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Abstract

Genome-wide association studies (GWAS) have discovered hundreds of loci associated with 

complex brain disorders, and provide the best current insights into the etiology of these idiopathic 

traits. However, it remains unclear in which cell types these variants are active, which is essential 

for understanding etiology and subsequent experimental modeling. Here we integrate GWAS 

results with single-cell transcriptomic data from the entire mouse nervous system to systematically 

identify cell types underlying psychiatric disorders, neurological diseases, and brain complex 

traits. We show that psychiatric disorders are predominantly associated with cortical and 

hippocampal excitatory neurons, as well as medium spiny neurons from the striatum. Cognitive 

traits were generally associated with similar cell types but their associations were driven by 

different genes. Neurological diseases were associated with different cell types, which is 

consistent with other lines of evidence. Notably, we found that Parkinson’s disease is not only 

genetically associated with cholinergic and monoaminergic neurons (which include dopaminergic 

neurons from the substantia nigra) but also with neurons from the enteric system and 

oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these 

cells, even at the earliest stages of disease progression. Our study provides an important 

framework for understanding the cellular basis of complex brain maladies, and reveals an 

unexpected role of oligodendrocytes in Parkinson’s disease.

Introduction

Understanding the genetic basis of complex brain disorders is critical for identifying 

individuals at risk, designing prevention strategies, and developing rational therapeutics. In 

the last 50 years, twin studies have shown that psychiatric disorders, neurological diseases, 

and cognitive traits are strongly influenced by genetic factors, explaining a mean of ~50% of 

the variance in liability 1, and GWAS have identified thousands of highly significant loci 2–5. 

However, interpretation of GWAS results remains challenging. First, >90% of the identified 

variants are located in non-coding regions 6, complicating precise identification of risk genes 

and mechanisms. Second, extensive linkage disequilibrium present in the human genome 

confounds efforts to pinpoint causal variants and the genes they influence. Finally, it remains 

unclear in which tissues and cell types these variants are active, and how they disrupt 

specific biological networks to impact disease risk.

Functional genomic studies from brain are now seen as critical for interpretation of GWAS 

findings as they can identify functional regions (e.g., open chromatin, enhancers, 

transcription factor binding sites) and target genes (via chromatin interactions and eQTLs) 7. 

Gene regulation varies substantially across tissues and cell types 8,9, and hence it is critical 

to perform functional genomic studies in empirically identified cell types or tissues.
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Multiple groups have developed strategies to identify tissues associated with complex traits 
10–14, but few have focused on the identification of salient cell types within a tissue. 

Furthermore, studies aiming to identify relevant cell types often used only a small number of 

cell types derived from one or few different brain regions 4,12–18. For example, we recently 

showed that, among 24 brain cell types, four types of neurons were consistently associated 

with schizophrenia 12. We were explicit that this conclusion was limited by the relatively 

few brain regions we studied; other cell types from unsampled regions could conceivably 

contribute to the disorder.

Here, we integrate a wider range of gene expression data – tissues across the human body 

and single-cell gene expression data from an entire nervous system – to identify tissues and 

cell types underlying a large number of complex traits (Figure 1A,B). We expand on our 

prior work by showing that additional cell types are associated with schizophrenia. We also 

find that psychiatric and cognitive traits are generally associated with similar cell types 

whereas neurological disorders are associated with different cell types. Notably, we show 

that Parkinson’s disease is associated with cholinergic and monoaminergic neurons (as 

expected as these include dopaminergic neurons from the substantia nigra), but also with 

enteric neurons and oligodendrocytes, providing new clues into its etiology.

Results

Genetic correlations among complex traits

Our goal was to use GWAS results to identify relevant tissues and cell types. Our primary 

focus was human phenotypes whose etiopathology is based in the central nervous system. 

We thus obtained 18 sets of GWAS summary statistics from European samples for brain-

related complex traits. These were selected because they had at least one genome-wide 

significant association (as of 2018; e.g., Parkinson’s disease, schizophrenia, and IQ). For 

comparison, we included GWAS summary statistics for 8 diseases and traits with large 

sample sizes whose etiopathology is not rooted in the central nervous system (e.g., type 2 

diabetes). The selection of these conditions allowed contrasts of tissues and cells highlighted 

by our primary interest in brain phenotypes with non-brain traits. For Parkinson’s disease, 

we meta-analyzed summary statistics from a published GWAS 19 (9,581 cases, 33,245 

controls) with self-reported Parkinson’s disease from 23andMe (12,657 cases, 941,588 

controls) after finding a high genetic correlation (rg) 20 between the samples (rg=0.87, 

s.e=0.068). In this new meta-analysis, we identified 61 independent loci associated with 

Parkinson’s disease (49 reported previously 18 and 12 novel) (Figure S1).

We estimated the genetic correlations (rg) between these 26 traits. We confirmed prior 

reports 21,22 that psychiatric disorders were strongly inter-correlated (e.g., high positive 

correlations for schizophrenia, bipolar disorder, and MDD) and shared little overlap with 

neurological disorders (Figure S2 and Table S1). Parkinson’s disease was genetically 

correlated with intracranial volume 18 (rg=0.29, s.e=0.05) and amyotrophic lateral sclerosis 

(ALS, rg=0.19, s.e=0.08), while ALS was negatively correlated with intelligence (rg=−0.24, 

s.e=0.06) and hippocampal volume (rg=−0.24, s.e=0.12). These results indicate that there is 

substantial genetic heterogeneity across traits, which is a necessary (but not sufficient) 

condition for trait associations with different tissues or cell types.
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Association of traits with tissues using bulk-tissue RNA-seq

We first aimed to identify the human tissues showing enrichment for genetic associations 

using bulk-tissue RNA-seq (37 tissues) from GTEx 8 (Figure 1). To robustly identify the 

tissues implied by these 26 GWAS, we used two approaches (MAGMA 23 and LDSC 13,24) 

which employ different assumptions (Methods). For both methods, we tested whether the 

10% most specific genes in each tissue were enriched in genetic associations with the 

different traits (Figure 1B).

Examination of non-brain traits found, as expected, associations with salient tissues. For 

example, as shown in Figure 1D and Table S2, inflammatory bowel disease was strongly 

associated with immune tissues (blood, spleen) and alimentary tissues impacted by the 

disease (small intestine and colon). Lung and adipose tissue were also significantly 

associated with inflammatory bowel disease, possibly because of the high specificity of 

immune genes in these two tissues (Figure S3). Type 2 diabetes was associated with the 

pancreas, while hemoglobin A1C, which is used to diagnose type 2 diabetes and monitor 

glycemic controls in diabetic patients, was associated with the pancreas, liver and stomach 

(Figure 1D). Stroke and coronary artery disease were most associated with blood vessels 

(Figure 1D, Figure S4) and waist to hip ratio was most associated with adipose tissue 

(Figure S4). Thus, our approach can identify the expected tissue associations given the 

pathophysiology of the different traits.

