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Background: Since the original publication of the VCF and SAM formats, an explosion of software tools have been created to
process these data files. To facilitate this a library was produced out of the original SAMtools implementation, with a focus
on performance and robustness. The file formats themselves have become international standards under the jurisdiction of
the Global Alliance for Genomics and Health. Findings: We present a software library for providing programmatic access to
sequencing alignment and variant formats. It was born out of the widely used SAMtools and BCFtools applications.
Considerable improvements have been made to the original code plus many new features including newer access protocols,
the addition of the CRAM file format, better indexing and iterators, and better use of threading. Conclusion: Since the
original Samtools release, performance has been considerably improved, with a BAM read-write loop running 5 times faster
and BAM to SAM conversion 13 times faster (both using 16 threads, compared to Samtools 0.1.19). Widespread adoption has
seen HTSlib downloaded >1 million times from GitHub and conda. The C library has been used directly by an estimated 900
GitHub projects and has been incorporated into Perl, Python, Rust, and R, significantly expanding the number of uses via
other languages. HTSIib is open source and is freely available from htslib.org under MIT/BSD license. Keywords: samtools,
bceftools, high-throughput sequencing, next generation sequencing, variant calling, data analysis.

ecosystem hampered the collaboration between the participants
of the project and delayed the development of advanced data
analysis algorithms.

In a conference call on 21 October 2008, the 1000 Genomes
Project analysis subgroup decided to take on the issue by unify-
ing a variety of short-read alignment formats into the Sequence
Alignment/Map format (SAM). Towards the end of 2008 the sub-
group announced the first SAM specification, detailing a text-

When the 1000 Genomes Project [1] was launched in early 2008,
there were many short-read aligners and variant callers. Each of
them had its own input or output format for limited use cases,
and interoperability was a major challenge. Users were forced
to implement bespoke format converters to bridge tools, and be-
cause formats encoded different information, this was time con-
suming, laborious, and sometimes impossible. This fragmented
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based SAM format and its binary representation, the BAM format
[2]. SAM/BAM quickly replaced all the other short-read align-
ment formats and became the de facto standard in the analysis
of high-throughput sequence data. In 2010, a Variant Call For-
mat (VCF) was introduced for storing genetic variation [3]. Later,
in 2011, as the number of sequenced samples increased and the
text format proved too slow to parse, a binary version BCF (see
Supplementary Fig. S1) was developed [4].

The SAM/BAM format originally came with a reference im-
plementation, SAMtools [2, 5], and VCF/BCF with VCFtools [3]
and BCFtools (then part of the SAMtools package) [6]. Numerous
other tools have been developed since then in a wide variety of
programming languages. For example, HTSJDK is the Java equiv-
alent [7] and is used extensively in Java applications; Sambamba
[8] is written in the D language and focuses primarily on efficient
multi-threaded work; Scramble [9] has BAM and SAM capability
and is the primary source for experimental CRAM [10, 11] de-
velopment; and JBrowse [12] implements read-only support for
multiple formats in JavaScript.

While the original implementation of SAMtools and BCFtools
provided APIs to parse the files, it mixed these APIs with ap-
plication code. This did not guarantee long-term stability and
made it difficult to interface in other programs. To solve this, in
2013 the decision was taken to separate the API from the com-
mand line tools and to produce HTSlib as a dedicated program-
ming library that processes common data formats used in high-
throughput sequencing. Support for the European Bioinformat-
ics Institute’s CRAM format was added and in 2014 the first of-
ficial release (1.0) was published. This library implements stable
and robust APIs that other programs can rely on. It enables effi-
cient access to SAM/BAM/CRAM, VCF/BCF, FASTA, FASTQ, block-
gzip compressed data, and indexes. It can be used natively in
C/C++ code and has bindings to many other popular program-
ming languages, such as Python, Rust, and R, boosting the de-
velopment of sequence analysis tools.

HTSIib is not merely a separation; it also brought numer-
ous improvements to SAMtools, BCFtools, and other third-party
programs depending on it. HTSIib is linked into ~900 GitHub
projects (see Supplementary Section S2), and HTSlib itself has
been forked >300 times. HTSlib has been installed via bioconda
>1 million times, and there are ~10,000 GitHub projects us-
ing it via Pysam. The library is freely available for commercial
and non-commercial use (the MIT/BSD compatible license) from
htslib.org and GitHub [13].

The main purpose of HTSIib is to provide access to genomic in-
formation files, both alignment data (SAM, BAM, and CRAM for-
mats) and variant data (VCF and BCF formats). The library also
provides interfaces to access and index genome reference data
in FASTA format and tab-delimited files with genomic coordi-
nates.

Given the typical file sizes of genomic data, compression is
necessary for efficient storage of data. HTSlib supports the GZIP-
compatible format BGZF (Blocked GNU Zip Format), which lim-
its the size of compressed blocks, thus allowing indexing and
random access to the compressed files. HTSIib includes 2 stand-
alone programs that work with BGZF; bgzip is a general-purpose
compression tool while tabix works on tab-delimited genome
coordinate files (e.g., BED and GFF) and provides indexing and
random access. BGZF compression is also used for BAM, BCF,

and compressed FASTA files. The CRAM format uses column-
specific compression methods including gzip, rANS [14], LZMA,
and bzip2. The CRAM implementation in HTSIib learns the best-
performing compression method on the fly (see Supplementary
Section S3).

