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Abstract
Precise delineation of the ischemic lesion from unimodal Magnetic Resonance Imaging (MRI) is a challenging task due to 
the subtle intensity difference between the lesion and normal tissues. Hence, multispectral MRI modalities are used for char-
acterizing the properties of brain tissues. Traditional lesion detection methods rely on extracting significant hand-engineered 
features to differentiate normal and abnormal brain tissues. But the identification of those discriminating features is quite 
complex, as the degree of differentiation varies according to each modality. This can be addressed well by Convolutional 
Neural Networks (CNN) which supports automatic feature extraction. It is capable of learning the global features from images 
effectively for image classification. But it loses the context of local information among the pixels that need to be retained for 
segmentation. Also, it must provide more emphasis on the features of the lesion region for precise reconstruction. The major 
contribution of this work is the integration of attention mechanism with a Fully Convolutional Network (FCN) to segment 
ischemic lesion. This attention model is applied to learn and concentrate only on salient features of the lesion region by 
suppressing the details of other regions. Hence the proposed FCN with attention mechanism was able to segment ischemic 
lesion of varying size and shape. To study the effectiveness of attention mechanism, various experiments were carried out 
on ISLES 2015 dataset and a mean dice coefficient of 0.7535 was obtained. Experimental results indicate that there is an 
improvement of 5% compared to the existing works.
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1 Introduction

Ischemic stroke arises due to the accumulation of fatty 
deposits in the blood vessels of the brain. When the fatty 
particles accumulate at one spot, it affects the flow of blood 
and vital nutrients. This eventually leads to cell death in 
the occluded area. The primary treatment option in acute 

ischemic stroke concentrates on dealing with this occlusion 
quickly with the help of thrombolysis. This thrombolytic 
process will be safe and effective only if it is initiated within 
3 to 4.5 h of symptom onset [1]. Neuroimaging techniques 
prove to be a gold standard in identifying the actual cause 
of infarction. The infarction can be either due to ischemia or 
hemorrhage inside the blood vessel. Application of machine 
learning techniques in neuro-radiology might assist the radi-
ologist to rapidly analyze the changes like those brain tissues 
under infarction. Numerous approaches were presented in 
the past two decades for effective segmentation and charac-
terization of stroke lesions [2–7].

Many supervised learning algorithms have been explored 
for the detection of ischemic stroke [8–10]. Oskar Maier 
et al. developed an approach for segmentation of ischemic 
lesion with simple image features and Extra Tree Forests 
[10]. Texture and morphological features were considered 
along with the ANFIS classifier for the segmentation of 
ischemic lesion in [9]. A combination of the Bayesian-
Markov Random Field and Random Forest classifier has 
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been suggested by Mitra et al. for segmentation [8]. All the 
above-discussed approaches for lesion detection rely on 
extracting handcrafted features that demand domain exper-
tise in handling radiological aspects of brain anatomy.

Most of these methods initially select feature primitives 
that were relevant to the context and utilize them to generate 
the trained model. Convolutional Neural Network eliminates 
this requirement as there is no prerequisite of feature extrac-
tion. The network learns to accomplish automatic feature 
extraction and utilize them for classification. Hence, CNN 
is now quite popular in the computer vision community. The 
success rate of CNN is increasing in many application areas 
due to the effective use of graphical processing platforms, 
optimized activation functions like ReLU, and effective data 
augmentation techniques [11]. Due to the advantage of end 
to end training and automatic feature learning, CNN’s are 
now widely used for biomedical problems. Chin et al. pre-
sented an approach for ischemic stroke detection using CNN 
[12]. Principal Component Analysis was combined with 
CNN to detect brain tumors in [13]. Diniz et al. introduced 
an approach to detect white matter lesion by combining 
CNN with SLIC0 clustering [14]. CNN was optimized using 
Particle Swarm Optimization to detect stroke lesions in [15]. 
All the above methods were addressed towards the detection 
of the brain lesion. But further investigation is required to 
identify the precise location of the lesion in the input slices.

