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Abstract

We investigate rotational diffusion of fluorescent molecules in angular potential wells, the 

excitation and subsequent emissions from these diffusing molecules, and the imaging of these 

emissions with high-NA aplanatic optical microscopes. Although dipole emissions only transmit 

six low-frequency angular components, we show that angular structured illumination can alias 

higher-frequency angular components into the passband of the imaging system. We show that the 

number of measurable angular components is limited by the relationships between three time 

scales: the rotational diffusion time, the fluorescence decay time, and the acquisition time. We 

demonstrate our model by simulating a numerical phantom in the limits of fast angular diffusion, 

slow angular diffusion, and weak potentials.

1. INTRODUCTION

Consideration of rotational diffusion should play an important role in all fluorescence 

experiment. Stokes’ 1852 investigation of fluorescence (which led him to coin the word 

“fluorescence”) reported no apparent polarization of the light emitted by a fluorescing 

solution of quinine, even when the incident excitation light was polarized [1]. We now 

understand that his observation reflects the relative time scales of angular diffusion, 

fluorescence decay, and measurement acquisition [2]. Angular diffusion of quinine (~0.3 ns 

rotational relaxation time) is fast compared to its fluorescence lifetime (~20 ns), which is 

fast compared to Stokes’ acquisition time (~0.1 s for human vision). Even though each 

individual emission is polarized, diffusive reorientation of each fluorophore results in 

randomly polarized emissions that result in no apparent polarization when averaged over the 

measurement time.

These relationships were elucidated by several investigators in the 1920s. Weigert 

demonstrated that decreasing the rotational mobility of fluorescent molecules (by increasing 

the viscosity of the solvent or decreasing the temperature) resulted in increasingly polarized 
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fluorescent emissions [3]. Wawilow and Lewschin observed that different dyes displayed 

varying relationships between the rotational mobility and the polarization of the fluorescent 

emissions [4], and Francis Perrin explained these variations by accounting for the 

fluorescence lifetime of the fluorophores [5]. Perrin’s synthesis inspired Weber to develop 

modern fluorescence polarization assays for biological applications [6,7]. See Jameson’s 

review [2] for English summaries of the papers cited in this paragraph.

Since Weber’s work, fluorescence polarization assays have been used to deduce information 

from a wide range of samples in solution—see Lakowicz ([8], chapters 10–12) for a review. 

More recently, fluorescence polarization imaging assays have been developed to image 

rotationally constrained fluorophores that label biological structures [9-15]. Furthermore, 

breakthroughs in single-molecule localization microscopy have led to assays that measure 

the position, orientation, and rotational dynamics of single molecules [16-21]. All of these 

techniques use a model of rotational diffusion and the imaging process to interpret the 

collected data, and any mismatch between the model and the experiment could limit the 

accuracy of these interpretations.

Several recent works have modeled the images created by rotating single molecules under 

angular constraints [22-25], and this paper refines and extends these models. First, we 

consider angular potentials more general than those that are rotationally symmetric about a 

single axis. Modeling general potentials reduces the number of assumptions required to 

interpret data and creates opportunities for designing instruments that can draw new 

conclusions. Second, we consider in detail how the angular potential affects angular 

diffusion. Existing works have assumed that angular diffusion can be described by a 

monoexponential decay, while here we use the Smoluchowski equation to show that angular 

diffusion is multi-exponential with time constants that depend on the potential. Third, we 

consider the effects of fluorescence saturation on the spatio-angular imaging process. We 

show that exploiting saturation can enable measurements of high-frequency angular 

components. Finally, we efficiently model arbitrary spatio-angular distributions of 

fluorescent emitters including but not limited to single molecules. These modeling 

improvements make several new predictions that may guide future experiments and improve 

the interpretation of existing data.

In the previous two papers of this series [26,27], we described the organization of our theory, 

described spatio-angular imaging operators and how they can be expressed in different 

bases, then calculated spatio-angular imaging operators for a paraxial 4 f imaging system. In 

this paper, we build on our framework and incorporate angular diffusion within a potential, 

polarized excitation, and high-NA imaging.

The paper is organized as follows. In Section 2, we develop models for spatio-angular 

diffusion, excitation, emission, and imaging. After introducing our notation (Section 2.A), 

we build on the work of Jones [28] and Schulten et al. [29] to describe angular diffusion of 

one-state dipoles within asymmetric (Section 2.B) and symmetric potentials (Section 2.C). 

Next, we describe the diffusion of two-state molecules and their emissions under strong 

(Section 2.D) and weak excitation (Sections 2.E-2.F). In Section 3, we create a numerical 
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phantom, specify an imaging system, then simulate imaging results. Finally, in Section 4, we 

discuss our results and their implications.

2. THEORY

A. Notation

We use roman fonts for scalars and functions (e.g., t, f), bold fonts for vectors (e.g., f, s), and 

blackboard bold for manifolds and vector spaces (e.g., S2, ℝ3). We use hats to denote unit 

vectors (e.g., s, e), and we use {ei} to denote a set of orthonormal standard basis vectors.

We briefly review notation for functions that map points on the sphere S2 onto the real 

numbers ℝ. We denote these spherical functions by f(s), where s ∈ S2, and we denote their 

associated Hilbert-space vectors by f ∈ L2(S2). We define an inner product for this Hilbert 

space as

(f1, f2) = ∫
S2dsf1(s)f2(s), (1)

and we use this inner product to confirm that the non-denumerable set of standard basis 

vectors {{e(s)} = {[1, 0, 0…], [0, 1, 0, …], …, […, 0, 0, 1]} satisfy

e(s), e(s′) = δ(s − s′), (2)

where δ(s − s′) is the Dirac delta on the sphere. We can construct an alternative orthonormal 

basis using the real-valued spherical harmonic functions Y ℓm(s), which satisfy

∫
S2dsY ℓm(s)Y ℓ′m′(s) = δℓℓ′δmm′, (3)

where ℓ ∈ {0, 1, 2, …}, m ∈ {−ℓ, −ℓ + 1, … ℓ − 1, ℓ}, and δℓℓ′ denotes the Kronecker delta 

function. The new basis vectors are

Eℓm = ∫
S2dsY ℓm(s)e(s), (4)

which satisfy

Eℓm, Eℓ′m′ = δℓℓ′δmm′, (5)

e(s), Eℓm = Eℓm, e(s) = Y ℓm(s) . (6)

We can expand arbitrary Hilbert-space vectors f ∈ L2(S2) in either basis as
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f = ∫
S2dsf(s)e(s) = ∑

ℓ = 0

∞
∑

m = − ℓ

ℓ
FℓmEℓm . (7)

The coefficients f(s) can be found by taking the inner product of both sides of Eq. (7) with 

the basis vectors e(s) and exploiting orthonormality,

f(s) = (e(s), f) . (8)

We can proceed similarly for the coefficients Fℓm, then write these coefficients in terms of 

f(s),

Fℓm = (Eℓm, f) = ∫
S2ds(Eℓm, e(s))(e(s), f)

= ∫
S2dsY ℓm(s)f(s),

(9)

which is usually called the spherical Fourier transform.

We denote Hilbert-space operators with capital calligraphic letters ℋ. Hilbert-space 

operators act on Hilbert-space vectors to create other Hilbert-space vectors g = ℋf, and we 

can express the action of ℋ concretely by choosing a basis for g and f. For example, if 

ℋ:L2(S2) L2(ℝ2), then we can choose the standard basis for both the input and output 

spaces and write

g = ℋf, (10)

(e(r), g) = ∫
S2ds(e(r), ℋe(s))(e(s), f), (11)

g(r) = ∫
S2dsℎ(r, s)f(s), (12)

where ℎ(r, s) = (e(r), ℋe(s)) are the standard entries of ℋ.

We can calculate the entries of ℋ in a different basis by relating them to the standard entries. 