For brain-related traits (Figure 1C, S4 and Table S2), 13 of 18 traits were significantly 

associated with one or more GTEx brain regions. For example, schizophrenia, intelligence, 

educational attainment, neuroticism, BMI and MDD were most significantly associated with 

brain cortex, frontal cortex or anterior cingulate cortex, while Parkinson’s disease was most 

significantly associated with the substantia nigra (as expected) and spinal cord (Figure 1C). 

Alzheimer’s disease was associated with tissues with prominent roles in immunity (blood 

and spleen) consistent with other studies 25–27, but also with the substantia nigra and spinal 

cord. Stroke was associated with blood vessel (consistent with a role of arterial pathology in 

stroke) 28. Traits with no or unexpected associations could occur because the primary GWAS 

had insufficient sample size for its genetic architecture 29 or because the tissue RNA-seq 

data omitted the correct tissue or cell type.

In conclusion, we show that tissue-level gene expression allows identification of relevant 

tissues for complex traits, indicating that our methodology is suitable to explore trait-gene 

expression associations at the cell type level.

Association of brain phenotypes with cell types from the mouse central and peripheral 
nervous system

We leveraged gene expression data from 39 broad categories of cell types from the mouse 

central and peripheral nervous system 30 to systematically map brain-related traits to cell 

types (Figures 2A, S5). Our use of mouse data to inform human genetic findings was 

carefully considered (see Discussion).

As in our previous study of schizophrenia based on a small number of brain regions 12, we 

found the strongest signals for telencephalon projecting neurons (i.e. excitatory neurons 
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from the cortex, hippocampus and amygdala), telencephalon projecting inhibitory neurons 

(i.e. medium spiny neurons from the striatum) and telencephalon inhibitory neurons (Figure 

2A and Table S3). We also found that other types of neurons were associated with 

schizophrenia albeit less significantly (e.g., dentate gyrus granule neurons or hindbrain 

neurons). Other psychiatric and cognitive traits had similar cellular association patterns to 

schizophrenia (Figures S5–6 and Table S3). We did not observe any significant associations 

with immune or vascular cells for any psychiatric disorder or cognitive traits.

Neurological disorders generally implicated fewer cell types, possibly because neurological 

GWAS had lower signal than GWAS of cognitive, anthropometric, and psychiatric traits 

(Figure S7). Consistent with the genetic correlations reported above, the pattern of 

associations for neurological disorders was distinct from psychiatric disorders (Figures S5–

6), again reflecting that neurological disorders have minimal functional overlap with 

psychiatric disorders 21 (Figure S2).

Stroke was significantly associated with vascular smooth muscle cells (Figure 2A) consistent 

with an important role of vascular processes for this trait. Amyotrophic lateral sclerosis (a 

motor neuron disease) was significantly associated with peripheral sensory neurofilament 

neurons, possibly because of transcriptomic similarities between peripheral sensory and 

motor neurons (which were not sampled) (Figure S5). Alzheimer’s disease had the strongest 

signal in microglia, as reported previously11,17,31, but the association did not survive 

multiple testing correction.

We found that Parkinson’s disease was significantly associated with cholinergic and 

monoaminergic neurons (Figure 2A and Table S3). This cluster consists of neurons (Table 

S4) that are known to degenerate in Parkinson’s disease 32–34, such as dopaminergic neurons 

from the substantia nigra (the hallmark of Parkinson’s disease), but also serotonergic and 

glutamatergic neurons from the raphe nucleus 35, noradrenergic neurons 36, as well as 

neurons from afferent nuclei in the pons 37 and the medulla (the brain region associated with 

the earliest lesions in Parkinson’s disease 32). In addition, hindbrain neurons and peptidergic 

neurons were also significantly associated with Parkinson’s disease (with LDSC only). 

Therefore, our results capture expected features of Parkinson’s disease and suggest that 

biological mechanisms intrinsic to these neuronal cell types lead to their selective loss. 

Interestingly, we also found that enteric neurons were significantly associated with 

Parkinson’s disease (Figure 2A), which is consistent with Braak’s hypothesis, which 

postulates that Parkinson’s disease could start in the gut and travel to the brain via the vagus 

nerve 38,39. Furthermore, we found that oligodendrocytes (mainly sampled in the midbrain, 

medulla, pons, spinal cord and thalamus, Figure S8) were significantly associated with 

Parkinson’s disease, indicating a strong glial component to the disorder. This finding was 

unexpected but consistent with the strong association of the spinal cord at the tissue level 

(Figure 1C), as the spinal cord contains the highest proportion of oligodendrocytes (71%) in 

the nervous system 30. Altogether, these findings provide genetic evidence for a role of 

enteric neurons, cholinergic and monoaminergic neurons, as well as oligodendrocytes in 

Parkinson’s disease etiology.

Bryois et al. Page 5

Nat Genet. Author manuscript; available in PMC 2021 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Neuronal prioritization in the mouse central nervous system

A key goal of this study was to prioritize specific cell types for follow-up experimental 

studies. As our metric of gene expression specificity was computed based on all cell types in 

the nervous system, it is possible that the most specific genes in a given cell type capture 

genes that are shared within a high level category of cell types (e.g. neurons). To rule out this 

possibility, we computed new specificity metrics based only on neurons from the central 

nervous system (CNS). We then tested whether the top 10% most specific genes for each 

CNS neuron were enriched in genetic association for the brain related traits that had a 

significant association with a CNS neuron (13/18) in our initial analysis.

Using the CNS neuron gene expression specificity metrics, we observed a reduction in the 

number of neuronal cell types associated with the different traits (Figure S9), suggesting that 

some of the signal was driven by core neuronal genes. For example, the association of 

telencephalon projecting excitatory neurons with intracranial volume (Figure S5) was not 

significant using the CNS neuron specificity metric (Figure S9). However, we found that 

multiple neuronal cell types remained associated with a number of traits. For example, we 

found that telencephalon projecting excitatory and projecting inhibitory neurons were 

strongly associated with schizophrenia, bipolar disorder, educational attainment and 

intelligence using both LDSC and MAGMA. Similarly, telencephalon projecting excitatory 

neurons were significantly associated with BMI, neuroticism, MDD, autism and anorexia 

using one of the two methods (Figure S9), while hindbrain neurons and cholinergic and 

monoaminergic neurons remained significantly associated with Parkinson’s disease (Figure 

S9).

Altogether, these results suggest that specific types of CNS neurons can be prioritized for 

follow-up experimental studies for multiple traits.