When CNN is used for image classification, a fully con-
nected layer at the end is applied for learning global features. 
But it will not retain the local spatial arrangement of pixels 
in an image. Also, to fully reconstruct the desired region 
of interest for segmentation purposes, this spatial arrange-
ment of pixels should be retained in addition to learning 
the local features of an input image. This was accomplished 
by including a set of convolutional layers in the place of 
a fully connected layer. Such networks are called Fully 
Convolutional Network (FCN). It learns representation 
from the input images and reconstructs the output based 
on local spatial input. The major highlight in FCN is that 
it learns end to end convolutional filters for segmentation. 
Even the decision-making layers at the end of the network 
are filters that try to reconstruct the desired output. Sev-
eral approaches were proposed in recent years for semantic 
image segmentation using FCN [16–18]. Shaikh et al. pro-
posed a segmentation approach for brain tumor by combin-
ing dense Conditional Random Field with FCN [19]. Shen 
et al. developed a boundary aware FCN by extracting mul-
tilevel contextual details from multimodal MRI [20]. Liang 
Cheng presented a FCN for lesion segmentation from Dif-
fusion-Weighted images by combining two de-convolutional 
Neural Networks [21]. Another approach for ischemic lesion 
segmentation using three-dimensional FCN for multimodal 
MRI was presented in [22]. Another FCN based approach 
was introduced to segment ischemic lesion in [23]. Various 

hyper-parameters were analyzed to fine-tune the parameters 
of the model for precise segmentation.

Though the above methods are capable of extracting 
lesion using FCN, the segmentation accuracy needs to be 
improved further. In FCN based methods, the features from 
each convolutional block need to be carefully filtered for pre-
cise reconstruction. Attention gates play a vital role in filter-
ing such insignificant information. The concept of attention 
gates was proven to be successful in real-world problems 
[24–26]. The attention-based mechanism was explored for 
image classification by Jetley et al. [27] and Fei Wang et al. 
[28]. It was inferred that attention maps were able to learn 
and highlight the features of the region of interest effectively. 
These works clearly illustrate the significance of attention 
models in learning the context-aware features of natural 
images. Recently, the concept of attention mechanism was 
extended to medical images. Qinjgi et al. presented one such 
scheme using residual attention for classifying multi-label 
chest X-rays [29].

All the above attention-based methods give focus to 
learn and identify significant features for classification. But 
it can also be extended in FCN to filter the response from 
convolutional filters for effective segmentation. Schlemper 
et al. presented a novel attention gated mechanism for clas-
sification and segmentation of anatomical structures in CT 
images [30]. But it can be extended to segment the ana-
tomical abnormalities present in brain images. This research 
places the first attempt to explore the performance of atten-
tion gated mechanism for the segmentation of ischemic 
lesion from brain MRI. A FCN with attention gates was 
employed to segment the region of the ischemic lesion from 
multimodal MRI.

The novel aspects of this research work are summarized 
as follows:

• A fully convolutional network with an attention gated 
mechanism was proposed to delineate ischemic lesion 
from 2D multimodal MRI.

• The architecture of FCN is enhanced by introducing 
attention gates at the decoder. This enables the network 
to filter prominent feature map activations that support 
precise reconstruction.

2  Materials and methods

2.1  Datasets

The proposed research utilized 28 samples from ISLES 2015 
SISS Challenge [32]. Each dataset consists of four different 
MR imaging modality namely T1-weighted, T2-Weighted, 
Diffusion-Weighted imaging (DWI), and Fluid Attenuation 
Inverse Recovery (FLAIR). Ground truth labels were also 
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provided for validation purposes. The proposed research 
is restricted to the axial plane due to computational 
requirements.

2.2  Pre‑processing and data augmentation

Pre-processing of input images is an essential step as it could 
simplify the learning process in subsequent stages. The input 
images were already skull stripped, retaining the tissue por-
tions alone for further processing.

Data augmentation process improves the sample size of 
the training data by using geometric deformation transforms 
to the input images. This step will apply these deformation 
functions to the input image and save the resultant output as 
a new augmented result. By doing so, the size of the input 
training vectors becomes considerably large with wide vari-
ation in the geometric properties. But, it introduces a huge 
computational overhead during the learning phase. Hence 
to have a trade-off between the data augmentation factor 
and the underlying memory requirements, the augmenta-
tion phase is slightly modified in this research. Instead of 
separately storing the augmented result as a new image, each 
epoch will apply these deformations with random scaling, 
shear and rotation factors and admit it for training. This step 
will not eventually increase the size of the input training 
vector, but it will adapt to learn for different possibilities 
as the elastic deformation parameters are changed in each 
epoch. By doing so, an efficient augmentation approach was 

involved in this research which will enable the network to 
learn for different possible combinations.