For example,

Hℓm(r) ≡ (e(r), ℋEℓm) = ∫
S2ds(e(r), ℋe(s))(e(s), Eℓm)

= ∫
S2dsℎ(r, s′)Y ℓm(s) .

(13)

Finally, we denote adjoint operators with a dagger † using the definition
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(f1, ℋf2) = (ℋ†f1, f2) . (14)

B. Dipole Angular Diffusion in Arbitrary Potentials

Consider a rigid molecule with orientation R ∈ SO(3)—a 3 × 3 orthogonal matrix with 

determinant +1. We let ω(R, t) denote the probability of finding the molecule in orientation 

R at time t. Our goal is to develop a useful model for the time evolution of ω(R, t) given the 

molecule’s initial condition ω(R, 0) and its angular potential energy.

We start by assuming that the molecule’s orientation can be completely described by a single 

absorption/emission dipole axis s. To apply this assumption, we parameterize the molecule’s 

orientation using an axis-angle representation R = (s, ψ), where s ∈ S2 specifies the dipole 

axis and ψ ∈ [0, 2π) specifies a rotation about s. With this parameterization, we can apply 

the assumption by ignoring ψ and considering the time evolution of ω(s, t). We also know 

that dipole absorber/emitters are symmetric under inversion, so we constrain our 

distributions to be of the form ω(s, t) = ω( − s, t). Finally, we normalize our probability 

distribution using

∫
S2dsω(s, t) = 1 . (15)

To model the action of an arbitrary external potential on the molecule, we introduce an 

angular potential function v(s). This function tells us how much potential energy the 

molecule has when it is oriented along s, and these potentials arise when the molecule is 

subject to external torques. For example, a small molecule in solution is not subject to any 

torques, so it will have the same amount of potential energy in every orientation, and its 

angular potential will be constant v(s) = 1. Non-constant angular potentials appear in many 

physical situations—for example, a molecule is placed in an external electric field, 

covalently bound to a large rigid structure, or embedded into an immobile membrane—and 

we can model all of these situations by considering the molecule’s non-constant angular 

potential v(s).

We can model the time evolution of ω(s, t) under an arbitrary angular potential v(s) using the 

Smoluchowski equation,

∂ω(s, t)
∂t = ∇ ⋅ D(s) ∇ω(s, t) + βω(s, t)∇v(s) , (16)

where ∇ is the spherical gradient operator, ∇· is the spherical divergence operator, D(s) is an 

orientation-dependent angular diffusion tensor, and β = 1/kBT with kB Boltzmann’s constant 

and T temperature. Although we point readers elsewhere for a derivation [29-31], Eq. (16) is 

plausible at a glance. The first term in brackets models diffusion down a concentration 

gradient, and the second term models torques due to the potential. The orientation-dependent 

angular diffusion tensor scales and rotates the gradients. Next, the divergence sums over all 

Chandler et al. Page 5

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2021 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neighboring orientations to find the total change in ω(s, t). We note that Eq. (16) assumes 

that inertial terms are negligible and that the torques can be related to a scalar potential.

Next, we assume that the molecule behaves like a spherical rotor—the diffusion tensor is 

homogeneous (independent of s) and isotropic (independent of angular diffusion direction)

—so we can replace D(s) with a single constant D,

∂ω(s, t)
∂t = D∇ ⋅ ∇ω(s, t) + βω(s, t)∇v(s) . (17)

This assumption is widely used in fluorescence microscopy [22-25], and it provides a 

reasonable approximation for globular emitters like green fluorescent protein. Other 

investigators have modeled fluorescence from non-spherical rotors in solution [8,32] and 

non-fluorescent diffusion of non-spherical rotors in a potential [31], while here we focus on 

modeling fluorescence from spherical rotors in a potential.

We can rewrite Eq. (17) in terms of Hilbert-space vectors and operators by collecting the s
dependence of ω(s, t) and v(s) into boldface vectors ω(t) = ∫S2dsω(s, t)e(s) and 

v = ∫S2dsv(s)e(s), then writing

∂ω(t)
∂t = D∇ ⋅ ∇ω(t) + βω(t)∇v = − Dvω(t), (18)

where Dv = − D∇ ⋅ [∇ + β ∇v] is the Smoluchowski operator with arbitrary potential v, and 

the negative sign is included for convenience.

Equation (18) is a homogeneous system of linear first-order differential equations. A typical 

approach is to expand ω into a linear combination of eigenfunctions of Dv, but it is not 

obvious that a complete set of eigenfunctions exists. To show that a complete set of 

eigenfunctions does exist, we follow Schulten et al. [29] and rewrite Dv as

Dv = − D∇ ⋅ exp( − βv)∇ exp(βv) . (19)

In this form it is straightforward to confirm that

WDvW−1 = ℬ†ℬ, (20)

where

W = exp(βv ∕ 2), (21)

ℬ = D exp( − βv ∕ 2)∇ exp(βv ∕ 2), (22)

ℬ† = − D exp(βv ∕ 2)∇ ⋅ exp( − βv ∕ 2), (23)
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and we have used the following operator identity (the adjoint of the gradient is the negative 

divergence):

∇† = − ∇ . (24)

Equation (20) shows that Dv is similar to a Hermitian operator ([33], ch. 1.4), and Hermitian 

operators have real non-negative eigenvalues λv,i and a complete set of orthogonal 

eigenfunctions ψv,i that satisfy

WDvW−1ψv, i = λv, iψv, i . (25)

Applying W−1 to both sides yields

DvW−1ψv, i = λv, iW−1ψv, i, (26)

Dvϕv, i = λv, iϕv, i, (27)

which shows that we can find a complete (though not necessarily orthogonal) set of 

eigenfunctions for Dv by calculating ϕv, i = W−1ψv, i. Additionally, we have shown that Dv
has real non-negative eigenvalues, so we can label its eigenvalues in order:

0 ≤ λv, 0 ≤ λv, 1 ≤ λv, 2 ≤ λv, 3 ≤ ⋯ . (28)

Now that we have confirmed that Dv has a complete set of eigenvectors, we can write the 

general solution of Eq. (18) as

ω(t) = ∑
i = 0

∞
cv, iϕv, i exp( − λv, it), (29)

where cv,i are constants determined by the initial condition.

From statistical mechanics, we expect the Boltzmann distribution to be a steady-state 

solution. We can confirm this expectation by plugging the Boltzmann distribution

ϕv, 0 = Zv
−1 exp( − βv), (30)

where Zv is the partition function

Zv = ∫
S2ds exp( − βv(s)), (31)

into Eq. (18) and confirming that it is an eigenfunction of Dv with a zero eigenvalue. We 

also expect the Boltzmann distribution to be the unique steady-state solution—the only 

eigenfunction with a zero eigenvalue. We point readers elsewhere for a physical argument 

Chandler et al. Page 7

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2021 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that this is true [29], but we remark that a single steady-state solution depends on v(s) being 

square-integrable. For example, a non-square-integrable potential could have two potential 

wells separated by an infinite potential, and in this case we would expect multiple steady-

state solutions.

Finally, we calculate the coefficients cv,i in terms of the initial condition ω(0). The naive 

approach of taking the inner product of both sides of Eq. (29) with the eigenfunctions (ϕv,i, 

·) will fail because the eigenfunctions are not orthogonal. Instead, we construct a 

biorthogonal set by solving the eigenvalue problem for the adjoint Smoluchowski operator. 