Cell type-specific and trait-associated genes are enriched in specific biological functions

Understanding which biological functions are dysregulated in different cell types is a key 

component of the etiology of complex traits. To obtain insights into the biological functions 

driving cell-type/trait associations, we evaluated GO term enrichment of genes that were 

specifically expressed (top 20% in a given cell type) and highly associated with a trait (top 

10% MAGMA gene-level genetic association). Genes that were highly associated with 

schizophrenia and specific to telencephalon projecting excitatory neurons were enriched for 

GO terms related to neurogenesis, synapses, and voltage-gated channels (Table S5), 

suggesting that these functions may be fundamental to schizophrenia. Similarly, genes 

highly associated with educational attainment, intelligence, bipolar disorder, neuroticism, 

BMI, anorexia and MDD and highly specific to their most associated cell types were 

enriched in terms related to neurogenesis, synaptic processes and voltage-gated channels 

(Table S5). In contrast, genes highly associated with stroke and specific to vascular cells 

were enriched in terms related to vasculature development, while genes highly associated 

with ALS and peripheral sensory neurofilament neurons were enriched in terms related to 

lysosomes.
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Genes highly associated with Parkinson’s disease and highly specific to cholinergic and 

monoaminergic neurons were significantly enriched in terms related to endosomes and 

synapses (Table S5). Similarly, genes highly specific to oligodendrocytes and Parkinson’s 

disease were enriched in endosomes. These results support the hypothesis that the 

endosomal pathway plays an important role in the etiology of Parkinson’s disease 40.

Taken together, we show that cell type-trait associations are driven by genes belonging to 

specific biological pathways, providing insight into the etiology of complex brain related 

traits.

Distinct traits are associated with similar cell types, but through different genes

As noted above, the pattern of associations of psychiatric and cognitive traits were highly 

correlated across the 39 different cell types tested (Figure S6). For example, the Spearman 

rank correlation of cell type associations (−log10P) between schizophrenia and intelligence 

was 0.96 (0.94 for educational attainment) as both traits had the strongest signal in 

telencephalon projecting excitatory neurons and little signal in immune or vascular cells. In 

addition, we observed that genes driving the association signal in the top cell types of the 

two traits were enriched in relatively similar GO terms involving neurogenesis and synaptic 

processes. We evaluated two possible explanations for these findings: (a) schizophrenia and 

intelligence are both associated with the same genes that are specifically expressed in the 

same cell types or (b) schizophrenia and intelligence are associated with different sets of 

genes that are both highly specific to the same cell types. Given that these two traits have a 

significant negative genetic correlation (rg=−0.22, from GWAS results alone) (Figure S2 and 

Table S1), we hypothesized that the strong overlap in cell type associations for 

schizophrenia and intelligence was due to the second explanation.

To evaluate these hypotheses, we tested whether the 10% most specific genes for each cell 

type were enriched in genetic association for schizophrenia controlling for the gene-level 

genetic association of intelligence using MAGMA. We found that the pattern of associations 

were largely unaffected by controlling the schizophrenia cell type association analysis for 

the gene-level genetic association of intelligence and vice versa (Figure S10). Similarly, we 

found that controlling for educational attainment had little effect on the schizophrenia 

associations and vice versa (Figure S11). In other words, genes driving the cell type 

associations of schizophrenia appear to be distinct from genes driving the cell types 

associations of cognitive traits.

Multiple cell types are independently associated with brain complex traits

Many neuronal cell types passed our stringent significance threshold for multiple brain traits 

(Figure 2A and S5). This could be because gene expression profiles are highly correlated 

across cell types and/or because many cell types are independently associated with the 

different traits. In order to address this, we performed univariate conditional analysis using 

MAGMA, testing whether cell type associations remained significant after controlling for 

the 10% most specific genes from other cell types (Table S6). We observed that multiple cell 

types were independently associated with age at menarche, anorexia, autism, bipolar, BMI, 

educational attainment, intelligence, MDD, neuroticism and schizophrenia (Figure S12). As 
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in our previous study 12, we found that the association between schizophrenia and 

telencephalon projecting inhibitory neurons (i.e. medium spiny neurons) appears to be 

independent from telencephalon projecting excitatory neurons (i.e. pyramidal neurons). For 

Parkinson’s disease, we found that enteric neurons, oligodendrocytes and cholinergic and 

monoaminergic neurons were independently associated with the disorder (Figure 2B), 

suggesting that these three different cell types play an independent role in the etiology of the 

disorder.

Replication in other single-cell RNA-seq datasets

To assess the robustness of our results, we repeated these analyses in independent RNA-seq 

datasets. A key caveat is that these other datasets did not sample the entire nervous system as 

in the analyses above.

First, we used a single-cell RNA-seq dataset that identified 88 broad categories of cell types 

(565 subclusters) in 690K single cells from 9 mouse brain regions (frontal cortex, striatum, 

globus pallidus externus/nucleus basalis, thalamus, hippocampus, posterior cortex, 

entopeduncular nucleus/subthalamic nucleus, substantia nigra/ventral tegmental area, and 

cerebellum) 41. We found similar patterns of association in this external dataset (Figure 3A, 

S14 and Table S7). Notably, for schizophrenia, we strongly replicated associations with 

neurons from the cortex, hippocampus and striatum. We also observed similar cell type 

associations for other psychiatric and cognitive traits (Figure 3A, S13, S14 and S15). For 

neurological disorders, we found that stroke was significantly associated with mural cells 

while Alzheimer’s disease was significantly associated with microglia (Figure S14). The 

associations of Parkinson’s disease with neurons from the substantia nigra and 

oligodendrocytes were significant at a nominal level in this dataset (P=0.006 for neurons 

from the substantia nigra, P=0.027 for oligodendrocytes using LDSC) (Table S3). By 

computing gene expression specificity within neurons, we replicated our previous findings 

that neurons from the cortex can be prioritized for multiple traits (schizophrenia, bipolar, 

educational attainment, intelligence, BMI, neuroticism, MDD, anorexia) (Figure S16).

Second, we reanalyzed these GWAS datasets using our previous single-cell RNA-seq dataset 

(24 cell types from the neocortex, hippocampus, striatum, hypothalamus midbrain, and 

specific enrichments for oligodendrocytes, serotonergic neurons, dopaminergic neurons and 

cortical parvalbuminergic interneurons, 9970 single cells; Figure 3B, S17 and Table S8). We 

again found strong associations of pyramidal neurons from the somatosensory cortex, 

pyramidal neurons from the CA1 region of the hippocampus (both corresponding to 

telencephalon projecting excitatory neurons in our main dataset), and medium spiny neurons 

from the striatum (corresponding to telencephalon projecting inhibitory neurons) with 

psychiatric and cognitive traits. MDD and autism were most associated with neuroblasts, 

while intracranial volume was most associated with neural progenitors (suggesting that 

drivers of intracranial volume are cell types implicated in increasing cell mass). The 

association of dopaminergic adult neurons with Parkinson’s disease was significant at a 

nominal level using LDSC (P=0.01), while oligodendrocytes did not replicate in this dataset, 

perhaps because they were not sampled from the regions affected by the disorder (i.e. spinal 

cord, pons, medulla or midbrain). A within-neuron analysis again found that projecting 
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excitatory (i.e. pyramidal CA1) and projecting inhibitory neurons (i.e. medium spiny 

neurons) can be prioritized for multiple traits (schizophrenia, bipolar, intelligence, 

educational attainment, BMI). In addition, we found that neuroblasts could be prioritized for 

MDD and that neural progenitors could be prioritized for intracranial volume (Figure S18) 

in this dataset.

