et al. 2018) Point mutation 84% (220)# https://www.iitm.ac.in/bioinfo/aggrerate-disc/

AggreRATE-Pred (Rawat et al. 2020b) Point mutation r ~0.82 (183) https://www.iitm.ac.in/bioinfo/aggrerate-pred/

AbsoluRATE (personal communication) Protein/peptides r=0.74 (82) https://web.iitm.ac.
in/bioinfo2/absolurate-pred/

*Performance of the model described by the respective model for their respective training dataset. The performance measure r denotes correlation
# Percentage of correctly predicted aggregation rate enhancer or mitigator mutations (accuracy)
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where l is the length of the segment starting at the position i
in the sequence. The position-dependent factors include aro-
maticity (Ail), β-propensity (Bil), and charge (Cil).

Φil ¼ eAilþBilþCil ð4Þ

The amino acid composition–dependent factors include
side-chain-accessible surface area of apolar (Saj ), polar (S

p
j ),

and all residues (Stj ); solubility (σj); and parallel ( ⇈) and

antiparallel ( ⇅) tendency to aggregate. The hatted values are
averages of 20 standard amino acids.

φil ¼ ∏
iþl−1

j¼1

SajbSa θ↑↑þ
SpjbSp θ↑↓

 ! bSt
Stj

bσ
σ j

24 351=l

ð5Þ

The model predicts the aggregation rate from the aggrega-
tion propensity (Eq. 3) by including a function for experimen-
tal conditions (α(c, T), which takes account of protein concen-
tration and temperature) as given in the following formula
(Eq. 6):

vil ¼ α c; Tð Þπil ð6Þ

The model achieved a correlation of 0.95 with 90 data
points. However, this model also suffers from the limited
availability of the data and biasness within the dataset.

Yang et al. (2019) proposed a feedforward fully connected
neural network (FCN)–based machine learning model for
predicting the absolute aggregation rates. The model is trained
on a dataset of 21 amyloidogenic proteins (140 data points) using
16 intrinsic sequence-based features and 4 extrinsic features. The
model focuses on the inclusion of more experimental conditions
and considers them as a separate data point in the prediction
model. Although the model showed an average prediction accu-
racy of more than 90% on the training dataset, it seems overfitted
as it employs 16 intrinsic sequence-based features to essentially
predict 21 sequence variants of amyloidogenic proteins.

AbsoluRATE (Rawat et al., manuscript under review) is a
support vector machine (SVM)–based regression model to pre-
dict absolute rates of protein and peptide aggregation. The model
trained on 82 non-redundant proteins/peptides has achieved a
correlation coefficient of 0.72 with MAE of 0.91 (natural log
of kapp, where kapp is in hour−1) using leave-one-out cross-vali-
dation. The model accounts for sequence-based features (such as
features derived from APR prediction servers, disorderness, po-
larity, beta-sheet propensity, etc.) and extrinsic features (such as
temperature, pH, ionic and protein concentration).

Comparison of aggregation kinetics prediction
methods

The limited availability of experimental aggregation ki-
netics resources is a major limitation towards the

development of accurate computational models. Hence,
to benchmark the above kinetic models, we randomly
selected a test set from the AggreRATE-Pred dataset
(Rawat et al. 2020b) in such a way that it (i) includes
all structural classes (10% of the training dataset in the
respective class) and (ii) has predictable aggregation
rates for all the participating models (Table 5). For a
fair comparison, we retrained the AggreRATE-Pred by
removing test set data points and achieved a correlation
of 0.81 on the training dataset (original correlation r =
0.82). The performance of the removed test set was
further evaluated on the newly developed AggreRATE-
Pred model with a reduced training set, as shown in
Table 5. The absolute aggregation rate prediction
models were tested by subtracting the predicted aggre-
gation rates for mutant and wild-type protein sequences.
The correlations obtained by the absolute aggregation
rate prediction models were expectedly low, with the
highest correlation of 0.41 obtained by Tartaglia’s mod-
el (Tartaglia et al. 2005). Chiti’s and DuBay’s models
are almost two-decade-old models trained on minimal
datasets available at that time, which is also reflected
in the prediction performance of these methods on the
test dataset. AggreRATE-Pred, a structure-based method,
showed the highest correlation among all models.
AggreRATE-Disc is a sequence-based method that can-
not predict the quantitative change in aggregation rate.
However, it has correctly predicted the effect on aggre-
gation rate (increase/decrease) with 73.7% accuracy.
Yang’s model (Yang et al. 2019) was not benchmarked
due to the unavailability of the webserver/stand-alone
program.

Molecular dynamics approach

A better understanding of the physical phenomenon and
mechanistic details of self-association is often obtained
through molecular simulation studies. Molecular dynamics
and Monte Carlo simulations have been widely used to under-
stand protein aggregation dynamics to study various aspects.
Various simulation techniques and methodologies have been
used to study protein and peptide aggregation. Depending on
the focus of the study, the simulation can vary from (i) coarse-
grained to all-atom models, (ii) Monte Carlo to molecular
dynamic simulations, (iii) implicit to explicit solvation
models, and (iv) dimers to bulk simulations (Morriss-
Andrews and Shea 2014, 2015; Carballo-Pacheco and
Strodel 2016). APRs from the proteins are often studied as
peptides instead of the whole protein to understand the aggre-
gation mechanisms and residue-residue interactions at a re-
duced computational cost. We have provided a summary of
the diverse simulations and their applications below.
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Atomic simulation of peptide assembly

All atom simulations are often limited to the simulation of
peptide aggregation. For example, Ma and Nussinov
(2002a) carried out molecular dynamics simulations of
the two peptides, AGAAAAGA observed in PrP protein
and a polyalanine peptide AAAAAAAA to identify criti-
cal oligomer size (Ma and Nussinov 2002a). They showed
that oligomers of size 6–8 strands were found to be stable
and retained the fibril model conformation (10 Å inter-
sheet distance and 5 Å inter-strand distance). Similar
works have been carried out on several peptides such as
poly-glutamine, poly-glycine, and peptide fragments from
amyloidogenic proteins (Cecchini et al. 2006; Karandur
et al. 2014; Marchut and Hall 2006). Ma and Nussinov
(2002b) also studied three different segments of amyloid
β (16–22, 6–35, and 10–35) using MD and compared the
results with solid-NMR structures. Gsponer et al. (2003)
studied the heptapeptide GNNQQNY from Sup35 using
20-ns simulations of a 3-peptide system and observed 25
parallel β-strand formation events, consistent with

experimental data. The study showed the influence of res-
idues on orientation preference and stability of the strand.
Zanuy et al. (2003) studied the oligomeric stability of two
segments (NFGAIL 22–27 and NFGAILSS 22–29) from
islet amyloid polypeptide using molecular dynamics.
Their work highlighted the importance of the assembly
of interacting sheets in amyloid fibril formation (Zanuy
et al. 2003; Zanuy and Nussinov 2003). Similar studies
have been carried out on peptides STVIIE and its 5 var-
iants, NFGAIL 22–27 of the human islet amyloid poly-
peptide, and hIAPP 1–19 peptide (Wu et al. 2005; López
De La Paz et al. 2005; Guo et al. 2015; Tran and Ha-
Duong 2015). Priya and Gromiha (2019) revealed that
the length of polyQ in the aggregation of huntingtin pro-
tein is important for β-sheet formation and for elucidating
the pathological mechanism in Huntington disease.
Figure 4 shows the first and last snapshots from the
multi-copy MD simulations of the ‘VLVIY’ peptide as-
sembly. Studies showed that introducing the lysine resi-
due in the ‘VLVIY’ segment increased the solubility and