If we write the adjoint Smoluchowski operator in the form

Dv
† = − D exp(βv)∇ ⋅ exp( − βv)∇, (32)

then it is straightforward to confirm that

Dv
† ϕv, i

ϕv, 0
= λi

ϕv, i
ϕv, 0

, (33)

where the division of Hilbert-space vectors is elementwise. Therefore, (ϕv,i/ϕv,0) are 

eigenfunctions of Dv
†, and these functions form a biorthogonal set with the eigenfunctions of 

Dv. We can normalize so that these functions form a biorthonormal set that satisfies

ϕv, i
ϕv, 0

, ϕv, j = δij . (34)

Now we can take the inner product of both sides of Eq. (29) with the eigenfunctions of Dv
†

and solve for cv,i in terms of the initial condition

cv, i = ϕv, i
ϕv, 0

, ω(0) . (35)

Therefore, the solution takes the form

ω(t) = ∑
i = 0

∞ ϕv, i
ϕv, 0

, ω(0) ϕv, i exp( − λv, it) . (36)

We can use these results to draw several conclusions for diffusion under arbitrary potentials. 

The fact that the eigenvalues are real implies that the solutions will never oscillate—this is 

expected since we are ignoring inertial effects. The fact that the eigenvalues are positive 

except for a single zero eigenvalue implies that our solutions will always decay to the 

Boltzmann distribution ω(t → ∞) = ϕv,0. The smallest non-zero eigenvalue λv,1 will set the 

time scale of the decay, so we know that ω(t ⪢ 1/λv,1) ≈ ϕv,0. Finally, the decay of ω(t) will 

be monoexponential if the initial condition is either an eigenfunction of Dv or a linear 

combination of eigenfunctions of Dv that share an eigenvalue.
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If we can find the eigenvalues λv,i and eigenfunctions ϕv,i of the Smoluchowski operator Dv, 

then we can use Eq. (36) to solve the Smoluchowski equation. Unfortunately, calculating the 

eigenvalues and eigenfunctions of the Smoluchowski operator for general potentials is 

challenging, and we will not pursue this eigenvalue problem further in this paper. To our 

knowledge, this eigenvalue problem has only been solved for potentials of the form 

v(s) = s ⋅ sc by an involved process that finds a three-term recursion relation for the 

eigenvalues then expands into an infinite series [28]. Another potential approach is to 

discretize the sphere, calculate a discrete version of the Smoluchowski operator, then 

numerically calculate the eigenvalues and eigenvalues of this matrix. We view the solution 

of this eigenvalue problem for arbitrary potentials as a subject for future research.

Fortunately, we can still make progress without solving the general eigenvalue problem. In 

the next section, we find the form of the solution when the potential is symmetric, and later 

we pursue results that only require knowledge of the first eigenfunction ϕv,0.

C. Dipole Angular Diffusion in Symmetric Potentials

Next, we consider how symmetric potentials can constrain the form of the solution. If the 

potential is rotationally symmetric [v(s) is constant] then the Smulochowski equation 

reduces to the diffusion equation

∂ω(t)
∂t = DΔω(t) = − Dcω(t), (37)

where Δ is the spherical Laplacian, and Dc = − DΔ. This equation has a well-known 

solution—the eigenfunctions of Dc that satisfy the biorthonormality relation of Eq. (34) are 

the renormalized spherical harmonics ϕc, ℓm = Eℓm ∕ 4π with eigenvalues λc,ℓm = Dℓ(ℓ + 1), 

which we can plug into Eq. (36) to find that

ω(t) = ∑
ℓ = 0, 2, 4 . . .

∞
∑

m = − ℓ

ℓ
Eℓm, ω(0) Eℓm exp( − D(ℓ(ℓ + 1)t)) . (38)

Equation (38) has a simple form when expressed in terms of the spherical harmonic 

coefficients Ωℓm,

(Eℓm, ω(t)) ≡ Ωℓm(t) = Ωℓm(0) exp( − Dℓ(ℓ + 1)t) . (39)

In Fig. 1, we demonstrate Eq. (39) as a tool for calculating the time-dependent angular 

density of an initial distribution.

An essential feature of Eq. (39) is that each eigenvalue λc,ℓm forms a multiplet with 2ℓ + 1 of 

other eigenvalues indexed by m. This fact allows us to split the single eigenvalue index i in 

Eq. (36) into a pair of indices (ℓ, m) in Eq. (38).
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The multiplicity of eigenvalues reduces the number of decay components in the solution. For 

example, if the initial condition is bandlimited to ℓ = 2, that is (Eℓm, ω(0)) ≠ 0 for ℓ = 0 and ℓ 
= 2 only, then the six-dimensional initial distribution will decay towards the Boltzmann 

distribution monoexponentially with time constant (6D)−1.

We can predict eigenvalue multiplets by studying the symmetry group of the operator Dv
([33], ch. 6.7), and we will use the rotationally symmetric example Dc to illustrate this 

process. First, we identify the symmetry group of the operator by finding the set of operators 

that commute with Dv. All threedimensional rotation operators commute with Dc because 

rotating the potential leaves it unchanged. Therefore, we identify the symmetry group of Dc
as SO(3). Next, we find the irreducible representations of the symmetry group—sets of 

irreducible matrices assigned to each group element where matrix multiplication reproduces 

the group composition rule. An irreducible representation that uses N × N matrices is said to 

be N-dimensional. Irreducible representations can be calculated from scratch, but in practice 

they can almost always be found in the literature [34,35]. The irreducible representations of 

SO(3) are the Wigner D-matrices Dℓ(R), where ℓ = 0, 1/2, 1, 3/2, 2, … indexes the (2ℓ + 1)-

dimensional irreducible representations, and R indexes the elements of SO(3). Finally, 

eigenvalue N-plets correspond to the N-dimensional irreducible representations of the 

symmetry group of Dv. Dc has irreducible representations of integer dimension, so there will 

be at most an N-plet for each natural number N.

Some of the multiplets may not appear in the solution due to symmetries of the distribution 

ω(R). For example, we expect ω(s, ψ) = ω(s, ψ + 2π), which implies that (ϕc,ℓm, ω(0)) = 0 for 

half-integer ℓ ([33], ch. 6.7). Similarly, we expect ω(s, ψ) = ω( − s, ψ), which implies that 

(ϕc,ℓm, ω(0)) = 0 for odd ℓ. The remaining multiplets correspond to even integer ℓ, which 

means we can expect a singlet, a five-plet, a nine-plet, etc. This explains the multiplet 

structure of Eq. (38).

Several works have considered axially symmetric potentials that can be written in the form 

v(s ⋅ sc), where sc is the axis of symmetry [24,28]. In this case, rotating the potential about 

the axis of symmetry commutes with the Smoluchowski operator. Additionally, rotating the 

potential by π about any axis orthogonal to the symmetry axis also commutes. We can 

identify this set of rotations as members of the group O(2)—2 × 2 orthogonal matrices. The 

irreducible representations of O(2) are one- and two-dimensional [34], so multiplets can be 

at most doublets. Jones demonstrates how perturbing a rotationally symmetric potential to an 

axially symmetric potential splits the eigenvalue spectrum into singlets and doublets [28]—

the original singlet is maintained, the five-plet splits into a singlet and two doublets, the 

nine-plet splits into a singlet and four doublets, etc.

Note that perturbing the potential also perturbs the eigenfunctions, so the spherical 

harmonics will not be eigenfunctions for an axially symmetric Smoluchowski operator. 