Third, we evaluated a human single-nuclei RNA-seq dataset consisting of 15 different cell 

types from cortex and hippocampus 42 (Figure 4A and Table S9). We replicated our findings 

with psychiatric and cognitive traits being associated with pyramidal neurons (excitatory) 

and interneurons (inhibitory) from the somatosensory cortex and from the CA1 region of the 

hippocampus. We also replicated the association of Parkinson’s disease with 

oligodendrocytes (enteric neurons and cholinergic and monoaminergic neurons were not 

sampled in this dataset). No cell types reached our significance threshold using specificity 

metrics computed within-neurons, possibly because of similarities in the transcriptomes of 

neurons from the cortex and hippocampus.

Fourth, we evaluated a human single-nuclei RNA-seq dataset consisting of 31 different cell 

types from 3 different brain regions (visual cortex, frontal cortex and cerebellum) (Figure 4B 

and Table S10). We found that schizophrenia, educational attainment, neuroticism and BMI 

were associated with excitatory neurons, while bipolar was associated with both excitatory 

and inhibitory neurons. As observed previously 11,17,31, Alzheimer’s disease was 

significantly associated with microglia. Oligodendrocytes were not significantly associated 

with Parkinson’s disease in this dataset, again possibly because the spinal cord, pons, 

medulla and midbrain were not sampled. No cell types reached our significance threshold 

using specificity metrics computed within neurons in thid dataset.

Most cell type-trait associations were attenuated using human single-nuclei data compared 

with mouse single-cell RNA-seq data, suggesting that the transcripts that are lost by single-

nuclei RNA-seq are important for a large number of disorders and/or that the controlled 

condition of mouse experiments provide more accurate gene expression quantifications (see 

Discussion and Figure S19).

Comparison with case/control differentially expressed genes at the cell type level

We compared our findings for Alzheimer’s disease (Table S3, Figure 4B, Figure S14) with a 

recent study that performed differential expression analysis at the cell type level between 24 

Alzheimer’s cases and 24 controls 43 (prefrontal cortex, Brodmann area 10). We tested 

whether the top 500, top 1000 and top 2000 most differentially expressed genes (no 

pathology vs pathology) in six different cell types (excitatory neurons, inhibitory neurons, 

oligodendrocytes, oligodendrocytes precursor cells, astrocyte and microglia) were enriched 

in genetic associations with Alzheimer’s disease using MAGMA. Consistently with our 

results, we found that genes differentially expressed in microglia were the most associated 

with Alzheimer’s disease genetics (Table S11), indicating that our approach appropriately 

highlight the relevant cell type at a fraction of the cost of a case-control single cell RNA-seq 

study. As performing case-control single cell RNA-seq studies in the entire nervous system 

is currently cost prohibitive, the consistency of our results with the case-control study of 

Bryois et al. Page 9

Nat Genet. Author manuscript; available in PMC 2021 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Alzheimer’s disease suggests that our results could be leveraged to target specific brain 

regions and cell types in future case-control genomic studies of brain disorders.

Validation of oligodendrocyte pathology in Parkinson’s disease

We investigated the role of oligodendrocyte lineage cells in Parkinson’s disease. First, we 

confirmed the association of oligodendrocytes with Parkinson’s disease by combining 

evidence across all datasets (Fisher’s combined probability test, P=2.5*10−7 using MAGMA 

and 6.3*10−3 using LDSC) (Table S3 and Figure S20). Second, we tested whether 

oligodendrocytes were significantly associated with Parkinson’s disease conditioning on the 

top neuronal cell type in the different datasets using MAGMA and found: (a) that 

oligodendrocytes were independently associated from the top neuronal cell type in our main 

dataset and in the Habib replication dataset 42 at a Bonferroni significant level (P=7.3*10−5 

and P=1.7*10−4 respectively), (b) nominal evidence in the Saunders dataset 44 (P=0.018), (c) 

weak evidence in the Skene 12 (P=0.12) and Lake 45 datasets (P=0.2) and (d) combining the 

conditional evidence from all datasets, oligodendrocytes were significantly associated with 

Parkinson’s disease independently of the top neuronal association (P=1.2*10−7, Fisher’s 

combined probability test).

Third, we tested whether genes with rare variants associated with Parkinsonism (Table S12) 

were specifically expressed in cell types from the mouse nervous system (Method). As for 

the common variant, we found the strongest enrichment for cholinergic and monoaminergic 

neurons (Table S13). However, we did not observe any significant enrichments for 

oligodendrocytes or enteric neurons using genes associated with rare variants in 

Parkinsonism.

Fourth, we applied EWCE 11 to test whether genes that are up/down-regulated in human 

post-mortem Parkinson’s disease brains (from six separate cohorts) were enriched in cell 

types located in the substantia nigra and ventral midbrain (Figure 5). Three of the studies 

had a case-control design and measured gene expression in: (a) the substantia nigra of 9 

controls and 16 cases 46, (b) the medial substantia nigra of 8 controls and 15 cases 47, and 

(c) the lateral substantia nigra of 7 controls and 9 cases 47. In all three studies, 

downregulated genes in Parkinson’s disease were specifically enriched in dopaminergic 

neurons (consistent with the loss of this particular cell type in disease), while upregulated 

genes were significantly enriched in cells from the oligodendrocyte lineage. This suggests 

that an increased oligodendrocyte activity or proliferation could play a role in Parkinson’s 

disease etiology. Surprisingly, no enrichment was observed for microglia, despite recent 

findings 48,49.

We also analyzed gene expression data from post-mortem human brains which had been 

scored by neuropathologists for their Braak stage 50. Differential expression was calculated 

between brains with Braak scores of zero (controls) and brains with Braak scores of 1—2, 3

—4 and 5—6. At the latter stages (Braak scores 3—4 and 5—6), downregulated genes were 

specifically expressed in dopaminergic neurons, while upregulated genes were specifically 

expressed in oligodendrocytes (Figure 5), as observed in the case-control studies. Moreover, 

Braak stage 1 and 2 are characterized by little degeneration in the substantia nigra and, 

consistently, we found that downregulated genes were not enriched in dopaminergic neurons 
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at this stage. Notably, upregulated genes were already strongly enriched in oligodendrocytes 

at Braak Stages 1–2. These results not only support the genetic evidence indicating that 

oligodendrocytes may play a causal role in Parkinson’s disease, but indicate that their 

involvement precedes the emergence of pathological changes in the substantia nigra.

Discussion

In this study, we used gene expression data from cells sampled from the entire nervous 

system to systematically map cell types to GWAS results from multiple psychiatric, 

cognitive, and neurological complex phenotypes.

