(GIGA)"

TECHNICAL NOTE

Petr Danecek
Valeriu Ohan
Thomas Keane
Heng Li %>

1 James K. Bonfield
1 Martin O Pollard

1 Jennifer Liddle
1 Andrew Whitwham ©®1",
3, Shane A. McCarthy

GigaScience, 10, 2021, 1-4

TECHNICAL NOTE

1 John Marshall @2,

1 Robert M. Davies ©*! and

1Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK; 2Wolfson
Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow,
G61 1QH, UK; *EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK; *Department
of Data Sciences, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA and
>Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA 02215, USA

*Correspondence address. Andrew Whitwham, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK. Tel:
+44 (0)1223 834244; E-mail: samtools@sanger.ac.uk © http://orcid.org/0000-0001-8117-400X

Background: SAMtools and BCFtools are widely used programs for processing and analysing high-throughput sequencing
data. They include tools for file format conversion and manipulation, sorting, querying, statistics, variant calling, and effect
analysis amongst other methods. Findings: The first version appeared online 12 years ago and has been maintained and
further developed ever since, with many new features and improvements added over the years. The SAMtools and BCFtools
packages represent a unique collection of tools that have been used in numerous other software projects and countless

genomic pipelines. Conclusion: Both SAMtools and BCFtools are freely available on GitHub under the permissive MIT
licence, free for both non-commercial and commercial use. Both packages have been installed >1 million times via
Bioconda. The source code and documentation are available from https://www.htslib.org.

Keywords: samtools; beftools; high-throughput sequencing; next generation sequencing; variant calling; data analysis

With the advancement of genome sequencing technologies and
large-scale sequencing projects, new data formats became nec-
essary for interoperability, compact storage, and efficient anal-
ysis of the data. Among the most common formats used in
this field today are SAM [1] and VCF [2], developed by the 1000
Genomes Project [3]. These specialized formats for storing read
alignments (SAM) and genetic variants (VCF) are row-oriented
tab-delimited text files, which are easy to process using custom
scripts but slow to parse and can be inefficient to store. There-
fore in practice, the binary counterparts BAM or CRAM are used
for alignment data and, when parsing of large VCF files becomes

prohibitively slow, BCF provides a more efficient format for pro-
cessing variation data.

Despite the conceptual simplicity of the underlying DNA se-
quence, the alignment and variant data carry rich information.
These data undergo a number of processing steps, many of
which are algorithmically complex and require specialized soft-
ware. Also more programming effort and expertise are neces-
sary to parse binary formats. Therefore programs and toolkits
that encompass functionality for the most common tasks have
been developed. These include tools for file manipulation, qual-
ity control, and data analyses, such as sambamba [4], biobam-
bam [5], FastQC [6], and GATK [7]. A successful bioinformatics
tool must keep up with advancements in sequencing technolo-

Received: 16 December 2020; Revised: 18 January 2021; Accepted: 28 January 2021

© The Author(s) 2021. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any

medium, provided the original work is properly cited.


http://www.oxfordjournals.org
http://orcid.org/0000-0002-4159-1666
http://orcid.org/0000-0002-6447-4112
http://orcid.org/0000-0003-1059-1230
http://orcid.org/0000-0002-1216-5457
http://orcid.org/0000-0002-0532-6021
http://orcid.org/0000-0001-8738-0920
http://orcid.org/0000-0001-8117-400X
http://orcid.org/0000-0001-7532-6898
http://orcid.org/0000-0002-2715-4187
http://orcid.org/0000-0002-9983-1378
http://orcid.org/0000-0003-4874-2874
mailto:samtools@sanger.ac.uk
http://orcid.org/0000-0001-8117-400X
http://orcid.org/0000-0001-8117-400X
https://www.htslib.org
http://creativecommons.org/licenses/by/4.0/

gies (e.g., substantial increase in sequencing read length), scale
well with ever-increasing amounts of data (from single to hun-
dreds of thousands of genomes), and expand focus to encom-
pass new analyses and more complex types of variation. New
species also bring challenges such as large chromosomes not
representable by 32 bits (>2 Gb) or assumptions about the ploidy
of an organism. In this article we describe the status, new fea-
tures, and developments in SAMtools and BCFtools.

