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Abstract

Mitochondrial injury plays a key role in the actiopathology of multifactorial diseases exhibiting a “vicious circle” characteristic
for pathomechanisms of the mitochondrial and multi-organ damage frequently developed in a reciprocal manner. Although the
origin of the damage is common (uncontrolled ROS release, diminished energy production and extensive oxidative stress to life-
important biomolecules such as mtDNA and chrDNA), individual outcomes differ significantly representing a spectrum of
associated pathologies including but not restricted to neurodegeneration, cardiovascular diseases and cancers. Contextually,
the role of predictive, preventive and personalised (PPPM/3P) medicine is to introduce predictive analytical approaches which
allow for distinguishing between individual outcomes under circumstance of mitochondrial impairments followed by cost-
effective targeted prevention and personalisation of medical services. Current article considers innovative concepts and analytical
instruments to advance management of mitochondriopathies and associated pathologies.
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Introduction

“Vicious circle” of the mitochondrial injury and multi-
organ dysfunction

< Olga Golunitschaja

olga.golubnitschaja@ukbonn.de . . . .
Mitochondria are semi-autonomous organelles of prokaryotic

origin [1], with outer and inner membranes encapsulating the
intermembrane space and matrix compartments [2]. Proper mi-
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tochondrial physiology is essential for maintaining physical and
mental health. Mitochondria primarily act as the main energy
supplier through oxidative phosphorylation (OXPHOS) and
therefore directly influencing the efficacy of highly energy-
consuming repair process in the cell [3]. Mitochondria are in-
volved in regulation of ion homeostasis, redox potential, lipid
metabolism, metabolite synthesis, cell differentiation, immune
system as well as anti-apoptotic and anti-ageing processes,
amongst others [4-9].

The mitochondrial genome is represented by 16,569 bp mito-
chondrial DNA (mtDNA). In animals and humans, inheritance
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of mtDNA is considered to be exclusively of maternal origin
[10]. Accumulation of mtDNA mutations is associated with ac-
celerated ageing and development of ageing-associated patholo-
gies such as neurological disorders, cardiovascular diseases
(CVDs), metabolic syndromes and cancers [3, 10].
Mitochondrial impairments (known also as mitochondriopathies)
can be inherited (through an autosome and/or X chromosome
maternally) or developed in a multi-factorial way including but
not restricted to a toxic environment, sub-optimal health condi-
tions and collateral pathologies (such as metabolic syndrome)
[3]. Mitochondriopathies carry systemic character and can be
damaging for many organs [11]. Molecular interplay shifted to-
wards excessive ROS formation, but diminished energy produc-
tion is a critical “vicious circle” of the mitochondrial injury and
multi-organ dysfunction which can be developed in a reciprocal
manner [3]. By insufficient energy production, chronic exposure
to ROS overproduction consequently leads to the oxidative dam-
age of life-important biomolecules including nucleic acids, pro-
teins, lipids and amino acids, amongst others. Consequently,
mitochondrial dysfunction is associated with accelerated ageing,
neurodegeneration, tumourigenesis, metabolic syndromes and
mood disorders, amongst others [3]. As the multi-factorial disor-
der of different severity grade, mitochondriopathies are remark-
ably heterogeneous being, therefore, challenging for overall clin-
ical management.

Regarding diagnostics, since different forms of mitochondrial
dysfunction may affect the brain, heart, peripheral nervous and
endocrine systems, eyes, ears, guts and kidney, amongst other
organs, mitochondriopathies have been proposed as an attractive
diagnostic target to be investigated in any patient with unex-
plained progressive multisystem disorder [3].

Approaches to treat neurodegenerative disorders such as
Alzheimer’s disease and glaucoma include standardised ginkgo
biloba extract (EGb761®), piracetam and Dimebon, which are
known to address many aspects of mitochondrial functionality
such as mitochondrial dynamics [11]. Further, generalised ap-
proaches such as physical exercise demonstrating neuroprotec-
tive [12], cardioprotective [13—18] and anti-cancer [19] effects
are clearly associated with the mitochondrial function support.
Finally, phytochemicals, naturally occurring compounds, used
due to their neuroprotective, cardioprotective and anti-
carcinogenic effects, have been demonstrated as a modulator of
the mitochondrial function, structure and related mechanisms
[20-27].