We note several limitations. First, we again emphasize that we can implicate a particular cell 

type but it is premature to exclude cell types for which we do not have data 12. Second, we 

used gene expression data from mouse to understand human phenotypes. We believe our 

approach is appropriate for several reasons. (A) Crucially, the key findings replicated in 

human data. (B) Single-cell RNA-seq is achievable in mouse but difficult in human neurons 

(where single-nuclei RNA-seq is typical 42,45,51,52). In brain, differences between single-cell 

and single-nuclei RNA-seq are important as transcripts that are missed by sequencing nuclei 

are important for psychiatric disorders, and we previously showed that dendritically-

transported transcripts (important for schizophrenia) are specifically depleted from nuclei 

datasets 12 (we confirmed this finding in four additional datasets, Figure S19). (C) 

Correlations in gene expression for cell type across species is high (median correlation 0.68, 

Figure S21), and as high or higher than correlations across methods within cell type and 

species (single-cell vs single-nuclei RNA-seq, median correlation 0.6) 53. (D) We evaluated 

protein-coding genes with 1:1 orthologs between mouse and human. These constitute most 

human protein-coding genes, and these genes are generally highly conserved particularly in 

the nervous system. We did not study genes present in one species but not in the other. (E) 

More specifically, we previously showed that gene expression data cluster by cell type and 

not by species 12, indicating broad conservation of core brain cellular functions across 

species. (F) We used a large number of genes to map cell types to traits (~1500 genes for 

each cell type), minimizing potential bias due to individual genes differentially expressed 

across species. (G) If there were strong differences in cell type gene expression between 

mouse and human, we would not expect that specific genes in mouse cell types would be 

enriched in genetic associations with human disorders. However, it remains possible that 

some cell types have different gene expression patterns between mouse and human, are only 

present in one species, have a different function or are involved in different brain circuits.

A third limitation is that gene expression data were from adolescent mice. Although many 

psychiatric and neurological disorders have onsets in adolescence, some have onsets earlier 

(autism) or later (Alzheimer’s and Parkinson’s disease). It is thus possible that some cell 

types are vulnerable at specific developmental times. Data from studies mapping cell types 

across brain development and aging are required to resolve this issue.

For schizophrenia, we replicated and extended our previous findings 12. We found the most 

significant associations for neurons located in the cortex, hippocampus and striatum (Figure 

2A, 3) in multiple independent datasets, and showed that these neuronal cell types can be 
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prioritized among neurons (Figure S9, S16 and S18). These results are consistent with the 

strong schizophrenia heritability enrichment observed in open chromatin regions from: 

human dorsolateral prefrontal cortex 54; human cortical, striatal and hippocampal neurons 
55; and mouse open chromatin regions from cortical excitatory and inhibitory neurons 56. 

This degree of replication in independent transcriptomic datasets from multiple groups along 

with consistent findings using orthogonal open chromatin data is notable, and strongly 

implicates these cell types in the etiology of schizophrenia.

Moreover, we found that other psychiatric traits implicated largely similar cell types. These 

biological findings are consistent with genetic and epidemiological evidence of a general 

psychopathy factor underlying diverse clinical psychiatric disorders 21,57,58. Although 

intelligence and educational attainment implicated similar cell types, conditional analyses 

showed that the same cell types were implicated for different reasons. This suggests that 

different sets of genes highly specific to the same cell types contribute independently to 

schizophrenia and cognitive traits.

A number of studies have argued that the immune system plays a causal role in some 

psychiatric disorders 59,60. Our results did not implicate any brain immune cell types in 

psychiatric disorders. We interpret these negative findings cautiously as we did not fully 

sample the immune system. It is also possible that a small number of genes are active in 

immune cell types and that these cell types play an important role in the etiology of 

psychiatric disorders. Finally, if immune functions are salient for a small subset of patients, 

GWAS may not identify these loci without larger and more detailed studies.

Our findings for neurological disorders were strikingly different from psychiatric disorders. 

In contrast to previous studies that either did not identify any cell type associations with 

Parkinson’s disease 61 or identified significant associations with cell types from the adaptive 

immune system 49, we found that cholinergic and monoaminergic neurons (which include 

dopaminergic neurons), enteric neurons and oligodendrocytes were significantly and 

independently associated with the disease. It is well established that loss of dopaminergic 

neurons in the substantia nigra is a hallmark of Parkinson’s disease. Our findings suggest 

that dopaminergic neuron loss in Parkinson’s disease is at least partly due to intrinsic 

biological mechanisms. In addition, other type of cholinergic and monoaminergic neurons 

are known to degenerate in Parkinson’s disease (e.g., raphe nucleus serotonergic neurons 

and cholinergic neurons of the pons), suggesting that specific pathological mechanisms may 

be shared across these neurons and lead to their degeneration. Two theories for the selective 

vulnerability of neuronal populations in Parkinson’s disease currently exist: the “spread 

Lewy pathology model” which assumes cell-to-cell contacts enabling spreading of prion-like 

α-synuclein aggregates 62; and the “threshold theory” 63,64 which proposes that the 

vulnerable cell types degenerate due to molecular/functional biological similarities in a cell-

autonomous fashion. While both theories are compatible and can co-exist, our findings 

support the existence of cell autonomous mechanisms contributing to selective vulnerability. 

We caution that we do not know if all cholinergic and monoaminergic neurons show 

degeneration or functional impairment. However, analysis of the cellular mechanisms 

driving the association of cholinergic and monoaminergic neurons with Parkinson’s disease 

revealed endosomal trafficking as a plausible common pathogenic mechanism.
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Interestingly, enteric neurons were also associated with Parkinson’s disease. This result is in 

line with prior evidence implicating the gut in Parkinson’s disease. Notably, dopaminergic 

defects and Lewy bodies (i.e. abnormal aggregates of proteins enriched in α-synuclein) are 

found in the enteric nervous system of patients affected by Parkinson’s disease 65,66. In 

addition, Lewy bodies have been observed in patients up to 20 years prior to their diagnosis 
67 and sectioning of the vagus nerve (which connects the enteric nervous system to the 

central nervous system) was shown to reduce the risk of developing Parkinson’s disease 68. 

Therefore, our results linking enteric neurons with Parkinson’s disease provides new genetic 

evidence for Braak’s hypothesis, which postulates that Parkinson’s disease could start in the 

gut, travel along the vagus nerve, and affect the brain years after disease initiation38.

The association of oligodendrocytes with Parkinson’s disease was more unexpected. A 

possible explanation is that this association could be due to a related disorder (e.g., multiple 

system atrophy, characterized by Parkinsonism and accumulation of α-synuclein in glial 

cytoplasmic inclusions 69). However, this explanation is unlikely as multiple system atrophy 

is a very rare disorder; hence, only a few patients are likely to have been included in the 

Parkinson’s disease GWAS which could not have affected the GWAS results. In addition, 

misdiagnosis is unlikely to have led to the association of Parkinson’s disease with 

oligodendrocytes. Indeed, we found a high genetic correlation between self-reported 

diagnosis from the 23andMe cohort and a previous GWAS of clinically-ascertained 

Parkinson’s disease 19. In addition, self-report of Parkinson’s disease in 23andMe subjects 

was confirmed by a neurologist in all 50 cases evaluated 70.