2.3  Proposed FCN architecture

The architecture of the proposed FCN is presented in Fig. 1. 
This architecture was inspired by the one proposed for sali-
ent region segmentation from medical images [30]. But it 
was extended in this work to segment the ischemic lesion 
from brain MRI.

In Fully Convolutional Networks, both encoder and 
decoder will have ‘n’ convolutional filters, each with depth 
‘D’. Let the input image stack be represented as I = {I1, 
I2, …  ID} and the convolutional filter banks be denoted as 
F = {F1,  F2, ….,  Fn}.

2.3.1  Encoder (contracting path)

The layers present in the encoding side will apply a series of 
convolution operations with an input stack ‘I’ and the con-
volutional filter banks ‘FE’. This is followed by a non-linear 
activation function. This sequence of steps will result in an 
output stack ‘O’ as represented in Eq. 1.

(1)
Om(i, j) = a

((

D
∑

d=1

2k+1
∑

u=2k−1

2k+1
∑

v=2k−1

FE
md
(u, v)Id(i − u, j − v)

)

+ bm

)

,m = 1, 2… n

Fig. 1  The architecture of the proposed system (The dimension indicated above each block presents the number of feature maps generated)
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where, ‘2 k + 1’ and ‘2 k-1’ are the parameters of filter side 
length, ‘a’ is the non-linear activation function, and ‘bm’ is 
the bias of mth feature map.

The feature maps generated as per the above relation will 
act as the encoded version of the input ‘I’. This can serve as 
the parameters used to generate the feature map ‘Om’. This 
step is followed by a max-pooling operation to reduce the 
dimension of the feature map by a factor of ‘2’.

The above-discussed steps are repeated in the encoder 
side of the network until it reaches the bottleneck layer or 
latent space representation ‘Zm’. This layer consists of a 
stack of significant feature maps used to represent the input 
image ‘I’.

2.3.2  Decoder (expanding path)

The ‘n’ feature maps ‘Zm=1,2,…n’ will be used by the decoder 
to reconstruct the desired segmented region ‘R’. It is sub-
jected to a convolution operation to select and learn a promi-
nent stack of filters. Then, it is up-sampled and concatenated 
with the feature response obtained through skip connection 
‘Si’ for precise localization of pixels. But the information 
from skip connection might also pass some irrelevant fea-
ture response to the decoder. To filter such irrelevant fea-
ture response and allow only vital feature response to the 
decoder, attention gates are employed in this research. It 
filters the irrelevant feature response derived from the back-
ground details of the image (non-lesion) and admits only 
the significant activations of the foreground (lesion) to the 
decoder for further reconstruction.

The feature response ‘Si’ is filtered with the help of atten-
tion gates as follows:

A convolutional operation is applied to ‘Zm’ to select 
and retain a significant stack of filters. These details are up-
sampled to match the dimension of ‘Si’ to generate ‘Xi’. 
Both ‘Si’ and ‘Xi’ are subjected to linear transformations 
with ‘Ws’ and ‘Wx’ respectively. The transformed vectors 
of ‘Si’ and ‘Xi’ are added and ReLU activation is applied 
to the result for retaining the significant activation. Then, 
another linear transformation ‘ LT ’ with 1 × 1x1 convolution 
is applied to generate ‘Ci’ as presented in Eq. 2

where  A1(x) = max (0,x) is the ReLU activation, ‘Ws’ & 
‘Wx’ are the linear transformations that apply channel-wise 
convolution with filter dimensions of ‘Si’ and ‘Xi’ respec-
tively, and ‘ bi ’ is the bias.

The intermediate output in the attention gate ‘Ci’ is then 
subjected to sigmoidal activation ‘A2

’and re-sampled to gen-
erate the spatial attention coefficients ‘ ∝i’∈ (0, 1) as per the 
relation presented in Eq. 3

(2)Ci = LT
[

A1((WT
s
∗Si+W

T
x
∗Xi)+bi)

]

where, A2(x) =
1

1+e−x
 is the sigmoidal activation generating 

values in (0, 1) , and FRS is the function that re-samples the 
input to match the dimension of ‘Xi’.

Finally, the output from the attention gate ‘ X̂i ’ is gener-
ated as per the relation presented in Eq. 4.

Hence, X̂i now contains relevant feature response based 
on ‘Xi’ and the spatial attention coefficients ‘ ∝i ’. These coef-
ficients suppress the irrelevant features for the background 
and help in learning the foreground object details alone for 
further reconstruction. The sequence of steps employed to 
generate attention coefficients is presented in Fig. 2.