Perturbing the potential from complete rotational symmetry will always create 

eigenfunctions that are not bandlimited, so bandlimited initial conditions will decay via a 

superposition of an infinite number of exponentials.
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D. Two-State Diffusion and Polarized Excitation

Now we extend our model to a molecule that can be in two states. We define two functions 

w(gr)(s, t) and w(ex)(s, t) as the probabilities that the molecule is in the ground or excited 

state, respectively, in orientation s at time t. We normalize so that

∫
S2ds w(gr)(s, t) + w(ex)(s, t) = 1 . (40)

Next, we define the associated Hilbert-space vectors w(gr)(t) and w(ex)(t), a molecular-

species specific decay rate constant κ(d), and a polarization-dependent excitation operator 

Kp
(ex) (parameterized by an arbitrary polarization state p) that encodes the orientation-

dependent excitation rate. We assume that the molecule diffuses in the same potential while 

it is in the ground and excited state, so we can model the time evolution of the molecule as

∂
∂t

w(ex)(t)
w(gr)(t)

=
Dv − κ(d) Kp

(ex)

κ(d) Dv − Kp
(ex)

w(ex)(t)
w(gr)(t)

. (41)

The 2 × 2 matrix with operator-valued entries in Eq. (41) includes a constant κ(d) that 

behaves as a constant-valued diagonal operator in the standard basis—we adopt this 

convention throughout this paper. This model assumes that stimulated emission is negligible. 

This assumption is justified when the newly excited molecule undergoes fast vibrational 

relaxation to a state that is unaffected by stimulated emission from the original excitation 

beam. In this two-state model, the mean excited-state lifetime is given by τe = 1/κ(d).

Our goal is to model the mean observable irradiance emitted by the molecule as it decays 

from the excited state to the ground state. Single molecules emit photons stochastically, but 

here we model the ensemble average irradiance. If we expose a detector from t = t0 to t = t1, 

then the most we can hope to recover from our ensemble measurement is

w = ∫t0

t1
dtκ(d)w(ex)(t), (42)

which we call the point emission density. Calculating w will almost always require 

numerics, but we can find closed-form solutions in several specific cases.

For example, if we assume that diffusion is slow compared to the decay rate constant, D ⪡ 
κ(d), and the maximum excitation rate constant D ≪ κmax

(ex) , simultaneously, then we can 

ignore Dv and write

∂
∂t

w(ex)(t)
w(gr)(t)

=
−κ(d) Kp

(ex)

κ(d) −Kp
(ex)

w(ex)(t)
w(gr)(t)

. (43)
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If we excite with coherent light polarized linearly along direction p ∈ S2, then the standard 

entries of the excitation operator are

e(s), Kp
(ex)e(s′) = κ(ex) ∣ p ⋅ s ∣2 δ(s − s′), (44)

where κ(ex) is the maximum excitation rate constant, which is proportional to the intensity of 

the excitation beam. Rewriting the whole system in a standard basis yields

∂
∂t

w(ex)(s, t)
w(gr)(s, t)

= −κ(d) κ(ex) ∣ p ⋅ s ∣2

κ(d) −κ(ex) ∣ p ⋅ s ∣2
w(ex)(s, t)
w(gr)(s, t)

. (45)

If the molecule starts in the ground state w(gr)(s, 0) = 1 ∕ 4π and w(ex)(s, 0) = 0, then the 

solution is given by

w(ex)(s, t)
w(gr)(s, t)

= 1
κ(ex) ∣ p ⋅ s ∣2 + κ(d)

κ(ex) ∣ p ⋅ s ∣2

κ(d)

+ κ(ex) ∣ p ⋅ s ∣2

κ(ex) ∣ p ⋅ s ∣2 + κ(d)
−1
1 exp[ − (κ(ex) ∣ p ⋅ s ∣2 + κ(d))t] .

(46)

A particularly interesting result is the steady-state probability of finding the molecule in the 

excited state,

w(ex)(θ, t ≫ κ(ex) + κ(d)) = cos2 θ
cos2 θ + κ(d) ∕ κ(ex) , (47)

where θ is the angle between p and s. Rewriting w(ex) in terms of a single angle θ implies 

that that the angular function w(ex) is rotationally symmetric about the p axis—we are not 

assuming that the dipole is restricted to the two-dimensional plane.

Figure 2 shows the behavior of Eq. (47), as θ and κ(d)/κ(ex) are varied. For strong excitation, 

κ(d)/κ(ex) ⪡ 1 and the excited state saturates and contains high angular-frequency patterns. 

These patterns are directly analogous to the high spatial-frequency patterns generated in 

non-linear structured illumination microscopy [36]. We note that strong excitation increases 

the probability of photobleaching, so imaging high angular frequencies requires very 

photostable fluorescent molecules.

For weak excitation, κ(d)/κ(ex) ⪢ 1 and the cos2θ in the denominator of Eq. (47) is dwarfed, 

so the excited-state probability is proportional to cos2θ. In this limit, we are far from 

saturating the excited state, and the excited-state probability is linear in the excitation power.

E. Two-State Diffusion under Weak Polarized Excitation

In the weak excitation limit, κ(d)/κ(ex) ⪢ 1, we can approximate the two-state model using 

an effective one-state model. If the molecule starts in the ground state and the molecule has 

diffused to the steady state then w(gr)(0) = ϕv,0. Under weak excitation, the probability of 
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excitation is small, so the ground-state probability will stay approximately constant at w(gr)

(t) ≈ ϕv,0. Our remaining task is to solve for the excited-state probability, which evolves 

according to

∂w(ex)(t)
∂t = − Dv + κ(d) w(ex)(t) + Kp

(ex)ϕv, 0 . (48)

Equation (48) is an inhomogeneous system of linear first-order differential equations. To 

solve Eq. (48), we start by noticing that the operator (Dv + κ(d)) has the same eigenfunctions 

as Dv with larger eigenvalues λv,i + κ(d). Next, we find the steady-state solution by setting 

the left-hand side to zero:

w(ex)(∞) = Dv + κ(d) −1Kp
(ex)ϕv, 0

= ∑
i = 0

∞ 1
λv, i + κ(d)

ϕv, i
ϕv, 0

, Kp
(ex)ϕv, 0 ϕv, i .

(49)

We can find the homogeneous solution wℎ
(ex)(t) by ignoring the constant term to find

wℎ
(ex)(t) = ∑

i = 0

∞
cv, iϕv, i exp − λv, i + κ(d) t . (50)

The complete solution is given by the sum of the homogenous solution and the steady-state 

solution,

w(ex)(t) = wℎ
(ex)(t) + w(ex)(∞) . (51)

If we begin exposing a detector for a period te after the system has reached a steady state at 

t1 ≫ 1/κ(d), then the point emission density is given by

w = ∫t1

t1 + te
dtκ(d)w(ex)(∞), (52)

w = ∑
i = 0

∞ teκ(d)

λv, i + κ(d)
ϕv, i
ϕv, 0

, Kp
(ex)ϕv, 0 ϕv, i . (53)

Equation (53) is the main result of this section, and we briefly consider it more closely for 

cases when diffusion is very slow and very fast.

In the fast diffusion limit (λv,i ≫ κ(d) for all i > 0), all of the terms in Eq. (53) are negligible 

except for the i = 0 term, and the result simplifies to
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w =(fast) te 1, Kp
(ex)ϕv, 0 ϕv, 0, (54)

which means that the measurable angular distribution is the Boltzmann distribution weighted 

by a constant excitation efficiency. Informally, Eq. (54) says that a fast diffusing dipole 

reaches the Boltzmann distribution before emission, so the emission density is the 

Boltzmann distribution multiplied by a constant excitation efficiency.

In the slow diffusion limit (λv,i ≪ κ(d) for all i), every term in Eq. (53) contributes, and the 

sum simplifies to

w =(slow) teKp
(ex)ϕv, 0, (55)

which means that the measurable angular distribution is the excitation operator acting on the 

Boltzmann distribution. Informally, Eq. (55) says that a slow diffusing dipole does not rotate 

before emission, so the point emission density is the point-wise product of the excitation 

efficiency function and the Boltzmann distribution. This situation is the angular analog to 

linear structured illumination microscopy [37], where spatial diffusion is assumed to be 

negligible, and illumination patterns can be used to alias high-frequency spatial patterns into 

the passband of the imaging system.

