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Abstract

Purpose: The mean linear intercept (MLI) score is a common metric for quantification of injury
in lung histopathology images. The automated estimation of the MLI score is a challenging task
because it requires accurate segmentation of different biological components of the lung tissue.
Therefore, the most widely used approaches for MLI quantification are based on manual/
semi-automated assessment of lung histopathology images, which can be expensive and time-
consuming. We describe a fully automated pipeline for MLI estimation, which is capable of
producing results comparable to human raters.

Approach: We use a convolutional neural network based on U-Net architecture to segment the
diagnostically relevant tissue segments in the whole slide images (WSI) of the mouse lung tissue.
The proposed method extracts multiple field-of-view (FOV) images from the tissue segments
and screen the FOV images, rejecting images based on presence of certain biological structures
(i.e., blood vessels and bronchi). We used color slicing and region growing for segmentation of
different biological structures in each FOV image.

Results: The proposed method was tested on ten WSIs from mice and compared against the
scores provided by three human raters. In segmenting the relevant tissue segments, our method
obtained a mean accuracy, Dice coefficient, and Hausdorff distance of 98.34%, 98.22%, and
109.68 μm, respectively. Our proposed method yields a mean precision, recall, and F1-score
of 93.37%, 83.47%, and 87.87%, respectively, in screening of FOV images. There was substan-
tial agreement found between the proposed method and the manual scores (Fleiss Kappa score of
0.76). The mean difference between the calculated MLI score between the automated method
and average rater’s score was 2.33� 4.13 (4.25%� 5.67%).

Conclusion: The proposed pipeline for automated calculation of the MLI score demonstrates
high consistency and accuracy with human raters and can be a potential replacement for manual/
semi-automated approaches in the field.
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1 Introduction

Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth.1 BPD is
a chronic lung disease, characterized by an arrest in alveolar and vascular growth within the lung.
BPD is a multifactorial disease, caused by ventilator and oxygen therapy administered for acute
respiratory failure, and is commonly associated with ante- and post-natal inflammation.2,3

Although, there is currently no effective treatment for BPD, ongoing investigations are in
progress to better understand the pathophysiology of this disease. To discover new potential
therapies, it is crucial that researchers quantify the lung injury phenotype in an accurate and
efficient manner.

A common metric used to quantify lung injury is the mean linear intercept (MLI), which
represents the mean distance between alveolar septa within the lung.4 Investigators using animal
models to mimic neonatal chronic lung disease, often use the MLI as a parameter to describe the
simplification of the lung architecture, characteristic of BPD. The conventional method for MLI
quantification of lung tissue specimens usually includes the microscopic assessment of histo-
pathological slides by an expert, which is inefficient, tedious, and time-consuming. Moreover,
there is a lack of objective visual gold standards for structures found in microscopic views of
tissues, which leads to inter- and intra- expert variation and reproducibility issues.5–7 In recent
years, there has been a shift toward the development of automated methods for assessment of
histopathology images to address the shortcomings in the conventional approaches.8–11 However,
due to technical impediments such as object variability, varying straining, and artifacts, the
development of robust and comprehensive methods for assessment of histopathology images
remains a challenging task.

Automated estimation of the MLI score requires detailed and accurate segmentation of bio-
logical structures in lung histopathology images, which makes development of such approaches
difficult. In recent years, few studies have been reported on lung histopathology image analysis
with a focus of automating the MLI quantification process. However, these methods often have
difficulty identifying non-alveolar structures (e.g., blood vessels and bronchi), which leads to
underestimation of the MLI score in comparison to manual measurements.12 Moreover, the tech-
nical details provided for such algorithms are often limited. As a result, there are currently no
accessible and reliable automated approach for MLI quantification in the literature and conse-
quently, the most trusted methods remain manual/semi-automated techniques,13–15 which can be
laborious, time-consuming, and subjective. In this work, our aim is to present a fully automated
pipeline for estimation of the MLI score in histopathology images of mouse lung tissue. The
main contributions of this paper are: (1) proposing an innovative approach for assessment of
digitized histopathology slides to automate the estimation of the MLI scoring; (2) performing
accurate segmentation of different biological structures in the histopathology images of mouse
lung tissue; and (3) evaluation of the proposed method against human raters.