The output response from attention gate ‘ X̂i ’ is concate-
nated with ‘Xi’ and subjected to a series of de-convolutional 
filters to generate ‘Ri’. The reconstructed output in each layer 
‘Ri’ will again be the result of convolution between the vol-
ume of activation maps ‘Zm’ with de-convolutional filters 
‘FD’ as presented in Eq. 5.

The reconstructed output from each layer ‘Ri’ is up-sam-
pled and concatenated with the filtered information from 
the attention gates. This step of determining ‘R’ and the 
subsequent up-sampling process will be repeated for ‘p’ 
layers until it reaches the dimension of the input image ‘I’. 
As a final step, the loss between the ground truth ‘G’ and 
the segmented output ‘R’ is calculated as per the relation 
presented in Eq. 6.

Based on the loss obtained, the filter parameters ‘F’ will 
be tuned to refine the segmented output.

2.3.3  Model training

To assess the performance of attention gates in improving 
the segmentation performance, it is included in each convo-
lutional block of the decoder. These gates filter the response 
from the skip connection and admit only the significant fea-
tures for further reconstruction. This attention gated FCN 
architecture was trained for 150 epochs with a learning rate 
of 0.0001. It took around eight hours to train the model. 
Four-fold cross-validation was performed with this approach 
to assess its performance under multiple runs. A dice coef-
ficient of 0.928 was obtained for training datasets in terms 
of the dice coefficient.

(3)∝i= FRS(A2(Ci))

(4)X̂i = Xi ⊗ ∝i

(5)
Ri = a

((

Zm ∗ FD
m

)

+ bm
)

, , m = 1, 2,… n, i = 1, 2,… .p

(6)DC =
2|G ∩ R|

|G| + |R|
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3  Results and discussion

The proposed experiments were implemented on a worksta-
tion with  7th Gen Intel QuadCore 3.6 GHz Processor, Nvidia 
Quadro P4000 GPU 8 GB, 32 GB RAM, and Ubuntu 16.04 
LTS platform. TensorFlow numerical computation Library 
was used for the implementation of deep learning function 
calls.

3.1  Effectiveness of attention gating mechanism

To clearly illustrate the effectiveness of attention gating 
mechanism, the response from each gate before applying 
sigmoidal activation is captured and the resultant feature 
maps are highlighted in Fig. 3. From samples (a) to (c), it 
could be observed that the attention gates were very effec-
tive in capturing the lesion related details. Sample (d) to 
(f) presents the inference for a normal sample, where the 
contribution made by these attention gates was less when 
compared to abnormal samples with the lesion.

From Fig. 3, it was evident that attention gates were 
highly efficient in focusing the lesion pixels of the image. 
Also, it helps in reconstructing the lesion which has different 
morphological properties like, size, shape, etc.

3.2  Performance analysis

The performance of the proposed FCN architecture for 
ischemic lesion segmentation was analyzed in this section. 

Figure 4 illustrates the change in values of loss parameter 
obtained during each fold of the training phase.

The observations obtained during the cross-validation 
phase were presented in Table 1.

A mean Dice coefficient of 0.7535 was obtained for test-
ing datasets when attention mechanism was integrated with 
FCN architecture. The FCN with attention mechanism was 
applied to different datasets and the segmented regions are 
presented in Table 2. It could be observed that the atten-
tion gated mechanism has produced appreciable results 
in extracting the lesion segments with different structural 
properties.

To highlight the effectiveness of attention mechanism 
in lesion segmentation, the segmented regions obtained 
using FCN with and without attention gates are presented 
in Table 3. It could be observed from these images that, 
the segmented region by the proposed approach correlates 
well with the ground truth reference. A bounding box was 
employed to visually indicate what portion of the region has 
been missed by FCN without attention mechanism and how 
it is captured by including attention mechanism with FCN.

The performance of the proposed method is compared 
against various existing works for ischemic lesion detection 
and the results are highlighted in Table 4.