Table 5 Different kinetics prediction methods benchmarked on the test dataset

Protein information Change in aggregation rates as Δln(kapp) predicted by

Protein Length Mutation Structural
class

Experimental Prediction model

Chiti DuBay Tartaglia AggreRATE-
Disc

AggreRATE-
Pred

AbsoluRATE

AChE 14 S 8 A Short peptide − 1.66 − 1.04 0.64 − 0.17 Decrease − 1.39 0.19

AChE 14 H 4 A Short peptide − 0.83 − 0.59 0.05 1.28 Decrease − 0.96 0.38

AChE 14 F 3 A Short peptide − 1.56 2.03 0.21 − 3.09 Decrease − 1.41 − 0.36

α-Synuclein 140 H 50 A Helix − 0.12 − 0.39 − 0.17 − 0.6 Decrease 0.18 0.02

Aβ40 40 A 21 C Helix − 0.01 − 0.51 0.01 0.15 Decrease − 0.59 1.05

Acylphosphatase 98 E 29 R Helix − 1.54 0.91 − 0.3 − 1.47 Increase − 1.16 0.05

Barstar 89 S 14 C Helix 0.63 − 1.1 − 0.03 0.05 Increase − 0.35 1.18

Acylphosphatase 98 F 94 L Strand − 0.09 1.47 0.01 − 0.04 Decrease 0.56 − 0.04

Acylphosphatase 98 V 9 A Strand 0.13 1.49 0.01 − 0.04 Decrease − 0.05 0.08

AL-12 108 R 65 S Strand 0.92 − 1.36 0.12 0.5 Increase 1.02 − 0.09

Stefin B 98 G 50 E Strand − 0.69 0.66 0.21 0.68 Decrease − 0.48 0.06

Aβ40 40 E 3 R Coil 0.08 0.66 − 0.28 − 1.73 Increase − 0.41 0.09

Aβ42 42 D 23 N Coil − 0.33 − 1.61 − 0.23 − 0.55 Increase − 0.44 0.98

Aβ42 42 E 11 K Coil − 0.35 − 0.15 − 0.33 − 1.68 Decrease − 0.49 0.01

Aβ42 42 D 7 N Coil − 0.48 − 1.55 − 0.23 − 0.55 Decrease 0.14 − 0.02

Aβ42 42 E 22 G Coil − 1.51 − 0.68 − 0.27 − 0.72 Increase − 0.61 − 0.05

Acylphosphatase 98 L 65 V Coil 0.02 − 0.18 0.01 − 0.03 Increase − 0.38 0

Acylphosphatase 98 G 45 E Coil 1.09 0.67 0.21 0.63 Decrease 0.67 0.06

Insulin 51 T 8 H Coil − 0.77 0.72 0.13 0.16 Decrease − 0.2 − 1.75

Performance# -0.14 -0.08 0.41 73.7% 0.80 0.26

The test dataset used in the study is taken from the AggreRATE-Pred server
# The correlation between experimental and predicted change in aggregation rates from the respective server (percentage of correct prediction as increase/
decrease in aggregation rate upon mutation for AggreRATE-Disc)
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reduced the viscosity of a monoclonal antibody,
stamulumab (Nichols et al. 2015; Kumar et al. 2018).

Extending the spatio-temporal limits using coarse-
grained models

Coarse-grained models are simplified models of polypeptides
and their associated interactions. Depending on the depth of
abstraction and the level of resolution, coarse-grained models
can be categorized as phenomenological models, lower-
resolution representative models, and high-resolution coarse-
grained models (Morriss-Andrews and Shea 2015). The loss in
detail and accuracy of a model is compensated with increased
computational efficiency and inference from the extended spatio-
temporal scale of simulations. Coarse-grained models extend the
timescale of simulation beyond what is currently possible for the
atomistic simulations, thereby assisting in studies of protein ag-
gregation mechanisms, phase separation, and nanostructure for-
mation. Such simulations can also help derive thermodynamic
parameters of phase separation and fibril growth. All-atom and
coarse-grained models of α-synuclein protein are shown in Fig.
5. Advantages of coarse-grained models to extend the spatio-
temporal limitations of MD were put to use by Nguyen et al.
(Nguyen and Hall 2004a, b, 2005, 2006). Nguyen and Hall
(2004a) studied the phase diagram of the polyalanine peptide
system using DMD simulations. The authors constructed five
96-peptide simulations at various concentrations using the
PRIME model of the 16-residue polyalanine peptide. They
showed that the peptide exists in four distinctive single-phase
regions:α-helices, fibrils, nonfibrillarβ-sheets, and random coils
depending on concentration and temperature.

Marchut and Hall (2006, 2007) studied the aggregation of
polyglutamine and the role of side chains using an intermedi-
ate resolution model, PRIME, which showed the spontaneous
formation of long annular tube-like structures. Peng et al.
(2004) studied the stacking of the entire amyloid β 1–40 pep-
tide into β-sheet using discrete molecular simulation (DMD)
and coarse-grained modelling and showed that the peptide

system formed the stacking of β-strands at higher
temperatures and amorphous aggregates at lower
temperatures. Bellesia and Shea (2007, 2009) performed off-
lattice simulations of peptide aggregation using a coarse-
grained model, consisting of 2 and 1 beads representing back-
bone and Cβ, respectively, and analysed the kinetics, thermo-
dynamics, and aggregate structure through simulations of dif-
ferent peptide sequences. Interestingly, their work highlighted
the role of charged residues in stabilizing and changing the
preference of orientation of peptides during aggregation.

Singh et al. (2008) studied the effect of finite system size of
peptide aggregation by simulating all an atom-model of the
IAPP fragment (15–19) in the TIP3P water model using the
AMBER force field and discussed the effect of concentration
and system size on peptide aggregation. Magno et al. (2010)
studied the effect of molecular crowding on the aggregation of
an amphipathic peptide model through simulation of a 125-
peptide system of varying box size (150 to 290 Å). They
reported that crowders play a crucial role in accelerating the
nucleation of low-aggregation propensity peptides. Matthes
et al. (2011, 2012) studied the spontaneous steric zipper olig-
omerization of peptides 306–311 of tau protein, 12–17 of
insulin B chain, and 51–56 segment of alpha-synuclein using
an all-atommodel of a 10-peptide system. Kumar et al. (2019)
used MD simulation to analyse the aggregation propensity of
the three peptides in 24–33 (N-terminal domain), 126–136
(RNA recognition motif 1), and 247–254 (RNA recognition
motif 2) of human TDP-43. Wang et al. (2019) studied the
solubility of different oligomers and fibril models of amyloid-
beta (16–22) by measuring the equilibrium monomer concen-
tration in the system using the PRIME20 model.

Molecular dynamics simulations have also been used to
study the solubility and aggregation propensity of peptides
(Karandur et al. 2014). Frederix et al. (2011, 2015) explored
the self-assembly of the entire sequence space of dipeptides
(400) and tripeptides (8000) through coarse-grain simulations
using the MARTINI force field to measure the aggregation
propensity of the peptide and the nature of nanostructures.

Fig. 4 All-atom simulation of
peptide (VLVIY) assembly: a the
initial setup of 105 peptides sep-
arated by 1 nm distance from each
other and b the aggregated pep-
tides after a simulation time of
50 ns. VMD was used for the vi-
sualization (Humphrey et al.
1996)
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They showed that aggregation propensity depends on
hydrophobicity.

Understanding protein-protein interaction and
oligomerization

Simulations of protein-protein interactions and protein oligo-
merization provide valuable insights on the role of residue-
residue interactions, key structural motifs, and transitions in
dictating protein aggregation at an earlier stage. Brown and
Bevan (2016) investigated the oligomerization of amyloid-β
and its binding to membrane models through simulation of a
united-atommodel with tetramer and pentamer systems. They
explored the structural changes during oligomer-membrane
binding to understand the Aβ oligomer toxicity. Similar stud-
ies using MD have been employed to study the formation and
stability of oligomers of aggregation-prone protein such as
amyloid-β, TDP-43, and amylin and the role residue-residue
contact in oligomerization (Kumar et al. 2019; Berhanu and
Masunov 2014; Khatua and Bandyopadhyay 2017).
However, sampling the entire landscape of protein-protein
aggregation in an explicit solvent model is computationally

intensive on both by the spatial and temporal scales.
Alternatively, coarse-grainedmodels, implicit solvent models,
and peptide simulation have been widely used in the literature
(Morriss-Andrews and Shea 2014; Carballo-Pacheco and
Strodel 2016). Molecular dynamic simulations were also car-
ried out on immunoglobins to study the self-aggregation ten-
dency of the molecules (Buck et al. 2013, 2015; Tiller et al.
2017).

Beyond coarse-grained models, continuum modelling
has also been used to extend the spatio-temporal scale.
Continuum models have also been developed to study
the mesoscale properties of fibrils (Knowles and
Buehler 2011; Paparcone et al. 2011). In addition, sev-
eral techniques such as replica exchange molecular dy-
namics, Hamiltonian replica-permutation molecular dy-
namics, umbrella sampling, and metadynamics have also
been applied to tune, accelerate, and study protein ag-
gregation simulations (Barducci et al. 2006; Larini and
Shea 2012; Itoh and Okumura 2013, 2016; Zheng et al.
2016; Morriss-Andrews and Shea 2014, 2015; Carballo-
Pacheco and Strodel 2016). The Markov state model
(MSM) and adaptive sampling techniques have also

Fig. 5 Coarse-grained simulation
of protein aggregation: a all-atom
model, b Martini coarse-grained
model (Marrink et al., 2007), and
c aggregated structure obtained
from coarse-grained simulation of
α-synuclein protein. ChimeraX
was used for visualization
(Goddard et al. 2018)
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been used to study the transition states in protein olig-
omerization (Kelley et al. 2008; Jia et al. 2020).

Expanding horizons

Phase separation of proteins can lead to the formation of liquid
droplets, colloidal suspensions, gelation, and solid aggregates.
The main focus of the current review is on computational
techniques associated with liquid-to-solid phase separation
of proteins. Liquid-liquid phase separation (LLPS) driven by
intermolecular interactions is an equally important phenome-
non. LLPS is important for the formation of several biomo-
lecular condensates, which are essential for cellular and nu-
clear functions. Understanding the mechanism and identifica-
tion of proteins capable of liquid-liquid phase separation
would help in understanding complex biological processes
(Boeynaems et al. 2018). Choi et al. (2019) developed a lattice
model–based simulation engine for exploring the phase sepa-
ration of proteins. In this model, a protein molecule is
modelled as ‘stickers separated by spacer regions’ to represent
the regions that form inter-chain interactions. However, there
are still a couple of open questions: (i) how does a cell control
phase separation? and (ii) what decides the nature of the sep-
arated phase? These challenges offer new avenues for future
research. For example, a unified computational model to pre-
dict both solid and liquid phase separation of proteins and
peptides would help us understand cellular regulation and
the mechanisms of biocondensate formation.