Mitochondriopathies in focus of predictive approach,
targeted prevention and personalisation of medical
services

Mitochondriopathies, concomitant multi-organ damage and

associated broad spectrum of chronic disorders cause enor-
mous socio-economic burden. Contextually, the paradigm
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change from reactive medicine to PPPM strategies is strongly
recommended to advance healthcare in the area [28].

Due to absent causative therapies and cure for individual
forms of mitochondriopathies, predictive approaches,
individualised patient profiling, targeted prevention and
personalisation of medical services are instrumental for the
overall management of mitochondriopathies.

This article details pathomechanisms related to mitochon-
drial injury as the clue to multi-factorial disorders and exem-
plifies conditions and tools to be considered at the clinical
side, in order to identify predisposed individuals and to intro-
duce targeted mitigating measures against potential
mitochondriopathy and cascaded development of related
pathologies.

Multifunctionality of mitochondria
in maintaining physical and mental health
versus disease development

Mitochondria perform an essential role in eukaryotic organ-
isms with important cellular functions, especially in energy
metabolism, and also in synthetic and oxidation/reduction
processes, ionic regulation (e.g. calcium homeostasis) and sig-
nalling pathways connected to cell communication, survival
and death [4-7, 10]. The key role of mitochondria in the phys-
iology of cells needed for maintaining physical and mental
health is summarised in Fig. 1. To this end, as described for
a broad spectrum of cell types, mitochondria are highly het-
erogeneous considering their morphology and functionality
that should be kept in mind considering tissue and organ spec-
ificity [29].

Human mitochondria contain 16,569 bp circular DNA
which encodes 37 genes for ribonucleic acids (RNAs) and
protein subunits of the respiratory chain [30]. Noteworthy,
mtDNA usually demonstrates higher mutation rates compared
with these of chromosomal DNA; accumulation of mtDNA
mutations has been related to ageing and age-associated dis-
ecases [31]. Being the major producers of reactive oxygen spe-
cies (ROS) in the cell, mitochondria are extensively exposed
to the oxidative damage [32]. However, under physiologic
condition, controlled production of ROS, sufficient energy
supply and efficient repair performance are well-balanced to-
gether [3]. Under this condition, mtDNA, damaged by oxida-
tive stress, can be effectively repaired through base excision
repair (BER) to restore mitochondrial genome integrity. In
contrast, under the “vicious circle” circumstances, uncon-
trolled ROS overproduction accompanied with diminished
energy supply and repair machinery insufficiency collectively
results in extensive mutations within the mtDNA including
genes responsible for the BER pathway and mitochondrial
repair enzymatic activities; irreversible changes in mitochon-
drial dynamics, including mitochondrial fusion/fission,
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Fig. 1 Mitochondrial function in the cell

motility, morphology, size and transport [33]; and irreversible
damage to life-important biomolecules and development of
associated diseases [3]. Figure 2 presents molecular mecha-
nisms and factors responsible for mitochondrial impairments
associated with a spectrum of neurodegenerative disabilities,
CVDs and cancers.

Declined mitochondrial qualities and activities are associ-
ated with multi-faceted ageing processes; in turn, ageing-
related accumulation of mitochondrial mutations predisposes
affected individual to a wide range of related disorders such as
metabolic syndromes, cancers, CVDs and multiple
neurodegeneration [34]. Mitochondrial ageing observed in as-
sociated disorders is characterised by the reciprocal relation-
ship between the decreased respiratory capacity and uncon-
trolled ROS overproduction leading to strongly pronounced
oxidative stress, increased pyruvate oxidation, telomere short-
ening, lipid toxicity and metabolic disturbances such as re-
duced both an activity of citrate synthase and phosphocreatine
recovery time and, finally, dysfunctional mitochondrial qual-
ity control machinery (seen, e.g. in autophagy) [35, 36].