F. Weak Excitation of a Free Dipole

In the absence of a potential, the eigenvalues become λc,ℓm = Dℓ(ℓ + 1), and the 

eigenfunctions become ϕc, ℓm = Eℓm ∕ 4π (see Section 2.C). Plugging these into Eq. (53) 

yields

w =(free) ∑
ℓ = 0

∞
∑

m = − ℓ

ℓ teκ(d)

Dℓ(ℓ + 1) + κ(d) Eℓm, Kp
(ex) ∕ 4π Eℓm . (56)

For linearly polarized coherent illumination, we can write Eq. (56) in the standard basis as

w(θ) =(free) teκ(ex)

12π 1 + 3cos2θ − 1
1 + [6D ∕ κ(d)]

, (57)

where θ is the angle between p and s. Figure 3 shows the behavior of Eq. (57) as θ and 6D/
κ(d) are varied. For slow diffusion (6D/κ(d) ≪ 1), the point emission density is identical to 

the excitation probability ∣ p ⋅ s ∣2, and, for fast diffusion (6D/κ(d) ≫ 1), the point emission 

density is the constant Boltzmann distribution.

Notice that the infinite sum in Eq. (56) reduces to two non-zero terms in Eq. (57) because 

coherent polarized illumination excites the (constant) Boltzmann distribution into a linear 

combination of six eigenfunctions that have only two distinct eigenvalues. For asymmetric 

potentials, coherent polarized illumination will excite the Boltzmann distribution into a 

linear combination of an infinite number of eigenfunctions, so the solution will contain an 

infinite number of terms.
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G. Spatio-Angular Emission Densities

So far, we have been considering point emission densities w ∈ L2(S2) for single molecules at 

a single point in space. In this section, we will extend our discussion to ensembles of 

molecules and three-dimensional angular emission densities represented by vectors 

f ∈ L2(ℝ3 × S2).

We start by defining a spatio-angular dynamics model similar to the angular dynamics 

model in Section 2.D. First, we define a pair of functions f(gr)(r0, s0, t) and f(ex)(r0, s0, t) as 

the number of molecules in the ground and excited states, respectively, at position r0 ∈ ℝ3, 

in orientation s0 ∈ S2, and at time t (per unit volume, solid angle, and time). These 

unnormalized functions are related to the normalized functions we considered earlier by

f(gr)(r0, s0, t) = ρ(r0, t)w(gr)(r0, s0, t), (58)

f(ex)(r0, s0, t) = ρ(r0, t)w(ex)(r0, s0, t), (59)

where ρ(r0, t) is an orientation-independent spatial density—the number of fluorescent 

molecules per unit volume at point r0. We also define the associated Hilbert-space vectors 

f(gr)(t) and f(ex)(t). By choosing f(gr)(t) and f(ex)(t) as our state variables, we are assuming 

that all of the fluorescent molecules in the sample are of a single species. Additionally, the 

orientation of a single molecule is a stochastic process, so in writing the ensemble average of 

these stochastic process in Eqs. (58) and (59), we have assumed that these stochastic 

processes are ergodic.

Next, we define a spatio-angular potential v, a Smoluchowski operator Dv that models how 

molecules diffuse in the spatio-angular potential v, a spatio-angular excitation operator 

Kp
(ex), and a decay rate constant κ(d). With these definitions, we can model the spatio-

angular populations with

∂
∂t

f(ex)(t)
f(gr)(t)

=
Dv − κ(d) Kp

(ex)

κ(d) Dv − Kp
(ex)

f(ex)(t)
f(gr)(t)

. (60)

We are interested in the spatio-angular emission density during an exposure from t0 to t1 

given by

f = ∫t0

t1
dtκ(d)f(ex)(t) . (61)
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If spatial diffusion is negligible, then the spatio-angular model in Eq. (60) decouples into an 

angular model at each point weighted by a time-independent spatial density ρ(r0), so we can 

write

f(r0, s0) = ρ(r0)w(r0, s0) . (62)

For each spatial point r0, we can use the angular solutions developed in Sections 2.D-2.F to 

calculate w(r0, s0).

H. Spatio-Angular Imaging Operator

In this section, we complete our imaging model by finding the mapping between the spatio-

angular emission density f and the data we measure g. In our previous work, we restricted 

our imaging model to in-focus paraxial imaging systems [27], but here we model three-

dimensional imaging with arbitrarily high-NA imaging systems.

It will be convenient to choose a basis for f that splits the object-space spatial coordinates 

into a one-dimensional longitudinal coordinate r0
∥, aligned with the optical axis of the 

microscope, and a two-dimensional transverse coordinate r0
⊥. More specifically, we express f 

in the following basis:

f(r0
⊥, r0

∥, s0) = (e(r0
⊥)e(r0

∥)e(s0), f) . (63)

Next, we model the irradiance measured at each point on a planar detector with the function 

g(rd
⊥) with rd

⊥ ∈ ℝ2 or its associated Hilbert-space vector g ∈ L2(ℝ2). Finally, we model the 

mapping between emission densities and data with a Hilbert-space operator 

ℋ :L2(ℝ3 × S2) L2(ℝ2) that acts on f:

g = ℋf . (64)

Several works [22,24,27,38-40] have calculated the standard entries of ℋ for an aplanatic 4 f 
optical system with a paraxial tube lens and unit magnification (or demagnified coordinates) 

as

ℎ(rd
⊥, r0

⊥, r0
∥, s0) ≡ e(rd

⊥), ℋe(r0
⊥)e(r0

∥)e(s0)
= ∑

i = 0, 1
∣ ci(rd

⊥ − r0
⊥, r0

∥, s0) ∣2 , (65)

where

ci(r⊥, r0
∥, s0) = ∫

ℝ2dτCi(τ, r0
∥, s0) exp[i2πτ ⋅ r⊥] (66)
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is the ith component of the dipole coherent spread function,

Ci(τ, r0
∥, s0) = A(τ)Φ(τ, r0

∥) ∑
j = 0, 1, 2

gij(τ)sj (67)

is the ith component of the dipole coherent transfer function,

A(τ) = (1 − ∣ τ ∣2 )−1 ∕ 4Π ( ∣ τ ∣ ∕ vc) (68)

is the aplanatic apodization function with full width νc = 2NA/λ,

Φ(τ, r0
∥) = exp i2πr0

∥ vm2 − ∣ τ ∣2 (69)

encodes the axial position of the emitter into a spherical phase with νm = n0/λ, the functions 

gij(τ) model the ith field components in the pupil plane created by the jth component of a 

dipole,

g00(τ) = sin2 ϕτ + cos2 ϕτ 1 − ∣ τ ∣2 ,
g10(τ) = 1

2 sin(2ϕτ) 1 − ∣ τ ∣2 − 1 ,

g01(τ) = 1
2 sin(2ϕτ) 1 − ∣ τ ∣2 − 1 ,

g11(τ) = cos2 ϕτ + sin2 ϕτ 1 − ∣ τ ∣2 ,
g02(τ) = ∣ τ ∣ cos ϕτ,
g12(τ) = ∣ τ ∣ sin ϕτ,

(70)

and s j is the jth component of the dipole unit vector s0. This model is accurate for objectives 

with arbitrarily high NAs (provided the objective is free from aberration and satisfies the 

aplanatic condition). Equations (68)-(70) model the apodization, phase shifts, and directional 

electric fields in high-NA optical systems, and paraxial models have been constructed by 

approximating these functions with low-order polynomials [27]. Modeling a mask in the 

back aperture of the objective can be accomplished by modifying the amplitude A or phase 

Φ functions. Following Stallinga [24], we can rewrite the standard entries in a form that is 

more efficient for computation,

ℎ(rd
⊥, r0

⊥, r0
∥, s0) = ∑

j, j′ = 0, 1, 2
Bjj′(rd

⊥ − r0
⊥, r0

∥)sjsj′, (71)

where

Bjj′(r⊥, r0
∥) = ∑

i = 0, 1
βij(r⊥, r0

∥)βij′
∗ (r⊥, r0

∥), (72)

and

βij(r⊥, r0
∥) = ∫

ℝ2dτ A(τ)Φ(τ, r0
∥)gij(τ) exp[i2πτ ⋅ r⊥] . (73)
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For general amplitude and phase masks, six Fourier transforms need to be computed for 

each defocus position. If the amplitude and phase masks are radial [A(τ) and Φ(τ, r0
∥) are 

independent of ϕτ], then we can exploit the following symmetries:

β00(r⊥, r0
∥) = β11(ℛπ ∕ 2r⊥, r0

∥), (74)

β01(r⊥, r0
∥) = β10(r⊥, r0

∥), (75)

β02(r⊥, r0
∥) = β12(ℛπ ∕ 2r⊥, r0

∥), (76)

where ℛπ ∕ 2 is an operator that rotates transverse coordinates by π/2, and only compute 

three Fourier transforms per defocus position.