In an alternate direction, Mishra et al. (2018) applied the
predictions from a protein aggregation prediction tool,
AGGRESCAN, to screen native structures of proteins and
their applications in protein tertiary structure prediction.
Further, the design of peptide inhibitors, which selectively
bind amyloid fibrils and fibril-forming proteins, is an active
area of research (Lu et al. 2019; Seidler et al. 2019). These
peptides bind to protofibrils and oligomers of amyloidogenic
proteins to mitigate the protein aggregation in neurodegener-
ative diseases. In silico tools to predict the self-assembly of
peptides have a wide range of applications. Several studies
have shown the bactericidal activity of self-assembling pep-
tides through the disruption of biofilm and cell membrane
(Khodaparast et al. 2018; Lombardi et al. 2019; Tucker et al.
2018). The development of in silico tools for the designing
and screening of such antimicrobial peptides could accelerate
and widen the field. Peptide self-assembly has also been wide-
ly studied for its structural properties as a drug carrier and a
scaffold in tissue engineering and constructing synthetic
nanomaterials (Esteras-Chopo et al. 2005; Gallardo et al.
2016; Gupta et al. 2020; Hauser et al. 2014; Knowles and
Mezzenga 2016). These diverging fields of protein aggrega-
tion provide scope and new horizon for the development of in
silico tools.

Conclusions and future directions

Protein aggregation is a multidimensional phenomenon that
involves diverse considerations such as stability of the native
state, total aggregation propensity of the protein sequence,
presence of aggregation-prone regions and gatekeeping resi-
dues, and environmental conditions such as concentration,
pH, and ionic strength of protein solutions. Protein deposits
such as tangles and plaques have been found in a diverse range
of human pathologies with an undebatable association to the
disease propagation itself. Predictions of the aggregation-
prone region, propensity and aggregation rate of a protein
sequence provide insights into its inherent tendency to drive
intermolecular interactions and amyloid fibril formation. MD
simulations have been instrumental in studying the protein
oligomer formation and stability and peptide aggregation.

Peptide assembly and nanostructure formation are
concentration-dependent and kinetically controlled phenome-
na. Studies have shown that external conditions could vary the
nature and structure of aggregates. The methods currently
available to predict the aggregation kinetics are still in the
nascent stages. However, with the increase in experimental
data, it may be possible to develop reliable next-generation
kinetics models using large datasets. The inclusion of complex
features such as pH, temperature, buffer, protein or ionic con-
centration, and agitating condition in computational models
could help predict the rates of aggregation with greater accu-
racy. Similar limitations are also applicable to APR prediction
tools. Most APR prediction tools assume the protein of inter-
est exists predominately in the unfolded state and do not in-
teract with other biomolecules. In contrast, cellular environ-
ments are highly crowded and only a small fraction of proteins
are unfolded. For example, studies have shown cross-seeding,
where a fibril fragment of a protein chain initiates amyloid
formation of another (Ren et al. 2019). The phenomenon of
cross-seeding is highly specific and mostly unidirectional.

In addition to the nucleation of aggregates, it is also impor-
tant to understand propagation of the aggregation process. For
example, what drives amyloid fibril polymorphism?
Polymorphism in amyloid fibrils refers to the multiplicity of
amyloid fibrillary structures formed by a given amyloidogenic
peptide or protein. Researchers attribute polymorphism to the
fibrillation kinetics and external conditions that influence the
aggregation process. Addressing the polymorphism in zipper
and protofibril structure predictions would pave ways for
predicting and understanding complex nanostructure forma-
tions, which in turn could be useful for the design of novel
biomaterials.

Understanding the molecular interactions that drive com-
plex phenomena such as nucleation, polymorphism of amy-
loid fibrils, cross-seeding, etc. is essential to fully understand
protein aggregations. Currently available experimental tech-
niques are capable of playing only a limited role in this regard.
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With the availability of increased computing power, multi-
scale molecular dynamics simulations are proving invaluable
in elucidating these interactions. Exploiting recent advance-
ments in sampling techniques, coarse-grained models, polar-
izable force fields, and constant-pH simulations shall enhance
our understanding of the molecular events that determine the
fate of protein aggregation.

Acknowledgements We thank the Bioinformatics Infrastructure Facility,
Department of Biotechnology, and the Indian Institute of Technology
Madras for computational facilities and the Ministry of Human
Resource and Development (MHRD) for HTRA scholarship to PR. We
thank WALTZ developers for sharing the executable.

References

Agrawal NJ, Helk B, Kumar S et al (2016) Computational tool for the
early screening of monoclonal antibodies for their viscosities. MAbs
8:43–48. https://doi.org/10.1080/19420862.2015.1099773

Ahmed AB, Znassi N, Château M-T, Kajava AV (2015) A structure-
based approach to predict predisposition to amyloidosis.
Alzheimers Dement 11:681–690. https://doi.org/10.1016/j.jalz.
2014.06.007

Angarica VE, Angulo A, Giner A et al (2014) PrionScan: an online
database of predicted prion domains in complete proteomes. BMC
Genomics 15:102. https://doi.org/10.1186/1471-2164-15-102

Astbury WT, Dickinson S, Bailey K (1935) The X-ray interpretation of
denaturation and the structure of the seed globulins. Biochem J 29:
2351–2360.1. https://doi.org/10.1042/bj0292351

Azriel R, Gazit E (2001) Analysis of the minimal amyloid-forming frag-
ment of the islet amyloid polypeptide. J Biol Chem 276:34156–
34161. https://doi.org/10.1074/jbc.M102883200

Barducci A, Chelli R, Procacci P et al (2006)Metadynamics simulation of
prion protein: β-structure stability and the early stages of
misfolding. J Am Chem Soc 128:2705–2710. https://doi.org/10.
1021/ja057076l

Beerten J, Van Durme J, Gallardo R, Capriotti E, Serpell L, Rousseau F,
Schymkowitz J (2015) WALTZ-DB: a benchmark database of
amyloidogenic hexapeptides. Bioinformatics 31(10):1698–1700

Bellesia G, Shea J-E (2007) Self-assembly of β-sheet forming peptides
into chiral fibrillar aggregates. J Chem Phys 126:245104. https://doi.
org/10.1063/1.2739547

Bellesia G, Shea J-E (2009) Effect of β-sheet propensity on peptide
aggregation. J Chem Phys 130:145103. https://doi.org/10.1063/1.
3108461

Belli M, Ramazzotti M, Chiti F (2011) Prediction of amyloid aggregation
in vivo. EMBO Rep 12:657–663. https://doi.org/10.1038/embor.
2011.116

Benson MD, Buxbaum JN, Eisenberg DS et al (2018) Amyloid nomen-
clature 2018: recommendations by the International Society of
Amyloidosis (ISA) nomenclature committee. Amyloid 25:215–
219. https://doi.org/10.1080/13506129.2018.1549825

Berhanu WM, Masunov AE (2014) Full length amylin oligomer aggre-
gation: insights from molecular dynamics simulations and implica-
tions for design of aggregation inhibitors. J Biomol Struct Dyn 32:
1651–1669. https://doi.org/10.1080/07391102.2013.832635

Bodi K, Prokaeva T, Spencer B et al (2009) AL-Base: a visual platform
analysis tool for the study of amyloidogenic immunoglobulin light
chain sequences. Amyloid 16:1–8. https://doi.org/10.1080/
13506120802676781

Boeynaems S, Alberti S, Fawzi NL et al (2018) Protein phase separation:
a new phase in cell biology. Trends Cell Biol 28:420–435. https://
doi.org/10.1016/j.tcb.2018.02.004

Bondarev SA, Bondareva OV, Zhouravleva GA, Kajava AV (2018)
BetaSerpentine: a bioinformatics tool for reconstruction of amyloid
structures. Bioinformatics. https://doi.org/10.1093/bioinformatics/
btx629

Brito R, DamasA, SaraivaM (2003) Amyloid formation by transthyretin:
from protein stability to protein aggregation. Curr Med Chem
Endocr Metab Agents 3:349–360. https://doi.org/10.2174/
1568013033483230

Brown AM, Bevan DR (2016) Molecular dynamics simulations of amy-
loid β-peptide (1-42): tetramer formation and membrane interac-
tions. Biophys J 111:937–949. https://doi.org/10.1016/j.bpj.2016.
08.001

Brudar S, Hribar-Lee B (2019) The role of buffers in wild-type HEWL
amyloid fibril formation mechanism. Biomolecules 9:65. https://doi.
org/10.3390/biom9020065

Bryan AW Jr, Menke M, Cowen LJ, Lindquist SL, Berger B (2009)
BETASCAN: probable beta-amyloids identified by pairwise proba-
bilistic analysis. PLoS Comput Biol 5(3):e1000333. https://doi.org/
10.1371/journal.pcbi.1000333