Mitochondrial impairments characteristic
for neurodegeneration

Progressive neurodegeneration causes neuronal death and
synapse loss in vulnerable areas of the spinal cord and brain
as well as visual impairments and blindness by retinal dis-
eases. Regarding the latter, oxidative stress and associated
mitochondrial dysfunction are integral components of the
aetiopathology of retinal diseases, including diabetic retinop-
athy, age-related macular degeneration and glaucoma [37].
Both non-modifiable and modifiable (preventable) multi-
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factorial risk factors are involved in neurodegenerative pro-
cess including by not restricted to the genetic predisposition,
suboptimal health conditions, toxic environment, endogenous
and exogenous stress, systemic ischemia-reperfusion and mi-
tochondrial vulnerability, which individually or collectively
may lead to irreversible damage and degeneration of neuronal
systems [38—40].

In glaucomatous optic nerve degeneration considered the
second leading cause of blindness in human beings, currently
affecting around 70 million patients worldwide, an oxidative
stress by ischemia-reperfusion linked to mitochondrial impair-
ments, insufficient DNA repair and neuronal damage,
amongst other related processes has been demonstrated as
belonging to the comprehensive aetiopathology of the disease
[41, 42]. Further, as detailed specifically for the normal-
tension glaucoma, an imbalanced vasoconstriction in response
to multi-factorial stimuli (such as cold provocation, hormonal
and emotional stress) plays a central role in systemic
ischemia-reperfusion damage and can be observed early in life
of persons with suboptimal health conditions such as vaso-
spastic individuals [43]. Consequently, the subpopulation of
young vasospastic individuals demonstrating reversible sys-
temic damages is considered as a potent target for innovative
screening programmes and application of predictive diagno-
sis, cost-effective targeted prevention and treatment algo-
rithms tailored to the personalised patient profiles [44].

Alzheimer’s disease is one of the most prominent examples
of a multi-factorial neurodegenerative disorder related to oxi-
dative stress and mitochondrial dysfunction with high morbid-
ity and mortality registered worldwide [45]. At early patho-
logical events, synaptic damage correlates strongly with cog-
nitive deficits and memory loss. Alzheimer’s disease is related
to the increased production and impaired clearance of self-
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Fig. 2 Molecular mechanisms and factors associated with mitochondrial
impairments in neurodegenerative and cardiovascular diseases, and
cancer. ADAMI10, a disintegrin and 71 metalloprotease 10; APP,
amyloid precursor protein; PSEN1, presenilin 1; PSEN2, presenilin 2;
EMT, epithelial-mesenchymal transition; mtROS, mitochondrial reactive
oxygen species; CVD, cardiovascular disease; DNA, deoxyribonucleic
acid; ApoE, apolipoprotein E; SOD2, superoxide dismutase 2; ETC,
electron transport chain; DJ1, parkin-associated protein involved with