The HTSlib library is structured as follows: the media ac-
cess layer (Fig. 1a) is a collection of low-level system and library
(libcurl, knet) functions, which facilitate access to files on dif-
ferent storage environments (disk, memory, network) and over
multiple protocols to various online storage providers (AWS S3,
Google Cloud, GA4GH htsget [15]; Fig. 1b). This functionality is
transparently available through a unified low-level stream in-
terface hFILE (Fig. 1c). All file formats (Fig. 1d and e) are acces-
sible through a higher-level file format-agnostic htsFILE inter-
face, which provides functions to detect file types and set write
options and provides common code for file iterators. Building
on this layer are specializations for alignment (SAM, BAM, and
CRAM) and variant (VCF and BCF) files and various auxiliary
functions (Fig. 1f and g).

This API (Fig. 1f and g) can be roughly divided into several
classes:

1. The File Access API has basic methods for opening and clos-
ing alignment and variant files, as well as reading and writ-
ing records to a file. HTSlib automatically determines the
input file type by its contents and output type by filename.
Further explicit control is provided for format, data layout
(in CRAM), and file compression levels. Data sorted in ge-
nomic order may also be indexed at the time of writing (for
alignment data) or at a later post-writing stage.

2. The Header APl is a collection of methods that enables ex-
tensive control of SAM and VCF headers, including reading,
writing, and parsing the header, accessing and updating in-
dividual tags, and adding and removing header lines.

3. The Data API provides methods for parsing, updating, and
retrieving information from individual record fields on both
alignment and variant data. The library also includes the
ability to read multiple VCF and BCF files in parallel, trans-
parently merging their contents, so that the reader can eas-
ily process records with matching genomic positions and al-
leles.

4. The Index/Iterator API offers the ability to extract informa-

tion from the various index formats specific to genomic data
(BAI, CSI, CRAI, TBI), and to create iterators for genomic files.
The original BAI and TBI indices were limited to 512 Mb and
were replaced by CSI allowing <2* bp.
Both sequence alignment and variant call formats have mil-
lions of records that can be indexed by genomic location. An
iterator groups a list of target genomic regions into a list of
file offsets and contains the stepping and filtering logic to
allow the file reader to extract only the information of inter-
est. Additionally, the library provides the regidx API, which
allows the user to efficiently search and intersect regions
from arbitrary row-oriented text formats.

S. The Mpileup API performs a data pivot. Alignment data in
SAM, BAM, and CRAM are retrieved in row-oriented for-
mat, record by record. Data rotation (merging >1 input files)
presents the sequence data in a column-oriented form per
reference position. This information can be used for single-
nucleotide polymorphism and indel calling, consensus gen-
eration, and to make alignment viewers. Mpileup can also
optionally calculate base alignment quality scores for each
read [16]. The base alignment quality scores can be used to
reduce false-positive single-nucleotide polymorphism calls
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Figure 1: Htslib design.

by lowering the confidence scores at locations where the
read alignment may be incorrect.

6. HTSIib also includes various utility convenience functions
such as hash tables, string manipulation, linked lists, heaps,
sorting, and logging, and ensures portability between big-
and little-endian platforms. Many of these originate from
Klib [17]. A thread pool interface is provided for general
multi-threading.

Given the widespread use of the library, performance and low
memory requirements are paramount, which means that even
relatively small improvements can lead to time and energy sav-
ings when analyzing large amounts of data.

To test maximum throughput for alignment data, elapsed
times were obtained for each file type using both 1 main thread
and also 16 additional worker threads. Not all tools supported
indexing of all formats, and only in more recent HTSlib ver-
sions is there support for indexing and random access of BGZF-
compressed SAM files. Full benchmarks are in Supplementary
Table S5, with a summary for BAM shown here in Fig. 2.

The tests were performed on a RAM disk (/dev/shm) so rep-
resent maximum I/O rates for this system.

Figure 2 shows read and write elapsed timings for the BAM
format on chromosome 1 of ENA accession ERR3239276. Note
that “samtools 2013” refers to SAMtools version 0.1.19 and not
the current SAMtools release. Other tool versions are HTSlib
1.10.2-32-ga22a0af, HTSJDK 2.22.0, Sambamba 0.7.1, and Scram-
ble 1.14.13. These use up to 16 threads, but the HTSJDK times are
with only 1 additional thread per file. SAMtools 0.1.19 has multi-
threaded writing only, so the speed is limited by the reading por-
tion. (See Supplementary Section S4 for full single-threaded and
multi-threaded timings, along with benchmarks for the SAM
and CRAM formats.)

HTSlib was the only tool tested capable of multi-threaded
SAM decoding and encoding, which is important when process-
ing output from a fast multi-threaded aligner. The use of the
faster compression library libdeflate [18] over Zlib [19] is also
a major contributing factor in BAM performance, meaning that
BAM to BAM transcoding with 16 threads is 5 times faster than
the original SAMtools 0.1.19 and BAM to SAM is 13 times faster.