Bryan AW Jr, O’Donnell CW, MenkeM, Cowen LJ, Lindquist S, Berger
B (2012) STITCHER: dynamic assembly of likely amyloid and
prion β-structures from secondary structure predictions. Proteins
80(2):410–420. https://doi.org/10.1002/prot.23203

Buck PM, Kumar S, Singh SK (2013) Insights into the potential aggre-
gation liabilities of the b12 Fab fragment via elevated temperature
molecular dynamics. Protein Eng Des Sel 26:195–206. https://doi.
org/10.1093/protein/gzs099

Buck PM, Chaudhri A, Kumar S, Singh SK (2015) Highly viscous anti-
body solutions are a consequence of network formation caused by
domain − domain electrostatic complementarities: insights from
coarse-grained simulations. https://doi.org/10.1021/mp500485w

Burdukiewicz M, Sobczyk P, Rödiger S, Duda-Madej A, Mackiewicz P,
Kotulska M (2017) Amyloidogenic motifs revealed by n-gram anal-
ysis. Sci Rep 7(1):12961. https://doi.org/10.1038/s41598-017-
13210-9

Calamai M, Taddei N, Stefani M, Ramponi G, Chiti F (2003) Relative
influence of hydrophobicity and net charge in the aggregation of two
homologous proteins. Biochemistry 42(51):15078–15083

Carballo-Pacheco M, Strodel B (2016) Advances in the simulation of
protein aggregation at the atomistic scale. J Phys Chem B 120:
2991–2999. https://doi.org/10.1021/acs.jpcb.6b00059

Cecchini M, Curcio R, Pappalardo M, Melki R, Caflisch A (2006) A
molecular dynamics approach to the structural characterization of
amyloid aggregation. J Mol Biol 357(4):1306–1321. https://doi.org/
10.1016/j.jmb.2006.01.009

Chennamsetty N, Voynov V, Kayser V et al (2009) Design of therapeutic
proteins with enhanced stability. Proc Natl Acad Sci U S A 106:
11937–11942. https://doi.org/10.1073/pnas.0904191106

Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and
human disease. Annu Rev Biochem 75:333–366. https://doi.org/10.
1146/annurev.biochem.75.101304.123901

Chiti F, Calamai M, Taddei N et al (2002a) Studies of the aggregation of
mutant proteins in vitro provide insights into the genetics of amyloid
diseases. Proc Natl Acad Sci U S A 99:16419–16426. https://doi.
org/10.1073/pnas.212527999

Chiti F, Taddei N, Baroni F, Capanni C, Stefani M, Ramponi G, Dobson
CM (2002b) Kinetic partitioning of protein folding and aggregation.
Nat Struct Biol 9(2):137–143

Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM (2003)
Rationalization of the effects of mutations on peptide and protein
aggregation rates. Nature 424(6950):805–808

85Biophys Rev (2021) 13:71–89

https://doi.org/10.1080/19420862.2015.1099773
https://doi.org/10.1016/j.jalz.2014.06.007
https://doi.org/10.1016/j.jalz.2014.06.007
https://doi.org/10.1186/1471-2164-15-102
https://doi.org/10.1042/bj0292351
https://doi.org/10.1074/jbc.M102883200
https://doi.org/10.1021/ja057076l
https://doi.org/10.1021/ja057076l
https://doi.org/10.1063/1.2739547
https://doi.org/10.1063/1.2739547
https://doi.org/10.1063/1.3108461
https://doi.org/10.1063/1.3108461
https://doi.org/10.1038/embor.2011.116
https://doi.org/10.1038/embor.2011.116
https://doi.org/10.1080/13506129.2018.1549825
https://doi.org/10.1080/07391102.2013.832635
https://doi.org/10.1080/13506120802676781
https://doi.org/10.1080/13506120802676781
https://doi.org/10.1016/j.tcb.2018.02.004
https://doi.org/10.1016/j.tcb.2018.02.004
https://doi.org/10.1093/bioinformatics/btx629
https://doi.org/10.1093/bioinformatics/btx629
https://doi.org/10.2174/1568013033483230
https://doi.org/10.2174/1568013033483230
https://doi.org/10.1016/j.bpj.2016.08.001
https://doi.org/10.1016/j.bpj.2016.08.001
https://doi.org/10.3390/biom9020065
https://doi.org/10.3390/biom9020065
https://doi.org/10.1371/journal.pcbi.1000333
https://doi.org/10.1371/journal.pcbi.1000333
https://doi.org/10.1002/prot.23203
https://doi.org/10.1093/protein/gzs099
https://doi.org/10.1093/protein/gzs099
https://doi.org/10.1021/mp500485w
https://doi.org/10.1038/s41598-017-13210-9
https://doi.org/10.1038/s41598-017-13210-9
https://doi.org/10.1021/acs.jpcb.6b00059
https://doi.org/10.1016/j.jmb.2006.01.009
https://doi.org/10.1016/j.jmb.2006.01.009
https://doi.org/10.1073/pnas.0904191106
https://doi.org/10.1146/annurev.biochem.75.101304.123901
https://doi.org/10.1146/annurev.biochem.75.101304.123901
https://doi.org/10.1073/pnas.212527999
https://doi.org/10.1073/pnas.212527999


Choi J-M, Dar F, Pappu RV (2019) LASSI: a lattice model for simulating
phase transitions of multivalent proteins. PLoS Comput Biol 15:
e1007028. https://doi.org/10.1371/journal.pcbi.1007028

Conchillo-Solé O, de Groot NS, Avilés FX et al (2007) AGGRESCAN: a
server for the prediction and evaluation of “hot spots” of aggregation
in polypeptides. BMC Bioinform 8:65. https://doi.org/10.1186/
1471-2105-8-65

Dogan A (2017) Amyloidosis: insights from proteomics. Annu Rev
Pathol Mech Dis 12:277–304. https://doi.org/10.1146/annurev-
pathol-052016-100200

DuBay KF, Pawar AP, Chiti F, Zurdo J, Dobson CM, Vendruscolo M
(2004) Prediction of the absolute aggregation rates of amyloidogenic
polypeptide chains. J Mol Biol 341(5):1317–1326

Emily M, Talvas A, Delamarche C (2013) MetAmyl: a METa-predictor
for AMYLoid proteins. PLoS One 8(11):e79722. https://doi.org/10.
1371/journal.pone.0079722

Esteras-Chopo A, Serrano L, López de la Paz M (2005) The amyloid
stretch hypothesis: recruiting proteins toward the dark side. Proc
Natl Acad Sci U S A 102:16672–16677. https://doi.org/10.1073/
pnas.0505905102

Família C, Dennison SR, Quintas A, Phoenix DA (2015) Prediction of
peptide and protein propensity for amyloid formation. PLoS One
10(8):e0134679. https://doi.org/10.1371/journal.pone.0134679

Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004)
Prediction of sequence-dependent and mutational effects on the ag-
gregation of peptides and proteins. Nat Biotechnol 22(10):1302–
1306

Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies
and amyloid. Fold Des 3(1):R9–R23

Frederix PWJM, Ulijn RV, Hunt NT, Tuttle T (2011) Virtual screening
for dipeptide aggregation: toward predictive tools for peptide self-
assembly. J Phys Chem Lett 2:2380–2384. https://doi.org/10.1021/
jz2010573

Frederix PWJM, Scott GG, Abul-Haija YM et al (2015) Exploring the
sequence space for (tri-)peptide self-assembly to design and discov-
er new hydrogels. Nat Chem 7:30–37. https://doi.org/10.1038/
nchem.2122

Gallardo R, Ramakers M, De Smet F et al (2016) De novo design of a
biologically active amyloid. Science. 354:6313. https://doi.org/10.
1126/science.aah4949

Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2010) FoldAmyloid:
a method of prediction of amyloidogenic regions from protein se-
quence. Bioinformatics 26:326–332. https://doi.org/10.1093/
bioinformatics/btp691

Gasior P, Kotulska M (2014) FISH Amyloid – a new method for finding
amyloidogenic segments in proteins based on site specific co-
occurence of aminoacids. BMC Bioinform 15:54. https://doi.org/
10.1186/1471-2105-15-54

Gazit E (2002) A possible role for π‐stacking in the self-assembly of
amyloid fibrils. FASEB J 16(1). https://doi.org/10.1096/fj.01-
0442hyp

Gertz M. A. (2018) Annual clinical updates in hematological malignan-
cies : a continuing medical education series immunoglobulin light
chain amyloidosis : 2018 update on diagnosis , prognosis , and
treatment. 1169–1180. https://doi.org/10.1002/ajh.25149

Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH,
Ferrin TE (2018) UCSF ChimeraX: meeting modern challenges in
visualization and analysis. Protein Sci 27(1):14–25

Goldschmidt L, Teng PK, Riek R, Eisenberg D (2010) Identifying the
amylome, proteins capable of forming amyloid-like fibrils. Proc
Natl Acad Sci 107(8):3487–3492

Green AA, Hughes WL (1955) Protein fractionation on the basis of sol-
ubility in aqueous solutions of salts and organic solvents. Methods
Enzymol 1:67–90. https://doi.org/10.1016/0076-6879(55)01014-8