aggregating forms of 3-amyloid [46]. Moreover, mtDNA fre-
quently encodes ETC components; therefore, mtDNA muta-
tions lead to increased mitochondrial energetic dysfunction
[47]. Besides, various gene mutations closely associated with
mitochondrial function, including those involving amyloid
precursor protein (APP), presenilin 1 (PSENT), 46 presenilin
2 (PSEN?2), apolipoprotein E (ApoE) and a disintegrin and 71
metalloprotease 10 (ADAM]I0), lead to Alzheimer’s disease
[48]. APP accumulated in mitochondrial protein import chan-
nels interacts with various mitochondrial proteins and leads to
mitochondrial dysfunction [49]. Moreover, neuronal damage
or stress leads to ApoE synthesis. In neurons, the specific
conformation of ApoE4 is susceptible to proteolysis, resulting
in pathological mitochondrial dysfunction and cytoskeletal
alterations [50]. PSEN mutations enhance neurodegeneration
mediated by endoplasmic reticulum-mitochondria calcium
transfer [51]. Finally, mutations in ADAMI10 increase {3-
amyloid production and mitochondrial impairment associated
with Alzheimer’s disease pathogenesis [52].
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Parkinson’s disease affects about 2% of the population above
the age of 60 years [53]. Parkinson’s disease is characterised by
the loss of dopaminergic neurons in the substantia nigra pars
compacta (SNpc) and the presence of misfolded x-synuclein
(a-syn) in intra-cytoplasmic inclusions known as Lewy bodies
[54]. Mutations in mtDNA or nuclear DNA, including those
involving E3 ubiquitin ligase (Parkin), x-syn, ubiquitin
carboxy-terminal hydrolase L1 (UCHLI), parkin-associated pro-
tein involved with oxidative stress (D.JI), putative serine threo-
nine kinase (PINKI), auxilin (DNAJC6), synaptojanin 1
(SYNJI), serine peptidase 2 (HTRA2) and endophilin Al
(SH3GL?2), are described in the pathogenesis of Parkinson’s dis-
ease [55-59]. These genes are important for mitochondrial func-
tion, and mutations or disturbances in function can lead to mito-
chondrial impairments. a-syn controls mitochondrial function
under both physiological and pathological conditions.
Mutations in «a-syn contribute to neuronal impairment in
Parkinson’s disease [60]. D.JI encodes a ubiquitous, highly con-
served protein. DJ1 is an integral mitochondrial protein that
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maintains the activity of mitochondrial complex I and regulates
mitochondrial homeostasis [61]. Moreover, the accumulation of
PINK1 on defective mitochondria leads to the translocation of
Parkin from the cytosol to eliminate damaged mitochondria
through mitophagy (the selective degradation of mitochondria
by autophagy) [62]. Disruptions in mitochondrial homeostasis
or the expression of PINK1 and Parkin leads to mitochondrial
impairments and associated disorders such as Parkinson’s dis-
ease. Moreover, HTRAZ2 is a mitochondrial protein with a pro-
teolytic role in protein quality control and homeostasis in the
mitochondrial intermembrane space. Mutations in HTRA2 are
associated with autosomal dominant late-onset Parkinson’s dis-
ease [63]. Furthermore, UCHLI is a key enzyme in the protein
degradation pathway and functions in the physiological remod-
elling of synapses by controlling ubiquitin homeostasis. Any
disturbance in homeostasis contributes to mitochondrial and syn-
aptic failure [64]. Finally, DNAJC6, SYNJI and SH3GL2 are
associated with the disruption of synaptic vesicle endocytosis,
which contributes to mitochondrial dysfunction and is thus relat-
ed to the pathogenesis of Parkinson’s disease.

Mitochondrial impairments characteristic
for cardiovascular diseases

CVDs, a prevalent cause of morbidity and mortality world-
wide, comprise heart and circulatory system disorders which
result mainly from atherosclerosis and manifest as heart at-
tacks and strokes [65, 66]. CVDs are highly heterogencous
and chronic diseases which may remain asymptomatic for a
long time [67]. Several factors are responsible for the devel-
opment of CVDs including invariable factors, such as gender,
age and genetic heritage, versus variable factors, such as sed-
entary life-style, tobacco use, obesity, inappropriate eating
habits, high blood pressure and preventable metabolic syn-
dromes, amongst others [68]. Moreover, there are some gen-
der specific risk factors such as related to female hormonal
regulation in peri/menopause and pregnancy [69].
Mitochondria play an important role in cardiac homeosta-
sis. Being highly energy-consuming, cardiomyocytes are rich
on mitochondria. Deficient ATP synthesis and energy metab-
olism contribute in a reciprocal way to disturbed cardiac ex-
citation-contraction, severe mitochondrial impairments and
development of CVDs, including atherosclerosis, ischemic
heart disease, cardiac hypertrophy and heart failure [70-72].
Mitochondrial impairments associated with CVDs are
characterised by enhanced ROS production, intracellular
ATP depletion, extensive cell damage and highly increased
cardiomyocyte apoptotic rates [70]. Stress conditions can lead
to calcium and ROS overload, resulting in the loss of mito-
chondrial membrane potential and the consequent release of
mitochondrial proteins including cytochrome ¢ (CytC) [73,
74]. CytC deficiency in children diagnosed with hypertrophic

cardiomyopathy is a known mortality cause [75]. Noteworthy,
accumulating mtDNA mutations have been associated with
ischemic heart disease, cardiomyopathy, atherosclerotic vas-
cular disease, dysrhythmias and heart failure [76].