We can calculate the entries of ℋ in other bases by relating them to the standard entries. 

Choosing the spherical harmonics for the input basis is convenient because it allows us to 

exploit the angular bandlimit of the imaging system and work in an orthonormal basis. 

Calculating the entries in this basis yields

Hℓm(rd
⊥, r0

⊥, r0
∥) ≡ e(rd

⊥), ℋe(r0
⊥)e(r0

∥)Eℓm

= ∫
S2ds0ℎ(rd

⊥, r0
⊥, r0

∥, s0)Y ℓm(s0)

= ∑
j, j′ = 0, 1, 2

∫
S2ds0 Y ℓm(s0)sjsj′

× Bjj′(rd
⊥ − r0

⊥, r0
∥)

= 4π
3 ∑

j, j′ = 0, 1, 2
Gℓ11

mϵjϵj′Bjj′(rd
⊥ − r0

⊥, r0
∥),

(77)

where ϵ0 = 1, ϵ1 = −1, ϵ2 = 0, and

Gℓℓ′ℓ″
mm′m″ = ∫

S2dsY ℓm(s)Y ℓ′m′(s)Y ℓ″m″(s) (78)

are the real Gaunt coefficients [41,42]. The Gaunt coefficients Gℓ11
mm′m″ are only non-zero for ℓ 

= 0, 2, which means that ℋ only transmits six angular components.

3. RESULTS

To demonstrate our model, we will specify a geometric phantom under three different limits 

(fast angular diffusion, slow angular diffusion, and free dipoles), specify an imaging system, 

then simulate the irradiance patterns generated by the phantom under these three limits.

A. Phantom

We begin by choosing the following family of angular potentials:
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v0(s0; θ) = − V 0(s0 ⋅ [y sin θ + z cos θ])2, (79)

where s0 is the object-space angular variable, θ is the angle between the symmetry axis and 

the z axis in the y − z plane, and V0 is a positive constant. The corresponding Boltzmann 

distributions are

ϕ0(s0; θ) = Z−1 exp[V 0β(s0 ⋅ [y sin θ + z cos θ])2], (80)

which are Watson distributions with mean orientations [y sin θ + z cos θ] and concentration 

parameter V0β [43]. For our simulations, we fix the concentration parameter to V0β = 4. 

This family of dipole distributions has its mean orientation in the y − z plane, but the dipoles 

are not restricted to this plane. Next, we define a spatio-angular potential as

v(r0, s0) = v0(s0; [π ∕ 4]r0 ⋅ y), (81)

which consists of distributions with mean orientations that change with r0 ⋅ y. We assume 

that spatial diffusion is negligible, so we can write the spatio-angular equilibrium 

distribution as

ϕ(r0, s0) = ϕ0(s0; [π ∕ 4]r0 ⋅ y), (82)

and we can choose a time-independent spatial density

ρ(r0) = ∑
i = 0

2
∑
j = 0

2
δ(r0 − ix − jy − [j ∕ 4]z) . (83)

The geometric phantom consists of nine labeled points in a three-dimensional grid measured 

in micrometers (μm). The three rows of points are increasingly defocused (0, 0.25, and 0.5 

μm of defocus), and the three columns of points have mean orientations that are increasingly 

tilted away from the z axis towards the y axis (0, π/4, and π/2 radians between the mean 

orientation and the z axis). In Fig. 4, we visualize the phantom by plotting the product of the 

spatial density ρ(r0) and the spatio-angular equilibrium distribution ϕ(r0, s0). Finally, we 

illuminate the sample with coherent light linearly polarized along the p axis with standard 

entries,

e(s), Kp
(ex)e(s′) = p ⋅ s′ 2δ(s − s′) . (84)

Now that we have specified the geometry of our phantom, we will calculate the emission 

densities under three limits (fast angular diffusion, slow angular diffusion, and free dipoles). 

Plugging Eqs. (83) and (84) into Eqs. (54) and (62) yield the following emission densities 

for weak excitation of dipoles undergoing fast angular diffusion:
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f(fast)
p (r0, s0) = ρ(r0) ∫

S2ds(p ⋅ s)2ϕ(r0, s) ϕ(r0, s) . (85)

Using Eq. (55) instead of Eq. (54) yields the following emission density for weak excitation 

of dipoles undergoing slow angular diffusion:

f(slow)
p (r0, s0) = ρ(r0) (p ⋅ s)2ϕ(r0, s0) . (86)

For our final phantom, we consider free dipoles (no angular potential) with a spatially 

varying ratio 6D/κ(d). We modify Eq. (57) to create the emission density

f(free)
p (r0, s0) = ρ(r0) 1 +

3(s0 ⋅ p)2 − 1

1 + 10(r0 ⋅ y) − 1 , (87)

where the factor models a position-dependent rotational mobility in the phantom.

B. Imaging System

To simulate our imaging system, we start with a phantom f(r0, s0), change to a basis of 

spherical harmonics using

Fℓm(r0) = ∫
S2ds0f(r0, s0)Y ℓm(s0), (88)

then simulate the data using

g(rd
⊥) = ∑

ℓ = 0

∞
∑

m = − ℓ

ℓ ∫
ℝ2dr0Hℓm(rd

⊥, r0)Fℓm(r0), (89)

where the matrix elements Hℓm(rd
⊥, r0) can be calculated with Eq. (77). Note that 

Hℓm(rd
⊥, r0) = 0 for ℓ > 2, so we only need to calculate Fℓm(r0) for ℓ ≤ 2—six total entries.

We choose NA = 1.4, λ = 500 nm, and n0 = 1.5. We sample and plot the scaled irradiance at 

20× the Nyquist rate, Δx = 1/[20(2νc)], so the irradiance patterns are free of aliasing.

C. Simulated Irradiance Patterns

Figure 5 shows f(fast)
p (r0, s0) under two illumination polarizations (p = x + y and p = x − z), 

their images, and profiles through each image. Fast-diffusing dipoles reach their Boltzmann 

distribution before decaying, so the emission densities in Fig. 5 are Watson-distributed and 

rotationally symmetric about a mean axis. The emission densities are weighted by constant 

excitation efficiencies [see Eqs. (54) and (85)], so each Watson distribution is a scaled 

version of the distribution in Fig. 4. Distributions that have more dipoles aligned parallel to 
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the polarization direction are excited most efficiently, and the emission densities in Fig. 5 are 

scaled to represent this fact.

As expected, in-focus distributions [the bottom row of distributions in Figs. 5(a) and 5(b)] 

generate the brightest and most rotationally symmetric irradiance patterns, while defocused 

distributions spread the irradiance over a larger area on the detector, and oblique defocused 

distributions display asymmetric irradiance patterns (the top row and center column is 

asymmetric in the y direction). Notably, fast-diffusing dipoles under different polarized 

illuminations create irradiance patterns with different scales and the same shape.