Gsponer J, Haberthur U, Caflisch A (2003) The role of side-chain inter-
actions in the early steps of aggregation: Molecular dynamics

simulations of an amyloid-forming peptide from the yeast prion
Sup35. Proceedings of the National Academy of Sciences 100 (9):
5154–5159. https://doi.org/10.1073/pnas.0835307100

Guo C, Côté S, Mousseau N, Wei G (2015) Distinct helix propensities
and membrane interactions of human and rat IAPP 1–19 monomers
in anionic lipid bilayers. J Phys ChemB 119:3366–3376. https://doi.
org/10.1021/jp5111357

Gupta S, Singh I, Sharma AK, Kumar P (2020) Ultrashort peptide self-
assembly: front-runners to transport drug and gene cargos. Front
Bioeng Biotechnol 8. https://doi.org/10.3389/fbioe.2020.00504

Hamodrakas SJ, Liappa C, Iconomidou VA (2007) Consensus prediction
of amyloidogenic determinants in amyloid fibril-forming proteins.
Int J Biol Macromol 41(3):295–300. https://doi.org/10.1016/j.
ijbiomac.2007.03.008

Hauser CA, Maurer-Stroh S, Martins IC (2014) Amyloid-based
nanosensors and nanodevices. Chem Soc Rev 43(15):5326–5345.
https://doi.org/10.1039/c4cs00082j

Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K (1992)
Substi tutions of hydrophobic amino acids reduce the
amyloidogenicity of Alzheimer’s disease βA4 peptides. J Mol
Biol 228(2):460–473

Hirota N, Edskes H, Hall D (2019) Unified theoretical description of the
kinetics of protein aggregation. Biophys Rev 11(2):191–208

Hortschansky P, Schroeckh V, Christopeit T, Zandomeneghi G, Fändrich
M (2005) The aggregation kinetics of Alzheimer’s β‐amyloid pep-
tide is controlled by stochastic nucleation. Protein Sci 14(7):1753–
1759

Iadanza MG, Jackson MP, Hewitt EW et al (2018) A new era for under-
standing amyloid structures and disease. Nat Rev Mol Cell Biol 19:
755–773. https://doi.org/10.1038/s41580-018-0060-8

Itoh SG, Okumura H (2013) Hamiltonian replica-permutation method
and its applications to an alanine dipeptide and amyloid-β (29–42)
peptides. J Comput Chem 34(29):2493–2497

Itoh SG, Okumura H (2016) Oligomer formation of amyloid-β (29–42)
from its monomers using the Hamiltonian replica-permutation mo-
lecular dynamics simulation. J Phys Chem B 120(27):6555–6561

Jain T, Sun T, Durand S et al (2017) Biophysical properties of the
clinical-stage antibody landscape. Proc Natl Acad Sci 114:944–
949. https://doi.org/10.1073/pnas.1616408114

Jia Z, Schmit JD, Chen J (2020) Amyloid assembly is dominated by
misregistered kinetic traps on an unbiased energy landscape. Proc
Natl Acad Sci 117:10322–10328. https://doi.org/10.1073/pnas.
1911153117

Karandur D, Wong KY, Pettitt BM (2014) Solubility and aggregation of
Gly5in water. J Phys Chem B 118(32):9565–9572. https://doi.org/
10.1021/jp503358n

Ke PC, Zhou R, Serpell LC, Riek R, Knowles TPJ, Lashuel HA, Gazit E,
Hamley IW, Davis TP, Fändrich M, Otzen DE, Chapman MR,
Dobson CM, Eisenberg DS, Mezzenga R (2020) Half a century of
amyloids: past, present and future. Chem Soc Rev 49(15):5473–
5509. https://doi.org/10.1039/C9CS00199A

Kelley NW, Vishal V, Krafft GA, Pande VS (2008) Simulating oligo-
merization at experimental concentrations and long timescales: a
Markov state model approach. J Chem Phys 129:214707. https://
doi.org/10.1063/1.3010881

Khatua P, Bandyopadhyay S (2017) In silico studies of the early stages of
aggregation of A β42 peptides. J Chem Sci 129:899–909. https://
doi.org/10.1007/s12039-017-1306-2

Khodaparast L, Khodaparast L, Gallardo R et al (2018) Aggregating
sequences that occur in many proteins constitute weak spots of bac-
terial proteostasis. Nat Commun 9:866. https://doi.org/10.1038/
s41467-018-03131-0

Kim C, Choi J, Lee SJ, Welsh WJ, Yoon S (2009) NetCSSP: web appli-
cation for predicting chameleon sequences and amyloid fibril for-
mation. Nucleic Acids Res 37(Web Server issue):W469–W473.
https://doi.org/10.1093/nar/gkp351

86 Biophys Rev (2021) 13:71–89

https://doi.org/10.1371/journal.pcbi.1007028
https://doi.org/10.1186/1471-2105-8-65
https://doi.org/10.1186/1471-2105-8-65
https://doi.org/10.1146/annurev-pathol-052016-100200
https://doi.org/10.1146/annurev-pathol-052016-100200
https://doi.org/10.1371/journal.pone.0079722
https://doi.org/10.1371/journal.pone.0079722
https://doi.org/10.1073/pnas.0505905102
https://doi.org/10.1073/pnas.0505905102
https://doi.org/10.1371/journal.pone.0134679
https://doi.org/10.1021/jz2010573
https://doi.org/10.1021/jz2010573
https://doi.org/10.1038/nchem.2122
https://doi.org/10.1038/nchem.2122
https://doi.org/10.1126/science.aah4949
https://doi.org/10.1126/science.aah4949
https://doi.org/10.1093/bioinformatics/btp691
https://doi.org/10.1093/bioinformatics/btp691
https://doi.org/10.1186/1471-2105-15-54
https://doi.org/10.1186/1471-2105-15-54
https://doi.org/10.1096/fj.01-0442hyp
https://doi.org/10.1096/fj.01-0442hyp
https://doi.org/10.1002/ajh.25149
https://doi.org/10.1016/0076-6879(55)01014-8
https://doi.org/10.1073/pnas.0835307100
https://doi.org/10.1021/jp5111357
https://doi.org/10.1021/jp5111357
https://doi.org/10.3389/fbioe.2020.00504
https://doi.org/10.1016/j.ijbiomac.2007.03.008
https://doi.org/10.1016/j.ijbiomac.2007.03.008
https://doi.org/10.1039/c4cs00082j
https://doi.org/10.1038/s41580-018-0060-8
https://doi.org/10.1073/pnas.1616408114
https://doi.org/10.1073/pnas.1911153117
https://doi.org/10.1073/pnas.1911153117
https://doi.org/10.1021/jp503358n
https://doi.org/10.1021/jp503358n
https://doi.org/10.1039/C9CS00199A
https://doi.org/10.1063/1.3010881
https://doi.org/10.1063/1.3010881
https://doi.org/10.1007/s12039-017-1306-2
https://doi.org/10.1007/s12039-017-1306-2
https://doi.org/10.1038/s41467-018-03131-0
https://doi.org/10.1038/s41467-018-03131-0
https://doi.org/10.1093/nar/gkp351


Kintzing JR, Filsinger Interrante MV, Cochran JR (2016) Emerging strat-
egies for developing next-generation protein therapeutics for cancer
treatment. Trends Pharmacol Sci 37:993–1008. https://doi.org/10.
1016/j.tips.2016.10.005

Knowles TPJ, BuehlerMJ (2011) Nanomechanics of functional and path-
ological amyloid materials. Nat Nanotechnol 6:469–479. https://doi.
org/10.1038/nnano.2011.102

Knowles TPJ, Mezzenga R (2016) Amyloid fibrils as building blocks for
natural and artificial functional materials. AdvMater 28:6546–6561.
https://doi.org/10.1002/adma.201505961

Kumar S, Roffi K, Tomar, Dheeraj S et al (2018) Rational optimization of
a monoclonal antibody for simultaneous improvements in its solu-
tion properties and biological activity. Protein Eng Des Sel 31:313–
325

Kumar V, Wahiduzzaman PA et al (2019) Exploring the aggregation-
prone regions from structural domains of human TDP-43. Biochim
Biophys Acta, Proteins Proteomics 1867:286–296. https://doi.org/
10.1016/j.bbapap.2018.10.008

Kuriata A, Iglesias V, Pujols J, Kurcinski M, Kmiecik S, Ventura S
(2019) Aggrescan3D (A3D) 2.0: prediction and engineering of pro-
tein solubility. Nucleic Acids Res 47(W1):W300–W307. https://doi.
org/10.1093/nar/gkz321

Kyle RA, Bayrd ED (1975) Amyloidosis: review of 236 cases. Medicine
(Baltimore) 54:271–299. https://doi.org/10.1097/00005792-
197507000-00001

Lagassé HAD, Alexaki A, Simhadri VL et al (2017) Recent advances in
(therapeutic protein) drug development. F1000Research 6:113.
https://doi.org/10.12688/f1000research.9970.1

Larini L, Shea J-E (2012) Role ofβ-hairpin formation in aggregation: the
self-assembly of the amyloid-β(25−35) peptide. Biophys J 103:
576–586