2 Materials and Methods

2.1 Histopathology Images of Mouse Lung Tissue

Our dataset comprises high-resolution whole slide images (WSIs) of 10 lung histopathology
specimens of mice obtained from the Sinclair Centre for Regenerative Medicine (Ottawa
Hospital Research Institute, Ottawa, Ontario). All animal experiments were conducted in accor-
dance with protocols approved by the University of Ottawa Animal Care Committee. The lungs
specimens were inflation fixed through the trachea with 10% buffered formalin, under 20-cm
H2O pressure, for 5 min. After the trachea was ligated, the lungs were immersion fixed in 10%
buffered formalin for 48 h at room temperature and then immersed in 70% ethanol for 24 h at
room temperature. The Louise Pelletier Histology Core Facility at the University of Ottawa par-
affin-embedded, cut (4-μm sections), mounted, and stained the lung tissue with hematoxylin and
eosin (H&E).

The slides were scanned using an Aperio CS2 slide scanner (Leica), and high-resolution
color images at 20× magnification (i.e., ∼0.5 μm per pixel) were obtained. In total, 10 WSIs
were generated from two different experimental groups. The WSIs were randomly selected from
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different mice lung tissue while blinded to the experimental groups. This procedure was con-
sistent across all animals. The first group contains five WSIs of healthy mouse lung tissue from
mice that were housed in room air (RA) (RA group), which is used as the control group in this
experiment. The second group consists of five WSIs of diseased mouse lung tissue from mice
that were exposed to a high concentration of oxygen and lipopolysaccharide (LPS) (O2 þ LPS

group). The O2 þ LPS experimental group mimics the conditions that a preterm infant is
exposed to (high concentration of oxygen and inflammation), which can lead to a lung injury
phenotype seen in BPD. The WSIs generated from the O2 þ LPS group normally contain fewer
and larger alveoli, in comparison to WSIs from the RA control group. This is expected to reflect
in the MLI score by calculation of a higher value of MLI in theO2 þ LPS group in comparison to
the RA control group, which have much more and smaller alveoli.

2.2 Conventional MLI Quantification

Conventionally, the MLI score is calculated using a semi-automated process.4 In this process, the
microscope software (MetaMorph Software version 7.8, Molecular Devices, LLC) automatically
presents the human rater with a field of view (FOV) from pre-defined grid points. Each FOV
image is a 1072 × 1388 pixel sub-image from the input WSI, overlaid with guidelines in the
middle of the image (see Fig. 1); the top horizontal guideline, of length 155.34 μm, is used
by a human rater in the MLI quantification procedure.

The human rater first decides whether the shown FOV image can be used for MLI quanti-
fication or not. The rejection of a FOV image is based on two criteria. First, if a part of the

(a) (b)

(c) (d)

Fig. 1 Examples of extracted fields of view (FOV) images using the image analysis software.
(a) This FOV image is rejected because the guideline is partially outside of the section.
(b) The FOV image is rejected due to intersection of the guideline with a bronchus. (c) The
FOV image is rejected because the guideline intersects with a blood vessel. (d) An example
of accepted FOV image with five intersections. The intersections of the guideline with the septa
is shown using red arrows.
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horizontal guideline is in the pleural space [i.e., outside the lung space; Fig. 1(a)], the FOV image
is rejected; i.e., it is not used in the calculation of the MLI score. Second, if the horizontal line
intersects a bronchus [Fig. 1(b)] or a vessel [Fig. 1(c)], the FOV image is rejected. If the FOV
image is not rejected, the human rater counts the number of intersections. An intersection is
when the horizontal guideline fully crosses over the septa, which is the alveolar border wall
[Fig. 1(d)]. The MLI score is calculated as

EQ-TARGET;temp:intralink-;e001;116;663MLI ¼ Naccepted FOV images × 155.34

Nintersection

; (1)

whereNaccepted FOV images is the number of accepted FOV images, 155.34 refers to the length of the
horizontal line in μm, and Nintersections is the total number of intersections counted from all of the
accepted FOV images. A minimum of 250 accepted FOV images (i.e., number of FOV images,
not including those that were rejected), is desired for the computation of the MLI score.16

2.3 Automated Calculation of MLI Score

Our proposed pipeline for the automated estimation of the MLI score consists of five steps,
which are shown in Fig. 2.

2.3.1 Foreground extraction

Each WSI may contain various imaging artifacts and undesired biological structures (see Input
WSI in Fig. 2). As an initial step in our pipeline, we segment the lung space from the pleural
space and undesired artifacts, which are considered the foreground and background, respectively.
The foreground regions of interest (ROIs) were segmented using a convolutional neural network
(CNN), based on the U-Net17 architecture.