Ischemic heart disease, also known as coronary heart disease,
is characterised by an inadequate blood supply to the heart
caused by the blockage of blood vessels [77]. To this end, insuf-
ficient coronary micro-vessel dilatation, coronary microvascular
spasms and dysfunction and extravascular compressive forces
contribute to chronic and acute forms of ischemic heart disease
[77]. Furthermore, damage in the ETC is responsible for severe
myocardial ischemia [78]. In stressed cells, mitochondria activate
death channels, especially the mitochondrial permeability transi-
tion pore (mPTP), which is regulated by several proteins, includ-
ing the voltage-dependent anion channel (VDAC), the adenine
nucleotide translocator (ANT) and cyclophilin D (CypD). The
opening of the mPTP immediately disrupts the electrical poten-
tial, halting ATP synthesis and causing an influx of solute and
mitochondrial swelling [79-81].

ATP depletion is heavily implicated in both ischemic heart
disease and heart failure. Heart failure represents a complex
clinical syndrome associated with impaired contractile perfor-
mance of the myocardium and the heart’s inability to sufficient-
ly perfuse peripheral tissues [70]. A major reason for heart
failure is calcium dysregulation and oxidative damage caused
by mtROS overproduction in human patients [82, 83].
Moreover, significant mtDNA depletion and inhibition of the
expression of mtDNA-encoded proteins are observed in the
human heart failure [84]. Cardiac metabolism in the patholog-
ical state exhibits an increased reliance on glucose and therefore
glycolysis [85]. Systolic heart failure can be further associated
with hypertension and/or diabetes [86]. Patients with combined
chronic heart failure and diabetes mellitus have worse progno-
ses associated with elevated ROS overproduction but decreased
SOD2/NDUFS1 expression rates compared to patients with
chronic heart failure without diabetic history [87].

Mitochondrial impairments characteristic
for cancers

In malignancies, metastasis is the main cause of death in more
than 90% of cancer patients [88]. The heterogeneity of cancers
and their frequent therapeutic resistance [89, 90] are further
concerns motivating application of innovative cost-effective
approaches by predictive diagnostics of reversible damage,
risk assessment, targeted prevention and treatment algorithms
tailored to the person [19, 91-96] whereas about 5 to 10% of
cancers are caused by inherited predisposition to malignant
cell transformation [97]; the majority of cancer cases carry a
sporadic character being preventable [19, 93, 98].
Accumulating mtDNA mutations and uncontrolled ROS
overproduction are characteristic for solid and haematological
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malignancies [99—103] both associated with genomic instability
and irreversible alterations in gene expression patterns and relat-
ed signalling pathways. Concomitant changes in Ca®* and onco-
metabolite concentrations are highly relevant for mitochondrial
retrograde signalling, neoplastic transformation and cancer pro-
gression [104]. Disturbed homeostasis of mitochondrial energy
metabolism is crucial for the malignant cell transformation and
metastatic disease known as the Warburg effect and characterised
by the switch from OXPHOS to glycolysis [93]. To this end,
activation of hypoxia-inducible factor 1 (HIF-1) by oncogenic
protein kinase B (AKT) suppresses pyruvate dehydrogenase
(PDH) activity [105]. Upregulation of glucose 6-phosphate de-
hydrogenase, pyruvate kinase M2 and Rad6 and downregulation
of succinate dehydrogenase further contribute to higher lactate
levels associated with the Warburg effect [106].

Mutations occur to the mitochondrial Krebs cycle genes con-
tribute to tumorigenesis through the epithelial-mesenchymal
transition (EMT). Mitochondrial dysfunction (i.e. OXPHOS
downregulation) promotes EMT increasing cancer aggressive-
ness and poor individual outcomes [107]. Mutations in fumarate
hydratase inhibit the conversion of fumarate to malate and lead to
leiomyomatosis and highly aggressive renal cell cancer with
early-stage metastasis [108]. Mutations of the isocitrate dehydro-
genase promote oxidative decarboxylation of isocitrate to -
ketoglutarate demonstrated for several cancer types including
leukaemia, melanoma, and prostate, colon and lung cancers
[109]. Mutations in succinate dehydrogenase predispose to pheo-
chromocytoma, paraganglioma and gastrointestinal stromal tu-
mours as well as renal cell carcinoma [110].