SAMtools was originally published in 2009 [1]. Readers of the
online edition of that article would have been able to down-
load release 0.1.4. The package included not only utilities to
convert and manipulate SAM and BAM files but also a variant
caller, which was soon restructured into the BCFtools subpack-
age (2010, release 0.1.9). Later it became apparent that third-
party projects were trying to use code from SAMtools despite
it not being designed to be embedded in that way. Therefore
the decision was taken in August 2014 (release 1.0) to split the
SAMtools package into a stand-alone library with a well-defined
API (HTSlib, currently 82k lines of code) [8], a project for variant
calling and manipulation of variant data (BCFtools, 71k lines),
and SAMtools for working with alignment data (42k lines). All
3 projects are maintained in parallel, and improvements to HT-
Slib naturally filter into new releases of SAMtools and BCFtools.
Since the original release the combined size of HTSlib, SAMtools,
and BCFtools has doubled.

Since the initial release there have been >2,200 commits to the
code repository and 52 releases, the most recent being version
1.11 in September 2020 [9].

The main part of the SAMtools package is a single executable
that offers various commands for working on alignment data.
The “view” command performs format conversion, file filter-
ing, and extraction of sequence ranges. Files can be reordered,
joined, and split in various ways using the commands sort, col-
late, merge, cat, and split. Files can be indexed for fast random
access using “index” for alignment files and “faidx” for refer-
ence sequences in the FASTA format. File content can be ma-
nipulated with commands like addreplacerg, calmd, fixmate,
and reheader. Duplicated reads, caused by artefacts in the li-
brary creation and sequencing process, can be flagged using
markdup. Various statistics on alignment files can be calculated
using idxstats, flagstat, stats, depth, and bedcov. Data can be
converted to legacy formats using fasta and fastq. For position-
ordered files, the sequence alignment can be viewed using tview
or output via mpileup in a way that can be used for ongoing pro-
cessing (e.g., variant calling). Most recently SAMtools has gained
support for amplicon-based sequencing projects via amplicon-
clip and ampliconstats.

For a complete list of SAMtools commands with a short sum-
mary, version, and date of the initial commit see Supplementary
Table S1. Full documentation for these commands is included
with the package in the form of UNIX man pages and can also
be found online [10].

Early releases of SAMtools could read and write alignment
data in the SAM and BAM formats. The 1.0 release introduced
support for the better-compressed CRAM format [11]. Originally,
the program required the use of command line options to select
the input format, and most commands were tied to using BAM
files. These restrictions were removed as SAMtools transitioned
to use HTSIib, so by release 1.0 most commands could automat-

ically detect the input file format and could directly read and
write SAM, BAM, and CRAM files. In particular, there is rarely
any need to convert SAM to BAM using “samtools view -b” be-
fore running commands like “samtools sort,” although regret-
tably this idiom still appears in a large number of online tutori-
als. We encourage readers to follow best practices and workflows
published at [12].

SAMtools has also become faster, most notably by gaining
the ability to use threads to take better advantage of the paral-
lelism available on modern multicore systems. Thread support
first arrived in version 0.1.19 (March 2013), which enabled them
for sorting and BAM file writing in the view command. The num-
ber of tasks using threads has slowly increased, so now (thanks
to improvements in HTSIib) it is possible to use them for both
reading and writing SAM, BAM, and CRAM formats in most of
the commands. Another time-saving improvement is the abil-
ity to index files as they are written (added in 1.10). This allows
pipelines that need to index files to remove the separate “sam-
tools index” stage and associated read-through of the file being
indexed.

The original purpose of the BCFtools package was to divide the
I/O- and CPU-intensive tasks of variant calling into separate
steps.

The first step, initially “samtools mpileup” but subsequently
moved to “bcftools mpileup,” reads the alignments and for each
position of the genome constructs a vertical slice across all reads
covering the position (“pileup”). Genotype likelihoods are then
calculated, representing how consistent are the observed data
with the possible diploid genotypes. The calculation takes into
account mapping qualities of the reads, base qualities, and the
probability of local misalignment, per-base alignment quality
(BAQ) [13]. The second step, “bcftools call” (known in the initial
release as “bcftools view”), then evaluates the most likely geno-
type under the assumption of Hardy-Weinberg equilibrium (in
the sample context customizable by the user) using allele fre-
quencies estimated from the data or provided explicitly by the
user. In 2016 (release 1.4) genotype likelihood generation was
moved from SAMtools to BCFtools to make both variant-calling
steps part of the same package and to prevent errors arising from
the possible use of incompatible versions of the 2 programs.