We did not find an association of oligodendrocytes with Parkinsonism for genes affected by 

rare variants. This result may reflect etiological differences between sporadic and familial 

forms of the disease or the low power and insufficient number of genes tested. Prior 

evidence has suggested an involvement of oligodendrocytes in Parkinson’s disease. For 

example, α-synuclein-containing inclusions have been reported in oligodendrocytes in 

Parkinson’s disease brains 71. These inclusions (“coiled bodies”) are typically found 

throughout the brainstem nuclei and fiber tracts 72. Although the presence of coiled bodies in 

oligodendrocytes is a common, specific, and well-documented neuropathological feature of 

Parkinson’s disease, the importance of this cell type and its early involvement in disease has 

not been fully recognized. Our findings suggest that intrinsic genetic alterations in 

oligodendrocytes occur at an early stage of disease, which precedes the emergence of 

neurodegeneration in the substantia nigra, arguing for a key role of this cell type in 

Parkinson’s disease etiology.

Taken together, we integrated genetics and single-cell gene expression data from the entire 

nervous system to systematically identify cell types underlying brain complex traits. We 

believe that this a critical step in the understanding of the etiology of brain disorders and that 

these results will guide modelling of brain disorders and functional genomic studies.
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Methods

GWAS results

Our goal was to use GWAS results to identify relevant tissues and cell types. Our primary 

focus was human phenotypes whose etiopathology is based in the central nervous system. 

We thus obtained 18 sets of GWAS summary statistics from European samples for brain-

related complex traits. These were selected because they had at least one genome-wide 

significant association (as of 2018; e.g., Parkinson’s disease, schizophrenia, and IQ). For 

comparison, we included GWAS summary statistics for 8 diseases and traits with large 

sample sizes whose etiopathology is not rooted in the central nervous system (e.g., type 2 

diabetes). The selection of these conditions allowed contrasts of tissues and cells highlighted 

by our primary interest in brain phenotypes with non-brain traits.

The phenotypes were: schizophrenia 2, educational attainment 3, intelligence 15, body mass 

index 5, bipolar disorder 73, neuroticism 4, major depressive disorder 74, age at menarche 75, 

autism 76, migraine 77, amyotrophic lateral sclerosis 78, ADHD 79, Alzheimer’s disease 26, 

age at menopause 80, coronary artery disease 81, height 5, hemoglobin A1c 82, hippocampal 

volume 83, inflammatory bowel disease 84, intracranial volume 85, stroke 86, type 2 diabetes 

mellitus 87, type 2 diabetes adjusted for BMI 87, waist-hip ratio adjusted for BMI 88, and 

anorexia nervosa 89.

For Parkinson’s disease, we performed an inverse variance-weighted meta-analysis 90 using 

summary statistics from Nalls et al. 19 (9,581 cases, 33,245 controls) and summary statistics 

from 23andMe (12,657 cases, 941,588 controls). We found a very high genetic correlation 

(rg) 20 between results from these cohorts (rg=0.87, s.e=0.068) with little evidence of sample 

overlap (LDSC bivariate intercept=0.0288, s.e=0.0066). The P-values from the meta-

analysis strongly deviated from the expected (Figure S22) but was consistent with 

polygenicity (LDSC intercept=1.0048, s.e=0.008) rather than uncontrolled inflation 20.

Gene expression data

We collected publicly available single-cell RNA-seq data from different studies. The core 

dataset of our analysis is a study that sampled more than 500K single cells from the entire 

mouse nervous system (19 regions) and identified 39 broad categories (level 4) and 265 

refined cell types (level 5) 30. The 39 cell types expressed a median of 16417 genes, had a 

median UMI total count of ~8.6M and summed the expression of a median of 1501 single 

cells (Table S14). The replication datasets were: 1) a mouse study that sampled 690K single 

cells from 9 brain regions and identified 565 cell types 91 (note that we averaged the UMI 

counts by broad categories of cell type in each brain region, resulting in 88 different cell 

types); 2) our prior mouse study of ~10K cells from 5 different brain regions (and samples 

enriched for oligodendrocytes, dopaminergic neurons, serotonergic neurons and cortical 

parvalbuminergic interneurons) that identified 24 broad categories and 149 refined cell types 
12; 3) a study that sampled 19,550 nuclei from frozen adult human post-mortem 

hippocampus and prefrontal cortex and identified 16 cell types 42; 4) a study that generated 

36,166 single-nuclei expression measurements (after quality control) from the human visual 
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cortex, frontal cortex and cerebellum 45. We also obtained bulk tissues RNA-seq gene 

expression data from 53 tissues from the GTEx consortium 8 (v8, median across samples).

Gene expression data processing

All datasets were processed uniformly. First we computed the mean expression for each 

gene in each cell type from the single-cell expression data (if this statistics was not provided 

by the authors). We used the pre-computed median expression across individuals for the 

GTEx dataset and excluded tissues that were not sampled in at least 100 individuals, non-

natural tissues (e.g. EBV-transformed lymphocytes) and testis (outlier using hierarchical 

clustering). We then averaged the expression of tissues by organ (with the exception of brain 

tissues) resulting in gene expression profiles of a total of 37 tissues. For all datasets, we 

filtered out any genes with non-unique names, genes not expressed in any cell types, non-

protein coding genes, and, for mouse datasets, genes that had no expert curated 1:1 orthologs 

between mouse and human (Mouse Genome Informatics, The Jackson laboratory, version 

11/22/2016). Gene expression was then scaled to a total of 1M UMIs (or transcript per 

million (TPM)) for each cell type/tissue. We then calculated a metric of gene expression 

specificity by dividing the expression of each gene in each cell type by the total expression 

of that gene in all cell types, leading to values ranging from 0 to 1 for each gene (0: meaning 

that the gene is not expressed in that cell type, 0.6: that 60% of the total expression of that 

gene is performed in that cell type, 1: that 100% of the expression of that gene is performed 

in that cell type). The top 10% most specific genes (Table S15 and Table S16) in each tissue/

cell type partially overlapped for related tissues/cell types, did not overlap for unrelated 

tissue/cell types and allowed to cluster related tissues/cell types as expected (Figure S23 and 

Figure S24).

MAGMA primary and conditional analyses

MAGMA (v1.06b) 23 is a software for gene-set enrichment analysis using GWAS summary 

statistics. Briefly, MAGMA computes a gene-level association statistic by averaging P-

values of SNPs located around a gene (taking into account LD structure). The gene-level 

association statistic is then transformed to a Z-value. MAGMA can then be used to test 

whether a gene set is a predictor of the gene-level association statistic of the trait (Z-value) 

in a linear regression framework. MAGMA accounts for a number of important covariates 

such as gene size, gene density, mean sample size for tested SNPs per gene, the inverse of 

the minor allele counts per gene and the log of these metrics.