File sizes also differ slightly for BAM, owing to differing De-
flate implementations (Zlib, Libdeflate, and Intel deflate). HT-
Slib’s CRAM size is 24% smaller than HTSJDK, while being 4 times
faster (with a single thread), although the files remain compati-
ble (see Supplementary Table S5).

To compare the random access capabilities of HTSlib we
chose gene and exon regions from the Ensembl database across
chromosome 1 and measured the time and I/O statistics to re-
trieve all alignments overlapping those regions. HTSlib, HTSJDK,
and Sambamba all support a multi-region iterator that is able to
optimize I/O for many regions, reporting alignments that overlap
multiple regions once only. SAMtools 0.1.19 and Scramble have
no such feature; hence, regions that overlap will report some
records multiple times and the same block may be read more
than once.

The exon list had 58,160 regions (many overlapping each
other) covering 5.5% of the chromosome. Figure 3 shows the ran-
dom access efficiency, in both time and number of bytes read, for
the exon list with BAM input. HTSlib is the fastest and requires
less 1/0 to retrieve the same records.

The only common format supported between current HT-
Slib/BCFtools and HTSJDK is BGZF-compressed VCF. Figure 4
shows the time to read and read/write this format on a 929-
sample test set [20] (see Supplementary Section S8). The source
file is hgdp-wgs.20 190 516.full.chr20.vcf.gz, aligned and called
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Figure 3: Time and megabytes of data read, for exon list in BAM.

from ENA PRJEB6463. Only single thread times are shown be-
cause currently multi-threading is suboptimal in BCFtools and
not available in HTSJDK.

HTSIib also supports the BGZF-compressed BCF format, a bi-
nary variant of VCFE. This performs considerably better than the
compressed VCF, being 5 times faster to decode and nearly 3
times faster to encode (see Supplementary Tables S10 and S11
for details and more complete results).
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Discussion

Over the lifetime of HTSlib the cost of sequencing has decreased
by ~100-fold, with a corresponding increase in data volume [21].
New sequencing technologies have also been developed that
produce much longer reads. The alignment and variant file for-
mats have moved on from being group-led research to being
maintained by the File Formats subgroup of the Global Alliance



4500 —

4369

4000

3500

3000

2500

2000

Read Time (s)

1500

1000

500

Figure 4: VCF.gz and BCF read and read/write times, 929 samples.

for Genomics and Health [22]. Over the years various improve-
ments and modifications have been made to the specifications.
Together these have been and will continue to be a driving force
for continued development.

Since HTSlib 1.0, there have been 11 major releases and
>1,600 code commits, more than doubling the number of lines of
C code [15]. It has gained support for the CRAM file format, bet-
ter indexing, extended APIs, more transfer protocols (S3, Google
Cloud, Htsget), and improved threading and speed. Through the
use of automated tests, static analysis tools, and fuzz testing it
has been made much more reliable (see Supplementary Section
S12).

Some of the existing limitations in HTSlib come from the de-
sign of the underlying file formats, e.g., BAM, CRAM, and BCF
limit the maximum reference length to 2 Gb (see Supplemen-
tary Section S13). We expect future standards development to
include improvements leading to better scaling of many-sample
VCF, additional support for structural variation, better handling
of very long sequencing reads, large genomes, and support for
base modifications. Further plans include speeding up both the
VCF parser and mpileup, improved documentation, and better
support for BED files.

Availability of Supporting Source Code and
Requirements

Project name: HTSlib
Project home page: https://www.htslib.org, https://github.com/s
amtools/htslib
Operating system(s): Platform independent
Programming language: C
License: A mix of Modified 2-Clause BSD (CRAM) and MIT/Expat
(everything else)
RRID:SCR-002105
biotools: htslib
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Data Availability

The data set supporting the benchmarking results of this article
is available in the ENA (ERR3239276 and PRJEB6463) and via FTP
[23]. Snapshots of the code are also available via the GigaScience
GigaDB repository [24].

Editors Note

An accompanying article describing the latest versions of SAM-
tools and BCFtools is published alongside this article [25].

Additional Files

Supplementary Figure S1: Binary BCF vs VCF format
Supplementary Section S2: Estimated number of HTSlib source
code clones

Supplementary Section S3: CRAM compression algorithm
Supplementary Section S4: Performance of HTSlib’s SAM, BAM,
CRAM implementations

Supplementary Table S5: Read and read/write timings for tools
and file formats

Supplementary Table S6: Random access times and data vol-
umes, single thread

Supplementary Table S7: Random access times and data vol-
umes, 8 threads

Supplementary Section S8. Performance of HTSlib’s VCF, BCF im-
plementations

Supplementary Figure S9: VCF and BCF read and read/write
speeds

Supplementary Table S10: Multi-sample VCF and BCF perfor-
mance

Supplementary Table S11: Single-sample VCF and BCF perfor-
mance

Supplementary Section S12: Automatic testing

Supplementary Section S13: The format size limitations
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