Today BCFtools is a full-featured program that consists of
21 commands and 38 plugins (single-purpose tools) with >230
documented command line switches and options. As of writing,
there have been >2,300 commits and 29 releases since 2012, with
the most recent, 1.11, released in September 2020 [14].

The “bcftools view” command provides conversion between
the text VCF and the binary BCF format, where both formats
can be either plain (uncompressed) or block-compressed with
BGZF for random access and compact size. The plain text VCF
output is useful for visual inspection, for processing with cus-
tom scripts, and as a data exchange format. It should not be
used when performance is critical because BCFtools internally
uses the binary BCF representation and the conversion between
the text VCF format and the binary BCF format is costly. Also
compression and decompression is CPU intensive, and therefore
when streaming between multiple commands in a pipeline it is
recommended to stream uncompressed BCF by appending the
option “-Ou.”

The program can do much more than convert between VCF
and BCF formats. It can also process third-party formats (us-
ing the “convert” command) and manipulate variant files in


https://www.htslib.org/workflow/

many ways. It can be used to index, sort, and normalize vari-
ants (“norm”), replace headers (“reheader”), add and remove an-
notations (“annotate”), and subset samples (“view”). Most com-
mands can filter sites either by a region, list of sites, or a gen-
eral Boolean expression involving any combination of VCF tags
(-include, -exclude). Multiple files can be compared, splitting
common and file-specific variants into separate files according
to custom rules (isec). Files sorted by position can also be com-
bined using the merge command (input files have different sam-
ples) or concat command (input files have the same samples).
Arbitrary fields can be extracted and formatted into a custom
text output (query), a feature that, among other things, is useful
for scripting.

Apart from file manipulation, the program offers variant
callers and algorithms useful for analysis. For calling single-
nucleotide polymorphisms and short indels from read align-
ment files, BCFtools implements 2 variant-calling models. In
addition to the original biallelic caller (“bcftools call -c” [15])
there is a newer model available, capable of handling positions
with multiple alternate alleles (“bcftools call -m”) and support-
ing gVCF output [16]. (For a recent comparison of the variant-
calling component of the software see [17-20].) The package im-
plements a hidden Markov model caller for detection of runs
of homozygosity (roh [21]), copy-number variation calling from
single-nucleotide polymorphism array data (cnv [22]), and the
detection of whole-chromosome aberrations (polysomy). The
program can construct a consensus sequence given a FASTA
and a variant file (consensus), perform sample identity checks
(gtcheck), and collect various statistics (stats).

In addition to built-in commands, the program supports a
dynamic plugin mechanism for specific single-purpose tasks
with a diverse range of functions. Examples from a large and
ever-growing collection include the plugin split-vep for conve-
nient querying and extraction of VEP annotations [23]; trio-dnm
for ascertainment of de novo variants and their parental origin
(parental-origin), or for collection of statistics (trio-stats) in trio
data; gVCF manipulation (gvcfz); and many more.

For a complete list of BCFtools commands and plugins with a
short summary, version, and date of the initial commit see Sup-
plementary Table S2. Full documentation for these commands
is included with the package in the form of UNIX man pages
and can also be found online together with short tutorials, math
notes, and other documentation at [24].

SAMtools and BCFtools represent a unique collection of tools
useful for processing and analysis of sequencing data. Their de-
velopment has been driven by the need of both large projects
and individual user requests issued via GitHub. The code has
been installed >1 million times via Bioconda [25] and GitHub re-
leases [9, 14], and >1600 support and feature requests have been
resolved on GitHub.

The programs are written in the C programming language
and optimized for low memory consumption and high speed.
For example, the “beftools csq” command for prediction of func-
tional consequences in a haplotype-aware manner requires only
a fraction of the memory required by VEP and is 2 orders of mag-
nitude faster [26].

Much work has been done to increase the reliability of SAM-
tools and BCFtools. The test harnesses now include ~700 tests
in SAMtools and ~1,400 in BCFtools. Continuous integration

services run all of the tests on a variety of platforms (includ-
ing Linux, MacOS, and Windows) whenever code is checked
into the source repository, ensuring that bugs are discovered
and fixed rapidly. Code quality is also assured by checking for
memory errors, originally using Valgrind memcheck [27] and
more recently with AddressSanitizer [28]. Additionally, Unde-
finedBehaviorSanitizer is used to detect violations of the C
standard.