Since the histopathology slides were scanned at 20× magnification, images’ sizes are large
(average size of 21;052 × 18;124 × 3 pixels) and contain a high level of detail that is not required
to segment the foreground ROI. As such, images were down-sampled by a factor of 10, greatly
reducing the computational cost while still allowing for accurate ROI segmentation. From each
WSI, image patches (128 × 128 pixels) were extracted using a sliding window, with 50% over-
lap in the horizontal and vertical directions. Data augmentation (90-deg rotations and image
flipping) was employed to the training dataset to increase the classifier performance.18

The CNN was trained from scratch, with four convolution layers in the contracting path and
four transpose convolution layers in the expansive path. The complete architecture of the
network is illustrated in Fig. 3. The CNN was trained using the Adam optimizer,19 binary
cross-entropy loss function, and mean intersection over union evaluation metric. To account for
the overfitting problem, we perform dropout by a factor of 0.5 at each layer and perform cross-
validation at each epoch with the ratio of 10:1 (train on 90% of the training data and validation on

Detection of main
biological structures

Color slicing

Input WSI

FOV image
extraction

Intersection
counting 

MLI score

Foreground
extraction

Vessel extraction

Bronchus extraction

.

Boarder-wall
extraction

Fig. 2 Block diagram of the proposed methodology. The abbreviations WSI, FOV, and MLI are
referred to whole slide image, FOV, and MLI, respectively.
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the remaining 10% at each epoch). Batch normalization was applied to each layer to reduce the
training time and prevent diverging gradients. We trained our model for 200 epochs with a batch
size of 100. We used the Keras framework for algorithm development on a standard workstation
with an Intel Core i7-3770 3.40 GHz CPU, 12 GB of installed RAM, and a single NVIDIA RTX
2060 with 6 GB memory. A total number of 2,161,649 trainable parameters were optimized in
our segmentation model.

2.3.2 FOV image extraction

From the foreground region of each original high-resolution WSI, FOV images (sub-images of
size 1072 × 1388 pixels) were extracted using a sliding window, with a 50% and 75% overlap in
the horizontal and vertical directions, respectively. For each FOV image, a horizontal guideline
(thickness 1 pixel; length 312 pixels, which corresponds to 155.34 μm) was superimposed at the
center of each image and used by human raters to count the intersections. In the automated
process the guideline is only virtually superimposed, appearing only for visualization purposes.
If the horizontal guideline does not fully reside within the foreground region, the FOV image is
rejected.

2.3.3 Color slicing

A number of factors can contribute to variations of the color content in histological images
(e.g., histochemical staining time, amount of histology stain used) across different WSIs. We
applied color normalization20 to the input WSIs to mitigate such variations. Next, pixels are
classified, using a color slicing algorithm,21 into the three main categorizes of color in the lung
images (see Fig. 4): (1) white, (2) red, and (3) purple.

The white pixels in each FOV image belong to two main sources: (1) white areas in the
pleural space (i.e., background regions) and (2) white areas within the lung space. The white
pixels located in the pleural space are segmented in the foreground extraction step. Therefore,
only the white pixels corresponding to the lung region need to be identified. The binary mask
Wm denotes the white pixels within the lung space and is determined using Eq. (2):

EQ-TARGET;temp:intralink-;e002;116;177

8>>>>>><
>>>>>>:

bw1ðk; lÞ ¼ jIiðk; lÞ − Ijðk; lÞj ≤ C
bw2ðk; lÞ ¼ jIiðk; lÞj ≥ TH1

Wm ¼ bw1 ∩ bw2

where

� i ≠ j
i; j ∈ ðR;G; BÞ
k ∈ ð1;MÞ; l ∈ ð1; NÞ

(2)

In Eq. (2), IR, IG, and IB are the red, green, and blue channels in RGB color space, respec-
tively. TH1 is a threshold whose value is determined using Otsu’s method22 at each fold. This

