Skip to main content
. 2021 Apr;11(4):1381–1393. doi: 10.21037/qims-20-922

Table 5. Comparison of the results of the present study with other related works involving the use of most proven, state-of-the-art models, and with mammography.

Reference Pre-trained network employed Dataset Data classes Accuracy AUC AUCPR
Ragab et al. (10) Fine-tuned AlexNet Mammography DDSM (n=1,840) Benign and malignant breast masses 0.81 0.88
Mammography CBIS-DDSM (n=5,272) 0.87 0.94
Xiao et al. (11) Fine-tuned ResNet50 Breast ultrasound images (n=2,058) Benign and malignant breast masses 0.85 0.91
Fine-tuned InceptionV3 0.85 0.91
Byra et al. (12) Fine-tuned VGG19 + match layer techniques Breast ultrasound images (n=882) Benign and malignant breast masses 0.89 0.94
The proposed AutoML model Breast ultrasound images (n=895) Benign and malignant breast masses 0.86 0.95