Despite the ever-growing sample sizes and rapid increases
in the amount of sequenced data, the programs have withstood
the test of time. However, extremely big files are produced by
large projects and their processing requires a high degree of par-
allelization on computing clusters. Future versions of SAMtools
and BCFtools are expected to make more use of threaded code to
allow faster processing of such files. Sometimes even the limits
of BCF representation itself can be reached. For example, highly
polymorphic sites can contain dozens of alternate indel alleles,
which, in files with tens of thousands of samples, exceed the
internal limit of 4 GB per site due to quadratic scaling of annota-
tions such as FORMAT/PL. An extension of the VCF specification
has been proposed to address this problem by introducing a lo-
calized version of such annotations with linear scaling [29] and
has been implemented in BCFtools.

The programs have been used to process and analyze se-
quencing data from all types of species: vertebrates, inverte-
brates, pathogens, plants, and viruses. This provides interest-
ing challenges and opportunities for future development. For ex-
ample, some of the BCFtools commands are limited to handling
haploid and diploid organisms and the support for large “64-bit”
genomes is currently only partial. More work is also planned to
overcome difficulties stemming from ambiguities in VCF allele
encoding (such as operations of atomization and deatomization)
and to improve visualization of results, and there are >50 feature
requests currently registered on GitHub to investigate.

Project name: SAMtools

Project home page: https://www.htslib.org, https://github.com/s
amtools/samtools

Operating system(s): Platform independent

Programming language: C

License: MIT/Expat

RRID:SCR_002105

biotools: samtools

Project name: BCFtools

Project home page: https://www.htslib.org, https://github.com/s
amtools/bcftools

Operating system(s): Platform independent

Programming language: C

Other requirements: Optional use of GNU Scientific Library (GSL)
License: MIT/Expat

RRID:SCR_002105

biotools: beftools

Snapshots of the code and tabular files are available from the
GigaScience GigaDB repository [30].


https://samtools.github.io/bcftools/
https://www.htslib.org
https://github.com/samtools/samtools
https://scicrunch.org/resolver/RRID:SCR_002105
https://www.htslib.org
https://github.com/samtools/bcftools
https://scicrunch.org/resolver/RRID:SCR_002105

An accompanying article describing the HTSlib software library
for providing programmatic access is published alongside this
article [8].

Supplementary Table S1: Table of SAMtools commands
Supplementary Table S2: Table of BCFtools commands

API: Application Programming Interface; CPU: central processing
unit; GATK: Genome Analysis Toolkit; Gb: gigabase pairs.

The authors declare that they have no competing interests.

This work was supported by a Wellcome Trust grant (206194).

J.K.B.,,P.D.,,RM.D.,H.L.,J. M., M.O.P,, V.O., and A.W. wrote the SAM-
tools software with J.L. and S.A.M. supporting; RM.D., TK., and
J.M. provided supervision.

P.D. and S.A.M. wrote the BCFtools software with J.K.B., RM.D.,
H.L, J.M., and V.O. supporting; S.A.M. also provided supervision.
JK.B,, P.D., RM.D,, V.O,, and A.W. wrote the original draft of the
manuscript with all authors reviewing.

10.

Li H, Handsaker B, Wysoker A, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics
2009;25:2078-9.

Danecek P, Auton A, Abecasis G, et al. The variant call format
and VCFtools. Bioinformatics 2011;27:2156-8.

The 1000 Genomes Project Consortium. A global reference
for human genetic variation. Nature 2015;526:68-74.
Tarasov A, Vilella AJ, Cuppen E, et al. Sambamba: fast
processing of NGS alignment formats. Bioinformatics
2015;31:20324.

Tischler G, Leonard S. biobambam: tools for read pair colla-
tion based algorithms on BAM files. Source Code Biol Med
2014,9:2078.

Babraham Bioinformatics. 2019. FastQC: A quality control
tool for high throughput sequence data. Version 0.11.9. https:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/. Ac-
cessed 29 June 2020.

DePristo MA, Banks E, Poplin R, et al. A framework for vari-
ation discovery and genotyping using next-generation DNA
sequencing data. Nat Genet 2011;43:491-8.