Common origin but individual outcomes

As detailed above, mitochondrial injury and consequently dis-
turbed energy homeostasis and uncontrolled ROS overpro-
duction cause/strongly contribute to neurodegeneration, ma-
lignant cell transformation and CVDs. Moreover, a number of
disrupted mitochondrial genes are overlapped in the develop-
ment of all these pathologies. For example, Parkin associated
with Parkinson’s disease acts also in hepatocellular carcinoma
[111]. Aberrantly expressed and methylated «-syn, on one
hand, can contribute to neuronal impairment in Parkinson’s
disease [60] and, on the other hand, has been found in different
cancer types including melanoma and brain, ovarian, breast
and colorectal cancers [112, 113].

Upregulation of phosphorylated microtubule-associated
protein tau (MAPT) and consequently altered mitochondri-
al functions are associated with Alzheimer’s disease [114];
in cancer, MAPT overexpression is linked to poor progno-
sis and drug resistance [115]. Mitochondrial impairments,
especially dysfunction of respiratory complex II, cause
excessive mtROS generation that is known to be involved
in the pathogenesis of both—development of familiar and
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sporadic cancers and neurodegenerative disorders [116].
The paradox is that although the disease origin is com-
mon, individually outcomes differ from each other. Below
we provide recently collected statistics demonstrating that,
for example, neurodegenerative processes seem to protect
against cancer development.

Smoking- and non-smoking-associated cancers occur less fre-
quently in patients with Parkinson’s disease [117—119]. No as-
sociations between Parkinson’s disease and nonfatal cancers
were observed [120]. A meta-analysis of fifteen studies compris-
ing 346,153 Parkinson’s disease cases demonstrated a lower risk
of prostate cancer in the Western population [121]. Although
Alzheimer’s disease and cancer share multiple impairments re-
lated to the ATP depletion, mitochondrial injury and decreased
PDH activity [121], patients with Alzheimer’s disease demon-
strate lower cancer risk compared to the general population
[122—-124]. A large Danish nationwide cohort study re-
vealed inverse associations between Alzheimer’s disease
and subsequent cancer diagnoses, specifically pronounced
for breast cancer and melanoma compared to the general
population [125]. No association have been demonstrated
between Parkinson’s disease and risks for several cancers
including breast, digestive system, lung, urinary and repro-
ductive system cancers as well as haematological malig-
nancies [126]. Further statistics demonstrate that cancer
patients are at greater risk to develop later on Parkinson’s
or Alzheimer’s disease, in contrast to lower risk to disease
on cancer for people affected by neurodegeneration [127].
This phenomenon hypothetically might be explained by
side effects of cancer treatments similarly to a highly in-
creased ischemic stroke incidence well-known for patients
with the cancer treatment history: for almost all cancers
survivors, the risk of stroke increases with time [128].

In summary, neurodegeneration, cancers and CVDs share
many common risk factors and molecular pathways related to
mitochondrial function and impairments [129-131]. However,
still individual areas undergo rather separate investigations that
limits their analytical power and create barriers in development
of personalised predictive diagnostics and application of cost-
effective targeted prevention. Consequently, it is strongly recom-
mended to reconsider future analytical strategies in favour of
more comprehensive approaches aiming at multi-modal diagnos-
tics which allow for prediction of individual outcomes under
circumstances of mitochondrial impairments [3].