Lauer TM, Agrawal NJ, Chennamsetty N, Egodage K, Helk B, Trout BL
(2012) Developability index: a rapid in silico tool for the screening
of antibody aggregation propensity. J Pharm Sci 101(1):102–115.
https://doi.org/10.1002/jps.22758

Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary
and pharmacological classification. Nat Rev Drug Discov 7:21–39.
https://doi.org/10.1038/nrd2399

Leem J, Dunbar J, Georges G, Shi J, Deane CM, (2016) ABodyBuilder:
Automated antibody structure prediction with data–driven accuracy
estimation. mAbs 8(7):1259–1268

Li W, Prabakaran P, Chen W et al (2016) Antibody aggregation: insights
from sequence and structure. Antibodies 5:19. https://doi.org/10.
3390/antib5030019

Liaw C, Tung CW, Ho SY (2013) Prediction and analysis of antibody
amyloidogenesis from sequences. PLoS One 8(1):e53235. https://
doi.org/10.1371/journal.pone.0053235

Lombardi L, Shi Y, Falanga A et al (2019) Enhancing the potency of
antimicrobial peptides through molecular engineering and self-as-
sembly. Biomacromolecules 20:1362–1374. https://doi.org/10.
1021/acs.biomac.8b01740

López de la Paz M, Serrano L (2004) Sequence determinants of amyloid
fibril formation. Proc Natl Acad Sci U SA 101(1):87–92. https://doi.
org/10.1073/pnas.2634884100

López De La Paz M, De Mori GMS, Serrano L, Colombo G (2005)
Sequence dependence of amyloid fibril formation: insights from
molecular dynamics simulations. J Mol Biol 349:583–596. https://
doi.org/10.1016/j.jmb.2005.03.081

Louros N, Konstantoulea K, De Vleeschouwer M, Ramakers M,
Schymkowitz J, Rousseau F (2020) WALTZ-DB 2.0: an updated
database containing structural information of experimentally deter-
mined amyloid-forming peptides. Nucleic Acids Res 48(D1):D389–
D393. https://doi.org/10.1093/nar/gkz758

Lu J, Cao Q,WangC et al (2019) Structure-based peptide inhibitor design
of amyloid-β aggregation. Front Mol Neurosci 12:54. https://doi.
org/10.3389/fnmol.2019.00054

Ma B, Nussinov R (2002a) Molecular dynamics simulations of alanine
rich β-sheet oligomers: insight into amyloid formation. Protein Sci
11:2335–2350. https://doi.org/10.1110/ps.4270102

Ma B, Nussinov R (2002b) Stabilities and conformations of Alzheimer’s
beta-amyloid peptide oligomers (Abeta 16-22, Abeta 16-35, and
Abeta 10-35): sequence effects. Proc Natl Acad Sci U S A 99:
14126–14131. https://doi.org/10.1073/pnas.212206899

Magno A, Caflisch A, Pellarin R (2010) Crowding effects on amyloid
aggregation kinetics. J Phys Chem Lett 1:3027–3032. https://doi.
org/10.1021/jz100967z

Marchut AJ, Hall CK (2006) Side-chain interactions determine amyloid
formation by model polyglutamine peptides in molecular dynamics
simulations. Biophys J 90(12):4574–4584. https://doi.org/10.1529/
biophysj.105.079269

Marchut AJ, Hall CK (2007) Effects of chain length on the aggregation of
model polyglutamine peptides: molecular dynamics simulations.
Proteins Struct Funct Genet. https://doi.org/10.1002/prot.21132

Matthes D, Gapsys V, Daebel V, de Groot BL (2011) Mapping the con-
formational dynamics and pathways of spontaneous steric zipper
peptide oligomerization. PLoS One 6:e19129. https://doi.org/10.
1371/journal.pone.0019129

Matthes D, Gapsys V, De Groot BL (2012) Driving forces and structural
determinants of steric zipper peptide oligomer formation elucidated
by atomistic simulations. J Mol Biol 421:390–416. https://doi.org/
10.1016/j.jmb.2012.02.004

Maurer-Stroh S, Debulpaep M, Kuemmerer N et al (2010) Exploring the
sequence determinants of amyloid structure using position-specific
scoring matrices. Nat Methods 7:237–242. https://doi.org/10.1038/
nmeth.1432

Meric G, Robinson AS, Roberts CJ (2017) Driving forces for nonnative
protein aggregation and approaches to predict aggregation-prone
regions. Annu Rev Chem Biomol Eng 8:139–159. https://doi.org/
10.1146/annurev-chembioeng-060816-101404

Mishra A, Ranganathan S, Jayaram B, Sattar A (2018) Role of solvent
accessibility for aggregation-prone patches in protein folding. Sci
Rep 8:12896. https://doi.org/10.1038/s41598-018-31289-6

Morel B, Varela L, Azuaga AI, Conejero-Lara F (2010) Environmental
conditions affect the kinetics of nucleation of amyloid fibrils and
determine their morphology. Biophys J 99(11):3801–3810

Morris AM, Watzky MA, Finke RG (2009) Protein aggregation kinetics,
mechanism, and curve-fitting: a review of the literature. Biochim
Biophys Acta (BBA)-Proteins Proteom 1794(3):375–397

Morriss-Andrews A, Shea JE (2014) Simulations of protein aggregation:
insights from atomistic and coarse-grained models. J Phys Chem
Lett 5:1899–1908. https://doi.org/10.1021/jz5006847

Morriss-Andrews A, Shea J-E (2015) Computational studies of protein
aggregation: methods and applications. Annu Rev Phys Chem 66:
643–666. https://doi.org/10.1146/annurev-physchem-040513-
103738

Muñoz V, Serrano L (1994) Elucidating the folding problem of helical
peptides using empirical parameters. Nat Struct Biol 1(6):399–409

Nelson R, Sawaya MR, Balbirnie M et al (2005) Structure of the cross-
beta spine of amyloid-like fibrils. Nature 435:773–778. https://doi.
org/10.1038/nature03680

Nguyen HD, Hall CK (2004a) Phase diagrams describing fibrillization by
polyalanine peptides. Biophys J 87:4122–4134. https://doi.org/10.
1529/biophysj.104.047159

Nguyen HD, Hall CK (2004b) Molecular dynamics simulations of spon-
taneous fibril formation by random-coil peptides. Proc Natl Acad
Sci U S A 101:16180–16185. https://doi.org/10.1073/pnas.
0407273101

Nguyen HD, Hall CK (2005) Kinetics of fibril formation by polyalanine
peptides. J Biol Chem 280:9074–9082. https://doi.org/10.1074/jbc.
M407338200

87Biophys Rev (2021) 13:71–89

https://doi.org/10.1016/j.tips.2016.10.005
https://doi.org/10.1016/j.tips.2016.10.005
https://doi.org/10.1038/nnano.2011.102
https://doi.org/10.1038/nnano.2011.102
https://doi.org/10.1002/adma.201505961
https://doi.org/10.1016/j.bbapap.2018.10.008
https://doi.org/10.1016/j.bbapap.2018.10.008
https://doi.org/10.1093/nar/gkz321
https://doi.org/10.1093/nar/gkz321
https://doi.org/10.1097/00005792-197507000-00001
https://doi.org/10.1097/00005792-197507000-00001
https://doi.org/10.12688/f1000research.9970.1
https://doi.org/10.1002/jps.22758
https://doi.org/10.1038/nrd2399
https://doi.org/10.3390/antib5030019
https://doi.org/10.3390/antib5030019
https://doi.org/10.1371/journal.pone.0053235
https://doi.org/10.1371/journal.pone.0053235
https://doi.org/10.1021/acs.biomac.8b01740
https://doi.org/10.1021/acs.biomac.8b01740
https://doi.org/10.1073/pnas.2634884100
https://doi.org/10.1073/pnas.2634884100
https://doi.org/10.1016/j.jmb.2005.03.081
https://doi.org/10.1016/j.jmb.2005.03.081
https://doi.org/10.1093/nar/gkz758
https://doi.org/10.3389/fnmol.2019.00054
https://doi.org/10.3389/fnmol.2019.00054
https://doi.org/10.1110/ps.4270102
https://doi.org/10.1073/pnas.212206899
https://doi.org/10.1021/jz100967z
https://doi.org/10.1021/jz100967z
https://doi.org/10.1529/biophysj.105.079269
https://doi.org/10.1529/biophysj.105.079269
https://doi.org/10.1002/prot.21132
https://doi.org/10.1371/journal.pone.0019129
https://doi.org/10.1371/journal.pone.0019129
https://doi.org/10.1016/j.jmb.2012.02.004
https://doi.org/10.1016/j.jmb.2012.02.004
https://doi.org/10.1038/nmeth.1432
https://doi.org/10.1038/nmeth.1432
https://doi.org/10.1146/annurev-chembioeng-060816-101404
https://doi.org/10.1146/annurev-chembioeng-060816-101404
https://doi.org/10.1038/s41598-018-31289-6
https://doi.org/10.1021/jz5006847
https://doi.org/10.1146/annurev-physchem-040513-103738
https://doi.org/10.1146/annurev-physchem-040513-103738
https://doi.org/10.1038/nature03680
https://doi.org/10.1038/nature03680
https://doi.org/10.1529/biophysj.104.047159
https://doi.org/10.1529/biophysj.104.047159
https://doi.org/10.1073/pnas.0407273101
https://doi.org/10.1073/pnas.0407273101
https://doi.org/10.1074/jbc.M407338200
https://doi.org/10.1074/jbc.M407338200