For each GWAS summary statistics, we excluded any SNPs with INFO score <0.6, with 

MAF < 1% or with estimated odds ratio > 25 or smaller than 1/25, the MHC region 

(chr6:25–34 Mb) for all GWAS and the APOE region (chr19:45020859–45844508) for the 

Alzheimer’s GWAS. We set a window of 35kb upstream to 10kb downstream of the gene 

coordinates to compute gene-level association statistics and used the European reference 

panel from the phase 3 of the 1000 genomes project 92 as the reference population. For each 

trait, we then used MAGMA to test whether the 10% most specific gene in each tissue/cell 

type was associated with gene-level genetic association with the trait. Only genes with at 

least 1TPM or 1 UMI per million in the tested cell type were used for this analysis. The 

significance level of the different cell types was highly correlated with the effect size of the 
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cell type (Figure S25) with values ranging between 0.999 and 1 across the 18 brain related 

traits in the Zeisel et al. dataset 93. The significance threshold was set to a 5% false 

discovery rate across all tissues/cell types and traits within each dataset.

MAGMA can also perform conditional analyses given its linear regression framework. We 

used MAGMA to test whether cell types were associated with a specific trait conditioning 

on the gene-level genetic association of another trait (Z-value from MAGMA .out file) or to 

look for associations of cell types conditioning on the 10% most specific genes from other 

cell types by adding these variables as covariate in the model.

To test whether MAGMA was well-calibrated, we randomly permuted the gene labels of the 

schizophrenia gene-level association statistic file a thousand times. We then looked for 

association between the 10% most specific genes in each cell type and the randomized gene-

level schizophrenia association statistics. We observed that MAGMA was slightly 

conservative with less than 5% of the random samplings having a P-value <0.05 (Figure 

S26).

We also evaluated the effect of varying window sizes (for the SNPs to gene assignment step 

of MAGMA) on the schizophrenia cell type associations strength (−log10(P)). We observed 

strong Pearson correlations in cell type associations strength (−log10(P)) across the different 

window sizes tested (Figure S27). Our selected window size (35kb upstream to 10 kb 

downstream) had Pearson correlations ranging from 0.94 to 0.98 with the other window 

sizes, indicating that our results are robust to this parameter.

In a recent paper, Watanabe et al. 94 introduced a different methodology to test for cell type 

– complex trait association based on MAGMA. Their proposed methodology tests for a 

positive relationship between gene expression levels and gene-level genetic associations with 

a complex trait (using all genes). Their method uses the average expression of each gene in 

all cell types in the dataset as a covariate. We examined the method of Watanabe et al. in 

detail, and decided against its use for multiple reasons.

First, Watanabe et al. hypothesize that genes with higher levels of expression should be more 

associated with a trait. In extended discussions among our team (which include multiple 

neuroscientists), we have strong reservations about the appropriateness and biological 

meaningfulness of this hypothesis; it is a strong requirement and is at odds with decades of 

neuroscience research where molecules expressed a low levels can have profound biological 

impact. For instance, many cell-type specific genes that are disease relevant are expressed at 

moderate levels (e.g., Drd2 is in the 10% most specific genes in telencephalon projecting 

inhibitory neurons but in the bottom 30% of expression levels). Our method does not make 

this hypothesis.

Second, the method of Watanabe et al. corrects for the average expression of all cell types in 

a dataset. This practice is, in our view, problematic as it necessarily forces dependence on 

the composition of a scRNA-seq dataset. For instance, if a dataset consists mostly of 

neurons, this amounts to correcting for neuronal expression and necessarily erodes power to 

detect trait enrichment in neurons. Alternatively, if a dataset is composed mostly of non-

neuronal cells, this will impacts the detection of enrichment in non-neuronal cells.
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Third, preliminary results indicate that the method of Watanabe et al. is sensitive to scaling. 

As different cell types express different numbers of genes, scaling to the same total read 

counts affects the average gene expression across cell types (which they use as a covariate), 

leading to different results with different choices of scaling factors (e.g., scaling to 10k vs 1 

million reads). Our method is not liable to this issue.

LD score regression analysis

We used partitioned LD score regression 95 to test whether the top 10% most specific genes 

of each cell type (based on our specificity metric described above) were enriched in 

heritability for the diverse traits. Only genes with at least 1TPM or 1 UMI per million in the 

tested cell type were used for this analysis. In order to capture most regulatory elements that 

could contribute to the effect of the region on the trait, we extended the gene coordinates by 

100kb upstream and by 100kb downstream of each gene as previously 13. SNPs located in 

100kb regions surrounding the top 10% most specific genes in each cell type were added to 

the baseline model (consisting of 53 different annotations) independently for each cell type 

(one file for each cell type). We then selected the coefficient z-score p-value as a measure of 

the association of the cell type with the traits. The significance threshold was set to a 5% 

false discovery rate across all tissues/cell types and traits within each dataset. All plots show 

the mean −log10(P) of partitioned LDscore regression and MAGMA. All results for 

MAGMA or LDSC are available in supplementary data files.

We evaluated the effect of varying window sizes and varying the percentage of most specific 

genes on the schizophrenia cell type associations strength (−log10P). We observed strong 

Pearson correlations in cell type associations strength (−log10P) across the different 

percentage and window sizes tested (Figure S28). Our selected window size (100 kb 

upstream to 100 kb downstream, top 10% most specific genes) had Pearson correlations 

ranging from 0.96 to 1 with the other window sizes and percentage, indicating that our 

results are robust to these parameters.

MAGMA vs LDSC ranking

In order to test whether the cell type ranking obtained using MAGMA and LDSC in the 

Zeisel et al. dataset 30 were similar, we computed the Spearman rank correlation of the cell 

types association strength (−log10P) between the two methods for each complex trait. The 

Spearman rank correlation was strongly correlated with λGC (a measure of the deviation of 

the GWAS test statistics from the expected) (Spearman ρ=0.89) (Figure S29) and with the 

average number of cell types below our stringent significance threshold (Spearman ρ=0.92), 

indicating that the overall ranking of the cell types is very similar between the two methods, 

provided that the GWAS is well powered (Figure S30). In addition, we found that λGC was 

strongly correlated with the strength of association of the top tissue (−log10P) (Spearman 

ρ=0.88) (Figure S31), as well as with the effect size (beta) of the top tissue (Spearman 

ρ=0.9), indicating that cell type – trait associations are stronger for well powered GWAS. 

The significance level (−log10P) was also strongly correlated with the effect size (Spearman 

ρ=0.996) (Figure S31) for the top cell type of each trait.
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Dendritic depletion analysis

This analysis was performed as previously described 12. In brief, all datasets were reduced to 

a set of six common cell types: pyramidal neurons, interneurons, astrocytes, microglia and 

oligodendrocyte precursors. Specificity was recalculated using only these six cell types. 