Liquid biopsy is instrumental

for individualised diagnostics and prediction
of pathologies associated

with mitochondriopathies

Table 1 summarises the research focusing on potential bio-
markers obtained from liquid biopsy that are important for



EPMA Journal (2021) 12:27-40 33
Table 1 Liquid biopsy in individualised diagnostics and prediction of pathologies associated with mitochondriopathies
Biomarker Type of mitochondrial Fluid sample Results Reference
disease
mtDNA Alzheimer’s disease Cerebrospinal fluid | mtDNA in presymptomatic patients [132]
patients with PSENI mutation
ApoE 1 ApoE compared to control [133]
Oxidant and antioxidant Blood 1 Oxidative stress, 1 hydrogen peroxide, 1 organic [134]
metabolites hydroperoxides, | GSH/GSSG ratio, | GSH
transferase, | ATP compared to young adult control
Lipofuscin-like pigments 1 Lipofuscin-like pigments compared to control [135]
3-amyloid Plasma 1 B-amyloid in Alzheimer’s disease patients, | 3-amyloid [136]
after vitamin D treatment, | (3-amyloid-related bio-
markers (Af342, APP, BACE1, APPmRNA,
BACEImRNA)
8-OHdG Urine Different levels of 8-OHdG and 2’-deoxyguanosine be-  [137]
tween patients with Alzheimer’s disease and healthy
control
AD7C neural thread 1 AD7C neural thread protein in Alzheimer’s disease [138]
protein patients compared to non- Alzheimer’s disease
dementia, and healthy normal individuals
DJ1 Parkinson’s disease Cerebrospinal fluid 1 DJ1 compared to control [139]
Advanced oxidised patients Cerebrospinal fluid and serum 1 Advanced oxidised protein products compared to [140]
protein products control
ROS and SOD Blood 1 mtROS in monocytes, | antioxidant SOD in blood [141]
Oxidative stress markers | GSH peroxidase, 1 oxidised GSH, 1 MDA contents [142]
Uric acid Serum | Uric acid [143]
Biopyrrin Urine 1 Biopyrrin compared to control [144]
ApoC3 Coronary heart disease Serum | ApoC3, | triglyceride after aerobic exercise for 8 weeks [145]
patients compared to baseline
Cardiac troponin [ Patients with acute 1 Cardiac troponin I is associated with poor prognosis and [146]
decompensated heart increased mortality
failure
N-terminal portion of Ischemic heart disease Plasma 1 N-terminal portion of pro-brain natriuretic peptide and [147]
pro-brain natriuretic patients adrenomedullin predict heart failure and death
peptide and
adrenomedullin
Tumour necrosis factor-&«  Ischemic heart failure Levels are highly predictive for the primary end point of [148]
receptor-1 and brain patients death or cardiac hospitalisation
natriuretic peptide
D-dimer Stroke and coronary heart 1 Basal plasma level of d-dimer is associated with ische- [149]
disease patients mic stroke, especially cardioembolic stroke
Hsa_circ_0001445 Coronary artery disease Plasma Levels of hsa_circ_0001445 are proportional to coronary [150]
patients atherosclerotic burden
Hsa_circ_0001879 and Blood 1 hsa_circ_0001879 and hsa_circ_0004104 compared to [151]
hsa_circ_0004104 control
80HdG Lung cancer patients Blood 1 80OHAG compared to healthy control [152]
Prostate cancer patients 1 80HAG in high-risk patients [153]
MDA, GSSG, GSH, TAC Breast cancer patients 1t MDA, 1 GSSG, | GSH, | TAC, | GSH/GSSG ratio [154]
compared to control
Diacron’s reactive oxygen Colorectal cancer patients 1 Diacron’s reactive oxygen metabolites, | total thiol level [155]
metabolites and total
thiol level
MtDNA copy number Acute lymphoblastic 1 mtDNA copy number, 1 mitochondrial deletion ratios, | [156]
leukaemia patients mtDNA copy number after chemotherapy compared to
controls
TOM34 and HSP90OAA1  Hepatocellular carcinoma  Serum 1 TOM34, 1 HSP90AA1 compared to cirrhotic patients  [157]