Nguyen HD, Hall CK (2006) Spontaneous fibril formation by
polyalanines; discontinuous molecular dynamics simulations. J
Am Chem Soc 128:1890–1901. https://doi.org/10.1021/ja0539140

Nichols P, Li L, Kumar S et al (2015) Rational design of viscosity reduc-
ing mutants of a monoclonal antibody: hydrophobic versus electro-
static inter-molecular interactions. MAbs 7:212–230. https://doi.org/
10.4161/19420862.2014.985504

O’Donnell CW,Waldispühl J, Lis M, Halfmann R, Devadas S, Lindquist
S, Berger B (2011) A method for probing the mutational landscape
of amyloid structure. Bioinformatics 27(13):i34–i42. https://doi.org/
10.1093/bioinformatics/btr238

Orlando G, Silva A, Macedo-Ribeiro S, Raimondi D, Vranken W (2020)
Accurate prediction of protein beta-aggregation with generalized
statistical potentials. Bioinformatics 36(7):2076–2081

Ow SY, Dunstan DE (2013) The effect of concentration, temperature and
stirring on hen egg white lysozyme amyloid formation. Soft Matter
9(40):9692–9701

Paparcone R, Cranford SW, Buehler MJ (2011) Self-folding and aggre-
gation of amyloid nanofibrils. Nanoscale 3:1748–1755. https://doi.
org/10.1039/c0nr00840k

Pawlicki S, Le Béchec A, Delamarche C (2008) AMYPdb: a database
dedicated to amyloid precursor proteins. BMC Bioinform 9(1):273

Peng S, Ding F, Urbanc B et al (2004) Discrete molecular dynamics
simulations of peptide aggregation. Phys Rev E Stat Nonlinear
Soft Matter Phys 69:041908. https://doi.org/10.1103/PhysRevE.
69.041908

Polanco C, Samaniego JL, Uversky VN, Castañón-González JA, Buhse
T, Leopold-Sordo M, ... Arias-Estrada M (2015) Identification of
proteins associated with amyloidosis by polarity index method. Acta
Biochim Polonica 62(1)

Prabakaran R, Rawat P, Kumar S, Gromiha MM (2020) ANuPP: a ver-
satile tool to predict aggregation nucleating regions in peptides and
proteins. J Mol Biol (in press). https://doi.org/10.1016/j.jmb.2020.
11.006

Priya SB, Gromiha MM (2019) Structural insights into the aggregation
mechanism of huntingtin exon 1 protein fragment with different
polyQ-lengths. J Cell Biochem 120(6):10519–10529. https://doi.
org/10.1002/jcb.28338

Ramírez-Alvarado M, Merkel JS, Regan L (2000) A systematic explora-
tion of the influence of the protein stability on amyloid fibril forma-
tion in vitro. Proc Natl Acad Sci 97(16):8979–8984

Rawat P, Kumar S, Gromiha MM (2018) An in-silico method for identi-
fying aggregation rate enhancer and mitigator mutations in proteins.
Int J Biol Macromol 118:1157–1167

Rawat P, Prabakaran R, Sakthivel R, Mary Thangakani A, Kumar S,
Gromiha MM (2020a) CPAD 2.0: a repository of curated experi-
mental data on aggregating proteins and peptides. Amyloid 27(2):
128–133

Rawat P, Prabakaran R, Kumar S, Gromiha MM (2020b) AggreRATE-
Pred: a mathematical model for the prediction of change in aggre-
gation rate upon point mutation. Bioinformatics 36(5):1439–1444

Ren B, Zhang Y, Zhang M, Liu Y, Zhang D, Gong X, Feng Z, Tang J,
ChangY, Zheng J (2019) Fundamentals of cross-seeding of amyloid
proteins: an introduction. J Mater Chem B 7(46):7267–7282

Roberts CJ (2014) Protein aggregation and its impact on product quality.
Curr Opin Biotechnol 30:211–217. https://doi.org/10.1016/j.copbio.
2014.08.001

Sankar K, Krystek SR, Carl SM et al (2018) AggScore: Prediction of
aggregation-prone regions in proteins based on the distribution of
surface patches. Proteins Struct Funct Bioinforma 86:1147–1156.
https://doi.org/10.1002/prot.25594

Sawaya MR, Sambashivan S, Nelson R et al (2007) Atomic structures of
amyloid cross-β spines reveal varied steric zippers. Nature 447:
453–457. https://doi.org/10.1038/nature05695

Seidler PM, Boyer DR, Murray KA et al (2019) Structure-based inhibi-
tors halt prion-like seeding by Alzheimer’s disease-and tauopathy-

derived brain tissue samples. J Biol Chem 294:16451–16464.
https://doi.org/10.1074/jbc.RA119.009688

Shobana R, Pandaranayaka EP (2014) ProADD: a database on protein
aggregation diseases. Bioinformation 10(6):390

Siepen JA, Westhead DR (2002) The fibril_one on‐line database: muta-
tions, experimental conditions, and trends associated with amyloid
fibril formation. Protein Sci 11(7):1862–1866

Singh G, Brovchenko IV, Oleinikova A, Winter R (2008) Peptide aggre-
gation in finite systems. Biophys J 95:3208–3221. https://doi.org/
10.1529/biophysj.108.136226

Sipe JD, Cohen AS (2000) Review: History of the amyloid fibril. J Struct
Biol 130:88–98. https://doi.org/10.1006/jsbi.2000.4221

Sunde M, Blake C (1997) The structure of amyloid fibrils by electron
microscopy and x-ray diffraction. Adv Protein Chem 50:123–159.
https://doi.org/10.1016/s0065-3233(08)60320-4

Swuec P, Lavatelli F, Tasaki M et al (2019) Cryo-EM structure of cardiac
amyloid fibrils from an immunoglobulin light chain AL amyloidosis
patient. Nat Commun 10:1269

Takács K, Varga B, Grolmusz V (2019) PDB _Amyloid: an extended live
amyloid structure list from the PDB. FEBS Open Bio 9(1):185–190

Tartaglia GG, Vendruscolo M (2008) The Zyggregator method for
predicting protein aggregation propensities. Chem Soc Rev 37:
1395–1401. https://doi.org/10.1039/b706784b

Tartaglia GG, Cavalli A, Pellarin R, Caflisch A (2004) The role of aro-
maticity, exposed surface, and dipole moment in determining pro-
tein aggregation rates. Protein Sci 13(7):1939–1941

Tartaglia GG, Cavalli A, Pellarin R, Caflisch A (2005) Prediction of
aggregation rate and aggregation-prone segments in polypeptide
sequences. Protein Sci 14(10):2723–2734. https://doi.org/10.1110/
ps.051471205

Thangakani AM, Kumar S, Nagarajan R et al (2014) GAP: towards
almost 100 percent prediction for β-strand-mediated aggregating
peptides with distinct morphologies. Bioinformatics 30:1983–
1990. https://doi.org/10.1093/bioinformatics/btu167

Thangakani AM, Nagarajan R, Kumar S, Sakthivel R, Velmurugan D,
Gromiha MM (2016) CPAD, curated protein aggregation database:
a repository of manually curated experimental data on protein and
peptide aggregation. PLoS One 11(4):e0152949

Thompson MJ, Sievers SA, Karanicolas J et al (2006) The 3D profile
method for identifying fibril-forming segments of proteins. Proc
Natl Acad Sci 103:4074–4078. https://doi.org/10.1073/pnas.
0511295103

Tian J, Wu N, Guo J, Fan Y (2009) Prediction of amyloid fibril-forming
segments based on a support vector machine. BMC Bioinform 10
Suppl 1(Suppl 1):S45. https://doi.org/10.1186/1471-2105-10-S1-
S45

Tiller KE, Li L, Kumar S et al (2017) Arginine mutations in antibody
complementarity-determining regions display context-dependent
affinity/specificity trade-offs. J Biol Chem 292:16638–16652.
https://doi.org/10.1074/jbc.M117.783837

Tjernberg L, Hosia W, Bark N, Thyberg J, Johansson J (2002) Charge
attraction and β propensity are necessary for amyloid fibril forma-
tion from tetrapeptides. J Biol Chem 277(45):43243–43246

Tran L, Ha-Duong T (2015) Exploring the Alzheimer amyloid-β peptide
conformational ensemble: a review of molecular dynamics ap-
proaches. Peptides 69:86–91. https://doi.org/10.1016/j.peptides.
2015.04.009

Tsolis AC, Papandreou NC, Iconomidou VA, Hamodrakas SJ (2013) A
consensus method for the prediction of ‘aggregation-prone’ peptides
in globular proteins. PLoS One 8(1):e54175. https://doi.org/10.
1371/journal.pone.0054175