Supervised learning approaches like Random forests, 
Extra tree forests have been applied for ischemic lesion 
detection in [8, 10]. These methods primarily extract hand-
engineered features to differentiate the properties of brain 
tissues. Hence, the dice coefficient was in the range of 

Fig. 2  Working of Attention mechanism
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0.60–0.65. To address this research gap, deep neural archi-
tectures using CCN and FCN were employed as it supports 
automatic feature extraction [21] 22, 23, and 31]. The DC 
of these approaches were in the range of 0.64–0.70. To 
further improve the performance of lesion segmentation, a 
deep supervised FCN based architecture with attention gat-
ing mechanism was presented in this research. The original 
FCN architecture was improved by including attention gates 
at the decoder. The information obtained from the individual 
skip connections might also pass some irrelevant feature 
responses to the decoder for reconstruction. To filter such 
irrelevant feature response and allow only significant feature 
response to the decoder, attention gates were employed in 

the network. This enables the network to filter prominent 
feature map activations that support precise reconstruction. 
Accuracy of 0.7535 was obtained by combining the advan-
tages of automatic feature learning in CNN with the filtering 
mechanism of attention gates.

To further enhance the performance of segmentation, this 
attention mechanism can be directly tried with 3D CNN. 
This can support effective 3D volumetric visualization of 
the lesion structures. Also, it can be tried with other datasets 
like ISLES 2018, to analyze the effectiveness of the pro-
posed architecture for other advanced imaging modalities 
like Perfusion CT.

Fig. 3  Visualization of attention weights generated for a–c Samples with lesion and d–f Normal samples without lesion
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Fig. 3  (continued)

Fig. 4  The decay of loss values during the training phase for the FCN 
with an attention gating mechanism

4  Conclusion

In this research, an FCN was applied to segment ischemic 
lesion from multimodal MRI. The attention gating mech-
anism was included in FCN to efficiently delineate the 
ischemic lesion. The major highlight of this research is 
the application of attention gates which filters the irrele-
vant activations generated from multiple skip connections. 
Hence, it admits only the salient features to further levels 
for reconstruction. An extensive analysis was performed to 
analyze the performance of the proposed approach with the 
traditional network without attention models. The proposed 
network was able to segment ischemic lesion with different 
morphological properties like size, shape, etc. Also, the pro-
posed method was successful in delineating scattered lesions 
with heterogeneous intensity profile.
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Table 1  Cross-validation performance of FCN with and without attention mechanism

S.No FCN without attention mechanism FCN with attention mechanism

Time taken for training Time taken for 
testing (in Sec)

Mean dice coefficient Time taken for training Time taken for 
testing (in Sec)

Mean dice coefficient

Training Validation Training Validation

1 7 h, 55 min 0.953 0.8723 0.8032 8 h, 31 min 0.993 0.9175 0.8432
2 7 h, 53 min 0.952 0.8829 0.8173 8 h, 33 min 0.992 0.9292 0.8573
3 7 h, 51 min 0.953 0.8709 0.7823 8 h, 29 min 0.993 0.9309 0.7930
4 7 h, 52 min 0.951 0.8807 0.7634 8 h, 31 min 0.993 0.9397 0.7731

Table 2  Segmented results of the attention-based FCN

S.No T1 T2 FLAIR DWI GROUND TRUTH SEGMENTED 
RESULT 

1 

2 

3 

4 

5
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Table 3  Comparative analysis of segmentation results with and without attention gates

S.No Ground Truth Segmented result of FCN 
without Attention 

Segmented result of FCN with 
Attention 

1. 

2. 

3. 

4. 

Mean Dice coefficient 5357.03107.0

Table 4  Comparative analysis 
of proposed work with existing 
works

S.No Source Modality Methodology Mean Dice 
coefficient 
(DC)

1. Mitra et al. [8] Multi-modal MRI Bayesian-Markov Random Field 
(MRF) and Random Forests

0.60

2. Maier et al. [10] FLAIR Extra Tree forests 0.65
3. Kamnitsas et al. [22] Multi-modal MRI CNN 0.66
4. Chen et al. [21] DWI CNN 0.67
5. O. Maier et al. [31] Multi-modal MRI Decision trees, CNN 0.67 
6. Karthik et al. [23] Multi-modal MRI FCN 0.70
7. Proposed approach Multi-modal MRI FCN with attention mechanism 0.75



12 Biomedical Engineering Letters (2021) 11:3–13

1 3

It could be observed that the attention gated network was 
able to segment lesion with a dice coefficient of 0.75. An 
overall improvement of 17% has been achieved when com-
pared to the existing methods. The proposed attention gated 
network was quite effective in delineating hyper-intense 
abnormal structures from brain MRI. Hence, this architec-
ture can be extended to other neurological diseases.
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