patients

1 Increased
| Decreased

Abbreviation: mtDNA mitochondrial DNA, PSEN] presenilin 1, ApoE apolipoprotein E, GSH glutathione, GSSG glutathione disulphide, A7P adenosine
triphosphate, A(342 the 42 amino acid form of amyloid-(3, APP amyloid-{3 precursor protein, BACEI [3-secretase 1, D.JI parkin-associated protein
involved with oxidative stress, ROS reactive oxygen species, SOD superoxide dismutase, MDA malondialdehyde, ApoC3 apolipoprotein C3, SOHdG 8-
hydroxy-2'-deoxyguanosine, TAC total antioxidant capacity, TOM34 34-kDa translocase of the outer mitochondrial membrane, HSP90AA I heat shock
protein 90 alpha family class A member 1
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improved individualised diagnostics and prediction of pathol-
ogies associated with mitochondriopathies, especially neuro-
degenerative disorders, CVDs and cancer.

Conclusions and expert recommendations

Mitochondrial injury plays a key role in the aetiopathology of
multifactorial diseases exhibiting a “vicious circle” character-
istic for the mitochondrial and multi-organ damage frequently
developed in a reciprocal manner. Although the origin is com-
mon (uncontrolled ROS release, diminished energy produc-
tion and extensive oxidative stress to life-important biomole-
cules such as mtDNA and chrDNA), individual outcomes
differ significantly from each other comprising a spectrum
of associated pathologies including but not restricted to the
neurodegeneration, CVDs and cancers. Although correspond-
ing pathomechanisms and molecular pathways overlap be-
tween individual mitochondriopathy-related pathologies,
multi-centre studies demonstrate that, for example, neurode-
generative processes seem to protect against cancer develop-
ment. In contrast, cancer patients are at greater risk to develop
later on Parkinson’s or Alzheimer’s disease—the phenome-
non which hypothetically might be explained by side effects
of cancer treatments similarly to a highly increased ischemic
stroke incidence well-known for patients with the cancer treat-
ment history. Unfortunately, individual areas currently under-
go rather separate investigations that limit their analytical
power and create barriers in development of personalised pre-
dictive diagnostics and application of cost-effective targeted
prevention.

Contextually, the role of predictive, preventive and
personalised (PPPM/3P) medicine is to force innovative
analytical approaches which would allow for
distinguishing between individual outcomes under circum-
stance of mitochondrial impairments. For that,
individualised patient profiling, patient stratification,
screening programmes focused on suboptimal health con-
ditions, non-invasive prediction by applying liquid biop-
sies and cost-effective targeted prevention are instrumental
for the paradigm shift from reactive medicine to PPPM.
Recent progress made in the area of mitochondriopathies
revealed that patient stratification and risk assessment are
supportive for the effective treatments considering the lev-
el of mitochondrial impairment and individual predisposi-
tion to associated pathologies [158, 159]. General mitigat-
ing measures against oxidative damage include application
of antioxidant agents with scavenging activity such as phy-
tochemicals [21, 94, 160], personally adapted physical ac-
tivities, dietary habits and individualised life-style recom-
mendations [19]. Further, individualised phenotyping is
instrumental for screening programmes focused on indi-
viduals with reversible damage such as young vasospastic
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individuals with systemic ischemic-reperfusion effects
clearly predisposed to mitochondrial injury and associated
pathologies [40, 44, 91].

Last but not the least, acute pandemic conditions re-
quire effective predictive, preventive and personalised al-
gorithms for correct decisions made at clinical side. Viral
infections are known to provoke necrosis, which amplifies
anti-viral immune responses releasing damage-associated
molecular patterns. Severely affected cells and tissues in-
trinsically secrete cell-free nucleic acids such as mtDNA.
Indeed, COVID-19 patients with increased mtDNA levels
are at elevated death risk and have to be intubated.
Consequently, cell-free mtDNA is a potential biomarker
for individualised survival status prediction in COVID-19
patients as a model for predictive approach under pan-
demic conditions [38, 161, 162].

Abbreviations ROS, Reactive oxygen species; mtROS, Mitochondrial re-
active oxygen species; PPPM/3PM, Predictive preventive personalised med-
icine; mtDNA, Mitochondrial DNA; chrDNA, Chromosomal DNA;
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Adenine nucleotide translocator; CypD, Cyclophilin D; ANT , Adenine nu-
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