Tucker AT, Leonard SP, DuBois CD, Knauf GA, Cunningham AL,
Wilke CO, Trent MS, Davies BW (2018) Discovery of Next-
Generation Antimicrobials through Bacterial Self-Screening of
Surface-Displayed Peptide Libraries. Cell 172(3):618.e13–
628.e13. https://doi.org/10.1016/j.cell.2017.12.009

88 Biophys Rev (2021) 13:71–89

https://doi.org/10.1021/ja0539140
https://doi.org/10.4161/19420862.2014.985504
https://doi.org/10.4161/19420862.2014.985504
https://doi.org/10.1093/bioinformatics/btr238
https://doi.org/10.1093/bioinformatics/btr238
https://doi.org/10.1039/c0nr00840k
https://doi.org/10.1039/c0nr00840k
https://doi.org/10.1103/PhysRevE.69.041908
https://doi.org/10.1103/PhysRevE.69.041908
https://doi.org/10.1016/j.jmb.2020.11.006
https://doi.org/10.1016/j.jmb.2020.11.006
https://doi.org/10.1002/jcb.28338
https://doi.org/10.1002/jcb.28338
https://doi.org/10.1016/j.copbio.2014.08.001
https://doi.org/10.1016/j.copbio.2014.08.001
https://doi.org/10.1002/prot.25594
https://doi.org/10.1038/nature05695
https://doi.org/10.1074/jbc.RA119.009688
https://doi.org/10.1529/biophysj.108.136226
https://doi.org/10.1529/biophysj.108.136226
https://doi.org/10.1006/jsbi.2000.4221
https://doi.org/10.1016/s0065-3233(08)60320-4
https://doi.org/10.1039/b706784b
https://doi.org/10.1110/ps.051471205
https://doi.org/10.1110/ps.051471205
https://doi.org/10.1093/bioinformatics/btu167
https://doi.org/10.1073/pnas.0511295103
https://doi.org/10.1073/pnas.0511295103
https://doi.org/10.1186/1471-2105-10-S1-S45
https://doi.org/10.1186/1471-2105-10-S1-S45
https://doi.org/10.1074/jbc.M117.783837
https://doi.org/10.1016/j.peptides.2015.04.009
https://doi.org/10.1016/j.peptides.2015.04.009
https://doi.org/10.1371/journal.pone.0054175
https://doi.org/10.1371/journal.pone.0054175
https://doi.org/10.1016/j.cell.2017.12.009


Usmani SS, Bedi G, Samuel JS et al (2017) THPdb: Database of FDA-
approved peptide and protein therapeutics. PLoS One 12:1–12.
https://doi.org/10.1371/journal.pone.0181748

Varadi M, De Baets G, Vranken WF et al (2018) AmyPro: a database of
proteins with validated amyloidogenic regions. Nucleic Acids Res
46:D387–D392. https://doi.org/10.1093/nar/gkx950

Ventura S, Zurdo J, Narayanan S et al (2004) Short amino acid stretches
can mediate amyloid formation in globular proteins: the Src homol-
ogy 3 (SH3) case. Proc Natl Acad Sci U S A 101:7258–7263.
https://doi.org/10.1073/pnas.0308249101

Walsh I, Seno F, Tosatto SCE, Trovato A (2014) PASTA 2.0: An im-
proved server for protein aggregation prediction. Nucleic Acids Res
42:301–307. https://doi.org/10.1093/nar/gku399

Wang X, Das TK, Singh SK, Kumar S (2009) Potential aggregation
prone regions in biotherapeutics: a survey of commercial monoclo-
nal antibodies. MAbs 1:254–267. https://doi.org/10.4161/mabs.1.3.
8035

Wang Y, Bunce SJ, Radford SE, Wilson AJ, Auer S, Hall CK (2019)
Thermodynamic phase diagram of amyloid-β (16–22) peptide. Proc
Natl Acad Sci 116(6):2091–2096. https://doi.org/10.1073/pnas.
1819592116

Wojciechowski JW, Kotulska M (2020) PATH - Prediction of
Amyloidogenicity by Threading and Machine Learning. Sci Rep
10(1):7721. https://doi.org/10.1038/s41598-020-64270-3

Wozniak PP, Kotulska M (2015) AmyLoad: website dedicated to
amyloidogenic protein fragments. Bioinformatics 31(20):3395–
3397

Wu C, Lei H, Duan Y (2005) Elongation of ordered peptide aggregate of
an amyloidogenic hexapeptide NFGAIL observed in molecular dy-
namics simulations with explicit solvent. J Am Chem Soc 127:
13530–13537. https://doi.org/10.1021/ja050767x

Yagi-Utsumi M, Yanaka S, Song C et al (2020) Characterization of am-
yloid β fibril formation under microgravity conditions. NPJ
Micrograv 6:17. https://doi.org/10.1038/s41526-020-0107-y

YangW, Tan P, Fu X, Hong L (2019) Prediction of amyloid aggregation
rates by machine learning and feature selection. J Chem Phys
151(8):084106

Zambrano R, Jamroz M, Szczasiuk A et al (2015) AGGRESCAN3D
(A3D): server for prediction of aggregation properties of protein
structures. Nucleic Acids Res 43:W306–W313. https://doi.org/10.
1093/nar/gkv359

Zanuy D, Nussinov R (2003) The sequence dependence of fiber organi-
zation. A comparative molecular dynamics study of the islet amy-
loid polypeptide segments 22-27 and 22-29. J Mol Biol 329:565–
584. https://doi.org/10.1016/S0022-2836(03)00491-1

Zanuy D, Ma B, Nussinov R (2003) Short peptide amyloid organization:
stabilities and conformations of the islet amyloid peptide NFGAIL.
Biophys J 84:1884–1894. https://doi.org/10.1016/S0006-3495(03)
74996-0

Zemla A, VenclovasČ, Fidelis K, Rost B (1999) Amodified definition of
Sov, a segment-based measure for protein secondary structure pre-
diction assessment. Proteins Struct Funct Genet 34(2):220–223.
https://doi.org/10.1002/(SICI)1097-0134(19990201)34:2<220::
AID-PROT7>3.0.CO;2-K

Zhang Z, Chen H, Lai L (2007) Identification of amyloid fibril-forming
segments based on structure and residue-based statistical potential.
Bioinformatics (Oxford, England) 23(17):2218–2225. https://doi.
org/10.1093/bioinformatics/btm325

Zheng W, Tsai MY, Chen M, Wolynes PG (2016) Exploring the aggre-
gation free energy landscape of the amyloid-β protein (1-40). Proc
Natl Acad Sci U S A 113(42):11835–11840. https://doi.org/10.
1073/pnas.1612362113

Zibaee S, Makin OS, Goedert M, Serpell LC (2007) A simple algorithm
locates beta-strands in the amyloid fibril core of alpha-synuclein,
Abeta, and tau using the amino acid sequence alone. Protein Sci
16(5):906–918. https://doi.org/10.1110/ps.062624507

Zurdo J (2013) Developability assessment as an early de-risking tool for
biopharmaceutical development. Pharm Bioprocess 1:29–50.
https://doi.org/10.4155/pbp.13.3

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

89Biophys Rev (2021) 13:71–89

https://doi.org/10.1371/journal.pone.0181748
https://doi.org/10.1093/nar/gkx950
https://doi.org/10.1073/pnas.0308249101
https://doi.org/10.1093/nar/gku399
https://doi.org/10.4161/mabs.1.3.8035
https://doi.org/10.4161/mabs.1.3.8035
https://doi.org/10.1073/pnas.1819592116
https://doi.org/10.1073/pnas.1819592116
https://doi.org/10.1038/s41598-020-64270-3
https://doi.org/10.1021/ja050767x
https://doi.org/10.1038/s41526-020-0107-y
https://doi.org/10.1093/nar/gkv359
https://doi.org/10.1093/nar/gkv359
https://doi.org/10.1016/S0022-2836(03)00491-1
https://doi.org/10.1016/S0006-3495(03)74996-0
https://doi.org/10.1016/S0006-3495(03)74996-0
https://doi.org/10.1002/(SICI)1097-0134(19990201)34:2<220::AID-PROT7>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1097-0134(19990201)34:2<220::AID-PROT7>3.0.CO;2-K
https://doi.org/10.1093/bioinformatics/btm325
https://doi.org/10.1093/bioinformatics/btm325
https://doi.org/10.1073/pnas.1612362113
https://doi.org/10.1073/pnas.1612362113
https://doi.org/10.1110/ps.062624507
https://doi.org/10.4155/pbp.13.3

	Protein aggregation: in silico algorithms and applications
	Abstract
	Introduction
	Databases for protein aggregation
	In silico methods and tools for protein aggregation
	Aggregation-prone region and aggregation propensity prediction
	Sequence-based approaches to predict protein aggregation
	Structure-based approaches

	Comparison of APR prediction tools
	Aggregation kinetic prediction tool
	Methods to predict change in aggregation rate upon point mutation
	Methods to predict the absolute aggregation rate

	Comparison of aggregation kinetics prediction methods

	Molecular dynamics approach
	Atomic simulation of peptide assembly
	Extending the spatio-temporal limits using coarse-grained models
	Understanding protein-protein interaction and oligomerization

	Expanding horizons
	Conclusions and future directions
	References