Comparisons were then made between pairs of datasets (denoted in the graph with the 

format ‘X versus Y’). The difference in specificity for a set of dendrite enriched genes is 

calculated between the datasets. Differences in specificity are also calculated for random sets 

of genes selected from the background gene set. The probability and z-score for the 

difference in specificity for the dendritic genes is thus estimated. Dendritically enriched 

transcripts were obtained from Supplementary Table 10 of Cajigas et al. 96. For the KI 

dataset 12, we used S1 pyramidal neurons. For the Zeisel 2018 dataset 30 we used all ACTE* 

cells as astrocytes, TEGLU* as pyramidal neurons, TEINH* as interneurons, OPC as 

oligodendrocyte precursors and MGL* as microglia. For the Saunders dataset 41, we used all 

Neuron.Slc17a7 cell types from FC, HC or PC as pyramidal neurons; all Neuron.Gad1Gad2 

cell types from FC, HC or PC as interneurons; Polydendrocye as OPCs; Astrocyte as 

astrocytes, and Microglia as microglia. The Lake datasets both came from a single 

publication 45 which had data from frontal cortex, visual cortex and cerebellum. The 

cerebellum data was not used here. Data from frontal and visual cortices were analyzed 

separately. All other datasets were used as described in our previous publication 12. The 

code and data for this analysis are available as an R package (see code availability below).

GO term enrichment

We tested whether genes that were highly specific to a trait-associated cell type (top 20% in 

a given cell type) AND highly associated with the genetics of the traits (top 10% MAGMA 

gene-level genetic association) were enriched in biological functions using the topGO R 

package 97. As background, we used genes that were highly specific to the cell type (top 

20%) OR highly associated with the trait (top 10% MAGMA gene-level genetic 

association).

Parkinson’s disease rare variant enrichments

We searched the literature for genes associated with Parkinsonism on the basis of rare and 

familial mutations. We found 66 genes (listed in Table S12). We used linear regression to 

test whether the z-scaled specificity metric (per cell type) of the 66 genes were greater than 0 

in the different cell types.

Parkinson’s disease post-mortem transcriptomes

The Moran dataset 47 was obtained from GEO (accession GSE8397). Processing of the 

U133a and U133b Cel files was done separately. The data was read in using the ReadAffy 

function from the R affy package 98, then Robust Multi-array Averaging (RMA) was 

applied. The U133a and U133b array expression data were merged after applying RMA. 

Probe annotations and mapping to HGNC symbols was done using the biomaRt R package 
99. Differential expression analysis was performed using limma 100 taking age and gender as 

covariates. The Lesnick dataset 46 was obtained from GEO (accession GSE7621). Data was 

processed as for the Moran dataset: however, age was not available to use as a covariate. The 
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Disjkstra dataset 50 was obtained from GEO (accession GSE49036) and processed as above: 

the gender and RIN values were used as covariates. As the transcriptome datasets measured 

gene expression in the substantia nigra, we only kept cell types that are present in the 

substantia nigra or ventral midbrain for our EWCE 11 analysis. We computed a new 

specificity matrix based on the substantia nigra or ventral midbrain cells from the Zeisel 

dataset (level 5) using EWCE 11. The EWCE analysis was performed on the 500 most up or 

down regulated genes using 10,000 bootstrapping replicates.

Code availability

The code used to generate these results is available at: https://github.com/jbryois/

scRNA_disease. An R package for performing cell type enrichments using magma is also 

available from: https://github.com/NathanSkene/MAGMA_Celltyping.

Data availability

All single-cell expression data are publicly available. Most summary statistics used in this 

study are publicly available. The migraine GWAS can be obtained by contacting the authors 
77. The Parkinson’s disease summary statistics from 23andMe can be obtained under an 

agreement that protects the privacy of 23andMe research participants (https://

research.23andme.com/collaborate/#publication).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Study design and tissue-level associations. Heat map of trait – tissue/cell types associations 

(−log10P) for the selected traits. (A) Trait – tissue/cell types associations were performed 

using MAGMA and LDSC (testing for enrichment in genetic association of the top 10% 

most specific genes in each tissue/cell type). (B) Tissue – trait associations for selected brain 

related traits. (C) Tissue – trait associations for selected non-brain related traits. (D) The 

mean strength of association (−log10P) of MAGMA and LDSC is shown and the bar color 

indicates whether the tissue is significantly associated with both methods, one method or 

none (significance threshold: 5% false discovery rate).
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Figure 2: 
Association of selected brain related traits with cell types from the entire nervous system. 

841 Associations of the top 10 most associated cell types are shown. (A) Conditional 

analysis results for 842 Parkinson’s disease using MAGMA. The label indicates the cell type 

the association analysis is being 843 conditioned on. (B) The mean strength of association 

(−log10P) of MAGMA and LDSC is shown and 844 the bar color indicates whether the cell 

type is significantly associated with both methods, one method 845 or none (significance 

threshold: 5% false discovery rate).
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Figure 3: 
Replication of cell type – trait associations in mouse datasets. Tissue – trait associations are 

shown for the 10 most association cell types among 88 cell types from 9 different brain 

regions. (A) Tissue – trait associations are shown for the 10 most association cell types 

among 24 cell types from 5 different brain regions. (B) The mean strength of association 

(−log10P) of MAGMA and LDSC is shown and the bar color indicates whether the cell type 

is significantly associated with both methods, one method or none (significance threshold: 5 

% false discovery rate).
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Figure 4: 
Human replication of cell type – trait associations. Cell type - trait associations for 15 cell 

types (derived from single-nuclei RNA-seq) from 2 different brain regions (cortex, 

hippocampus). (A) Cell type - trait associations for 31 cell types (derived from single-nuclei 

RNA-seq) from 3 different brain regions (frontal cortex, visual cortex and cerebellum). (B) 

The mean strength of association (−log10P) of MAGMA and LDSC is shown and the bar 

color indicates whether the cell type is significantly associated with both methods, one 

method or none (significance threshold: 5% false discovery rate). INT (intelligence), SCZ 

(schizophrenia), EDU (educational attainment), NEU (neuroticism), BMI (body mass 

index), BIP (bipolar disorder), MDD (Major depressive disorder), MEN (age at menarche), 

ASD (autism spectrum disorder), MIG (migraine), PAR (Parkinson’s disease), ADHD 

(attention deficit hyperactivity disorder), ICV (intracranial volume), HIP (hippocampal 

volume), AN (anorexia nervosa), ALZ (Alzheimer’s disease), ALS (amyotrophic lateral 

sclerosis), STR (stroke).
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Figure 5: 
Enrichment of Parkinson’s disease differentially expressed genes in cell types from the 

substantia nigra. Enrichment of the 500 most up/down regulated genes (Braak stage 0 vs 

Braak stage 1—2, 3—4 and 5—6, as well as cases vs controls) in postmortem human 

substantia nigra gene expression samples. The enrichments were obtained using EWCE11. A 

star shows significant enrichments after multiple testing correction (P<0.05/(25*6).
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