Figure 6 shows the same results as Fig. 5 but in the slow diffusion limit f(slow)
p (r0, s0). Slow-

diffusing dipoles do not rotate before emission, so the emission density is the point-wise 

product of the excitation efficiency function and the Boltzmann distribution [see Eqs. (55) 

and (86)]. Importantly, this means that the emission densities are not rotationally symmetric 

(the point-wise product of two rotationally symmetric functions is not always rotationally 

symmetric). This asymmetry is especially apparent for Watson distributions with mean 

directions that are perpendicular to the polarization direction [the left column in Fig. 6(a) 

and the right column in Fig. 6(b)]. In addition to rotational asymmetry, slow-diffusing dipole 

emission density maxima are tilted towards the arized direction [see the right column in Fig. 

6(a) and the left column in Fig. 6(b)], which is due to the point-wise product of the 

excitation efficiency function and the Boltzmann distribution. Comparing Fig. 4 to the left 

column of Fig. 6 highlights the differences between the underlying Boltzmann distribution 

and the slow-diffusion emission density.

The slow-diffusing dipoles in Fig. 6 display more asymmetric irradiance patterns than the 

fast-diffusing dipoles in Fig. 5. Perhaps surprisingly, defocused slow-diffusing dipoles 

display irradiance asymmetry along both the x and y directions [see the top row and center 

column of Figs. 6(a) and 6(b)] despite the fact that the Watson distribution means are in the 

y − z plane. This effect is a direct consequence of the excitation polarization—the emission 

density maxima are tilted towards the polarization axis, which gives the emission density 

maxima x, y, and z components.

Figure 7 shows the results for the phantom of freely diffusing dipoles f(free)
p (r0, s0). For 

slow-diffusing free dipoles (left column), the emission density is identical to the excitation 

efficiency function, while for fast-diffusing free dipoles (right column), the emission density 

is nearly uniform. The irradiance patterns are similar for slow- and fast-diffusing free 

dipoles under different polarizations, but (x − z)-polarized illumination of slow-diffusing 

defocused dipoles create asymmetric irradiance patterns [top row, left column of Fig. 7(b)].

4. DISCUSSION AND CONCLUSIONS

Before discussing our specific conclusions, we list the assumptions that restrict the validity 

of all of our results. We have assumed that

• a classical model accurately describes the rotational dynamics of each molecule 

and its emissions,
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• each molecule’s orientation can be described by a single axis (equivalently, each 

molecule has parallel absorption and emission dipole moments with negligible 

higher-order moments),

• rotational inertia of molecules is negligible,

• the torques on a molecule can be related to a scalar potential,

• molecules behave like spherical rotors (the diffusion tensor is diagonal and 

constant), and

• a molecule’s probability density function has a unique steady state (equivalently, 

the scalar potential is square-integrable).

A. When Are Diffusion Decays Multi-Exponential, and When Does It Matter?

Existing works use monoexponential decays to model angular diffusion [22-24]—they 

assume that angular diffusion within a potential can be characterized by a single rotational 

relaxation time. We have shown that this assumption is only justified when the initial 

condition is a linear combination of eigenfunctions of the Smoluchowski operator that share 

a single non-zero eigenvalue. The monoexponential assumption is true for weak linearly 

polarized excitation of molecules in solution—the initial conditions and the eigenfunctions 

of the Smoluchowski operator are linear combinations of the ℓ = 0 and ℓ = 2 spherical 

harmonics that share a single non-zero eigenvalue. Perturbing the angular potential will 

change the eigenfunctions of the Smoluchowski operator and lead to multi-exponential 

decays.

In the limits of weak excitation and fast diffusion (λv,i ≫ κ(d) for all i > 0) or slow diffusion 

(λv,i ≪ κ(d)), our results agree with the literature that makes the monoexponential 

assumption [22-24]. Weakly excited fast-diffusing dipoles reach their Boltzmann distribution 

before emission, so the emission density is the Boltzmann distribution multiplied by a 

constant excitation efficiency factor. Meanwhile, weakly excited slow-diffusing dipoles do 

not rotate before emission, so the emission density is the pointwise product of the excitation 

efficiency function and the Boltzmann distribution.

Our predictions diverge from the monoexponential literature [22-24] in the intermediate 

regime (λv,i ≈ κ(d) for any i > 0), and the differences can be dramatic. To choose an 

adversarial example, consider an angular potential with two wells separated by a large but 

finite potential barrier. If molecules within one well are excited then they can diffuse quickly 

within that well, but they will take a long time to diffuse to the other well. Clearly, multiple 

diffusion times are needed to characterize the imaging process.

Multiple diffusion times are needed to characterize simpler angular potentials, too. Consider 

the widely used “wobble-in-a-cone” model with a single molecule that is initially oriented at 

the edge of the cone. In Sections 2.B and 2.C, we used differential equations and group 

theory to argue that the angular decay will be multi-exponential, but we can understand the 

argument qualitatively by approximating the diffusion as a discrete random walk of a single 

molecule. Initially, the dipole can move in three directions, each with probability ≈ 1/3—

clockwise, counterclockwise, and towards the center of the cone. Later, the molecule will be 
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away from the edge of the cone, and the molecule can move in four directions with 

probability ≈ 1/4. Therefore, molecules at the edge will move away from their initial 

condition faster on average than molecules away from the edge, so a single diffusion time is 

insufficient to characterize diffusion with a cone.

B. Is Angular Structured Illumination Different from Polarized Illumination?

We have used the term “angular structured illumination” instead of “polarized illumination” 

throughout this work for two reasons. First, unpolarized light can have angular structure—an 

unpolarized plane wave does not excite dipoles parallel to its propagation direction. 

Although we have focused on using polarized light to alias high angular-frequency 

information into the passband, unpolarized light can be used to the same effect (albeit with 

less efficient aliasing than polarized light). Second, “angular structured illumination” 

highlights the deep similarity with spatial structured illumination. Readers familiar with 

spatial structured illumination can apply their intuition to angular structured illumination 

techniques, and many existing spatial techniques have direct angular analogs. We credit 

Zhanghao et al. with the first, to the best of our knowledge, explicit mention of the 

similarities between spatial and angular structured illumination [15].

C. How Many Angular Components Can We Image?

The spatio-angular imaging operator ℋ only transmits six angular components, so ℋ can be 

decomposed into two operators: ℋ = ℋ′P, where P :L2(ℝ3 × S2) [L2(ℝ3)]6 is a projection 

operator onto the direct sum of six L2(ℝ3) spaces, and ℋ′ :[L2(ℝ3)]6 L2(ℝ2). The fact that 

only six angular components are transmitted is a direct consequence of the angular band 

limit imposed by dipole radiation.

However, angular structured illumination allows us to alias a much larger number of angular 

components into the passband of the imaging system. For strong excitation of dipoles 

undergoing slow angular diffusion, a theoretically unlimited number of angular components 

can be aliased into the passband—see Eq. (47) and Fig. 2. Of course, the number of angular 

components is practically limited by diffusion, photobleaching, and noise—see Gustafsson 

[36] for an analogous discussion of how these factors affect spatial non-linear structured 

illumination. More practically, weak excitation of dipoles undergoing slow angular diffusion 

allows us to alias a total of fifteen angular components into the passband of the imaging 

system (corresponding to the ℓ = 0, 2, 4 spherical harmonics). For fast-diffusing dipoles, 

aliasing does not occur, and only six angular components (corresponding to the ℓ = 0, 2 

spherical harmonics) can be imaged.