Bonfield JK, Marshall J, Danecek P, et al. HTSIib - C library
for reading/writing high-throughput sequencing data. Giga-
science 2021; 10(2): doi:10.1093/gigascience/giab007
SAMtools. 2020. SAMtools, Version 1.11. https://github.com
/samtools/samtools/releases/tag/1.11. Accessed 9 February
2021.

SAMtools - Documentation, https://www.htslib.org/doc/ .
Accessed 9 February 2021.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Hsi-Yang Fritz M, Leinonen R, Cochrane G, et al. Effi-
cient storage of high throughput DNA sequencing data
using reference-based compression. Genome Res 2011;21:
734-40.

SAMtools - Workflow, https://www.htslib.org/workflow/ . Ac-
cessed 9 February 2021.

Li H. Improving SNP discovery by base alignment quality.
Bioinformatics 2011;27:1157-8.

SAMtools. 2020. BCFtools, Version 1.11. https://github.com
/samtools/bcftools/releases/tag/1.11. Accessed 9 February
2021.

Li H. A statistical framework for SNP calling, mutation dis-
covery, association mapping and population genetical pa-
rameter estimation from sequencing data. Bioinformatics
2011;27:2987-93.

gvcftools. 2020. Version 0.17.0. https://sites.google.com/site/
gvcftools. Accessed 6 November 2020.

Schilbert HM, Rempel A, Pucker B. Comparison of read map-
ping and variant calling tools for the analysis of plant NGS
data. Plants (Basel) 2020;9(4):439.

Pightling AW, Petronella N, Pagotto F. Choice of reference-
guided sequence assembler and SNP caller for analysis of
Listeria monocytogenes short-read sequence data greatly influ-
ences rates of error. BMC Res Notes 2015;8:748.

Bonfield JK, McCarthy SA, Durbin R. Crumble: reference free
lossy compression of sequence quality values. Bioinformat-
ics 2019;35:337-9.

Liu F, Zhang Y, Zhang L, et al. Systematic comparative
analysis of single-nucleotide variant detection methods
from single-cell RNA sequencing data. Genome Biol 2019;20:
242.

Narasimhan V, Danecek P, Scally A, et al. BCFtools/RoH: a
hidden Markov model approach for detecting autozygos-
ity from next-generation sequencing data. Bioinformatics
2016;32:1749-51.

Danecek P, McCarthy SA, HipSci Consortium, Durbin R.
A method for checking genomic integrity in cultured cell
lines from SNP genotyping data. PLoS One 2016;11(5):
€0155014.

McLaren W, Gil L, Hunt SE, et al. The Ensembl Variant Effect
Predictor. Genome Biol 2016;17(1):122.

BCFtools https://samtools.github.io/bcftools/. Accessed 9
February 2021.

Grining B, The Bioconda Team, Dale R, Sjodin A, et al. Bio-
conda: sustainable and comprehensive software distribution
for the life sciences. Nat Methods 2018:475-6.

Danecek P, McCarthy SA. BCFtools/csq: haplotype-
aware variant consequences. Bioinformatics 2017;33:
2037-9.

Nethercote N, Seward J. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. SIGPLAN Not
2007,42:89-100.

Serebryany K, Bruening D, Potapenko A, et al. Address-
Sanitizer: a fast address sanity checker. Proceedings of
the 2012 USENIX Annual Technical Conference. 2012.
https://www.usenix.org/system/files/conference/atc12/atcl
2-final39.pdf. Accessed 6 November 2020.

SAMtools. 2019. Define Local Alleles in VCF to allow for
sparser format by yfarjoun. Pull Request #434. samtools/hts-
specs. https://github.com/samtools/hts-specs/pull/434. Ac-
cessed 10 July 2020.

Danecek P, Bonfield JK, Liddle ], et al. Supporting data
for “Twelve years of SAMtools and BCFtools.” GigaScience
Database 2021. http://dx.doi.org/10.5524/100866.


https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/samtools/samtools/releases/tag/1.11
https://www.htslib.org/doc/
https://www.htslib.org/workflow/
https://github.com/samtools/bcftools/releases/tag/1.11
https://sites.google.com/site/gvcftools
https://samtools.github.io/bcftools/
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf 
https://github.com/samtools/hts-specs/pull/434
http://dx.doi.org/10.5524/100866