Many other non-linear techniques can be used to alias high-frequency angular components 

into the passband. Two-photon excitation beams excite with a cos4θ dependence, so a two-

photon beam can alias higher angular frequencies than an equivalent single-photon beam 

[44]. A wide variety of other techniques that exploit three- or multi-state fluorescent 

molecules to alias high spatial frequencies can be adapted to alias high angular frequencies

—see the supplement of [45] for a summary of non-linear spatial structured illumination 

techniques. For a particular example, Hafi et al. was the first, to the best of our knowledge, 

work to exploit non-linearity for improved angular resolution by adapting stimulated 
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emission depletion microscopy (STED) to the angular case in a technique they called 

excitation polarization angle narrowing (ExPAN) [46]. Although they claimed their 

technique provided improved spatial resolution, this claim has been challenged [47], and we 

view ExPAN as a technique that provides improved angular resolution that can be used to 

infer higher spatial resolution if the coupling between spatial and angular information is 

known. Additionally, Wazawa et al. extended ExPAN using a photoswitchable fluorescent 

protein to improve compatibility with live-cell imaging [48].

We have focused on cases where the exposure time is much longer than the diffusion and 

decay times—so-called steady-state experiments—but exposure times comparable to 

diffusion and decay times—so-called time-resolved experiments—are possible [49-51]. We 

can model these experiments within our framework by changing the limits of integration in 

Eqs. (42) or (61). Time-resolved experiments allow for the measurement of more angular 

components than steady-state experiments, and we view these techniques as important future 

directions.

D. How Many Angular Components Can We Reconstruct?

Imaging an angular component is only the first step towards estimating an angular 

component. To estimate a parameter it must be a linear combination of eigenfunctions of 

ℋ†ℋ with non-zero eigenvalues (equivalently, a linear combination of the right singular 

vectors of ℋ with non-zero singular values) ([33], Ch. 13.3). We will explore these functions

—the so-called measurement space of ℋ—in the next paper of this series.

For now, we briefly mention two strategies for reconstructing multiple angular components. 

The first approach is to take N sequential measurements of the same object after changing 

the illumination or detection polarization, then use these measurements to reconstruct the 

angular components at each spatial position independently [9-15]. This approach amounts to 

approximating the complete imaging process ℋmulti :L2(ℝ3 × S2) [L2(ℝ2)]N with an 

imaging operator for each spatial point ℋpoint :L2(S2) ℝN. Although this approach 

simplifies the reconstruction problem, it ignores valuable information that can be exploited. 

We advocate for joint spatio-angular reconstructions that use everything we know about the 

physics of the imaging process.

The second approach is to image single molecules and use their images to estimate angular 

components [20,21,23,39]. In this case, the imaging process can be modeled with a single 

imaging operator for each molecule ℋsingle :L2(S2) L2(ℝ2). This work’s potential 

contributions to single-molecule imaging are improved imaging operators ℋsingle that can be 

used to access more parameters (multiple diffusion constants or high angular-frequency 

components).

E. Stochastic Spatio-Angular Imaging

A major limitation of this work is that we have only modeled the ensemble average behavior 

of dipole diffusion, emission, and imaging, when these processes are actually stochastic 

processes. More specifically, angular diffusion is a random walk on the sphere, emission is 
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an exponential process, and photon imaging is a Poisson process. Existing works have 

modeled these stochastic processes and then extracted the ensemble averages [22-24], while 

here we have modeled the ensemble averages directly.

In this work, we have focused on describing ensemble average features that have either been 

previously assumed absent (like the multi-exponential nature of diffusion) or not previously 

described (like non-linear angular structured illumination). Ultimately, choosing optimal 

samples and performing optimal reconstructions will require complete stochastic 

descriptions of the imaging process so that correlations in the data can be exploited, and we 

consider stochastic descriptions of dipole imaging important future work.

Several recent works have considered optimal sampling schemes for estimating the position 

[52] and orientation second moments [53] of single molecules using quantum Cramér–Rao 

bounds. We expect that similar optimization techniques will allow future researchers to 

design optimal (potentially time-resolved) polarized illumination schemes for measuring 

high-frequency angular information, multi-exponential decays, and more components of 

angular potentials.
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Fig. 1. 
Angular diffusion of a bandlimited initial distribution ω(s, 0) = [(x − y + 2z) ⋅ s]4 in a 

rotationally symmetric potential with diffusion constant D = 1/6. (a) The spherical harmonic 

coefficients Ωℓm(t) decay exponentially at rates Dℓ(ℓ + 1). (b) Calculating the decay of the 

spherical harmonic coefficients allows us to efficiently compute the time-dependent angular 

density ω(s, t). Each glyph shows the angular density at a different time point, and the radius 

indicates the magnitude of the angular density.
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Fig. 2. 
Diffusion-free steady-state excited-state probability w(ex) (radius from center) as a function 

of the angle from the incident polarization θ (clockwise angle from positive x axis) and the 

decay rate to excitation rate ratio κ(d)/κ(ex) (color). For weak excitation κ(d)/κ(ex) ⪢ 1, the 

excited-state probability is small and only contains low angular-frequency components. For 

strong excitation κ(d)/κ(ex) ⪡ 1, the excited state is saturated and contains high angular-

frequency components.
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Fig. 3. 
Weak-excitation emission density for a free dipole w (radius from center) as a function of 

the angle from the incident polarization θ (clockwise angle from positive x axis) and the 

diffusion rate to decay rate constant ratio 6D/κ(d) (color). For slow diffusion 6D/κ(d) ⪡ 1 the 

emission density is the excitation probability, and for fast diffusion 6D/κ(d) ⪢ 1 the excited 

emission density is the constant Boltzmann distribution.
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Fig. 4. 
Labeled spatio-angular equilibrium density ρ(r0)ϕ(r0, s0), which consists of nine points 

arranged in a 1 μm grid with three different defocus positions and three different mean tilt 

orientations.
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Fig. 5. 
Left: A spatio-angular phantom undergoing fast angular diffusion—see Eq. (85)—under 

illumination by (a) [x + y] polarized light and (b) [x − z] polarized light. The phantom 

consists of nine point sources with varying defocus (rows) and mean orientation (columns). 

The radius and color of each glyph encode the value of the emission density f(fast)
p (r0, s0). 

Center: Irradiance patterns for an imaging system with NA = 1.4, λ = 500 nm, and n0 = 1.5 

sampled at 20× the Nyquist rate. Each row is individually normalized as indicated by the 

color bars. Right: Horizontal (red) and vertical (green) cross-sectional profiles through the 

irradiance pattern.
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Fig. 6. 
Left: A spatio-angular phantom undergoing slow angular diffusion—see Eq. (86)—under 

illumination by (a) [x + y] polarized light and (b) [x − z] polarized light. The phantom 

consists of nine point sources with varying defocus (rows) and mean orientation (columns). 

The radius and color of each glyph encode the value of the emission density f(slow)
p (r0, s0), 

and the left column (a) or right column (b) of glyphs are magnified by 3× for visualization 

purposes. Center: Irradiance patterns for an imaging system with NA = 1.4, λ = 500 nm, and 

n0 = 1.5 sampled at 20× the Nyquist rate. Each row is individually normalized as indicated 

by the color bars. Right: Horizontal (red) and vertical (green) cross-sectional profiles 

through the irradiance pattern.
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Fig. 7. 
Left: A spatio-angular phantom consisting of free dipoles—see Eq. (87)—under illumination 

by (a) [x + y] polarized light and (b) [x − z] polarized light. The phantom consists of nine 

point sources with varying defocus (rows) and ratio of the diffusion coefficient to the decay 

rate D/κ(d) (columns). The radius and color of each glyph encode the value of the emission 

density f(free)
p (r0, s0). Center: Irradiance patterns for an imaging system with NA = 1.4, λ = 

500 nm, and n0 = 1.5 sampled at 20× the Nyquist rate. Each row is individually normalized 

as indicated by the color bars. Right: Horizontal (red) and vertical (green) cross-sectional 

profiles through the irradiance pattern.
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