Conv2D 3 × 3, padding = “same”, Stride = 2 + Relu + Batch normalization

Maxpool 2 × 2

Up-sampling 2 × 2

Concatenate

12
8 

×
 1

28

64
 ×

 6
4

32
 ×

 3
2

16
 ×

 1
6

8 
×

 8

16
 ×

 1
6

32
 ×

 3
2

64
 ×

 6
4

12
8 

×
1 

28

Conv2D 3 × 3, padding = “same”, Stride = 2 + Relu + Dropout

Conv2D 1 × 1

1   16  16 32  16  16   

64      64 128  64

32    32 64  32

256 128128 128

256

Fig. 3 The CNN architecture. The blue and white boxes represent the multi-channel feature maps
and copied feature maps, respectively. The size of the feature maps is indicated on top of each box
and the size of each input layer is denoted on the left-hand side.
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threshold ensures that the extracted pixels have high intensities (close to white). The constant C
is a fixed threshold for all folds to ensure that the intensity difference between the R, G, and B
channels is small. The value assigned to Cwas 15, which was determined empirically. The mask
Wm is generated by the intersection of the bw1 and bw2 binary masks, and contains the white
pixels within the lung space. The M and N are the corresponding number of rows and columns,
respectively.

Rm is the binary mask denoting the red pixels in each FOV image. These pixels usually
represent the remaining blood cells in the lung tissue, which can indicate the presence of a vessel
in the neighboring region. The binary mask Rm is determined using Eq. (3):

EQ-TARGET;temp:intralink-;e003;116;324

�
T ≜ IR −meanðIG þ IBÞ
Rm ¼ ðT ≥ TH2Þ ⋂ Wm

: (3)

In Eq. (3), the Wm represents all of the pixels that are not in Wm. The value of the threshold
TH2 is determined using Otsu’s method22 at each fold.

The remaining pixels are assigned to the purple color binary mask Pm, which represents
several cellular compartments (e.g., pneumocytes cells, glands, and smooth muscle).

2.3.4 Detection of main biological structures

Each FOV image is segmented into three biological structures: (1) alveoli, (2) vessel, and
(3) bronchi. As stated in Sec. 2.2, FOV images whose horizontal guideline intersects with vas-
cular and bronchus regions should be rejected (i.e., excluded from MLI calculation). We first
automatically segment the lumen region (LR) of vessels based on a region growing method.23 We
then separate bronchi from alveoli, based on multiple morphological features extracted from
each individual LR. Finally, the segmentation approach is completed by identification of the
border wall of the vessel and bronchus (see Fig. 5).

Vessel extraction. To identify different lung structures in each FOV image, it is desirable to
detect all of the LRs using Wm. However, due to high density of blood cells in the LR of the
vessels, accurate extraction of the LR of vessels from Wm is not feasible. Therefore, we develop

Purple class

White class

Red class 

(a)

(b) (c)

Fig. 4 The organization of extracted colors in a FOV image. (a) The original input FOV image.
(b) The RGB representation of each color slice. (c) The visualization of each color binary mask,
Pm , Wm , and Rm .
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an alternative approach, where we first extract candidate seed regions for each individual
vessel in the FOV image and then use a region growing method to segment all of the LR of
the vessels.

Since most vessel structures have a considerable amount of red blood cells within their LR
[see Fig. 5(b)], it is possible to locate the candidate seed regions by detection of the areas in the
red color binary mask Rm, where the density of red pixels is relatively high. To detect these
regions in Rm, using a 25 × 25 window, we iteratively sweep Rm with 50% horizontal and ver-
tical overlap. At each iteration, the local density of the red pixels is calculated. If the local density
is higher than 0.9, all of the red pixels present in the window will be added to the binary
mask BWseed.

Figure 6 shows different steps in the LR segmentation method. To extract the LRs associated
with each seed region in BWseed, we apply a region growing segmentation approach to each

individual seed region. Let bwð0Þ
1 ; bwð0Þ

2 ; : : : ; bwð0Þ
n denote n different seed regions in BWseed.

In the proposed LR segmentation, the selected seed region bwð0Þ
i is iteratively expanded using

Eq. (4).

(a) (b)

Fig. 5 The visualization of (a) a bronchus and (b) vessel. The corresponding LR and border wall
region of each structure is identified by blue and red arrows, respectively. As can be seen in (b),
the LR of the vessel is densely covered by the red blood cells.

Fig. 6 The block diagram of the region growing based LR segmentation. The notation bw ðjÞ
i refers

to the i ’th selected seed region and superscript (j) indicates that bwi is expanded j times.
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EQ-TARGET;temp:intralink-;e004;116;735bwðjÞ
i ¼ fbwðj−1Þ

i � SE⊙½2�g& Wm: (4)

Equation (4) shows the morphological dilation operation (�) of input binary mask bwðj−1Þ
i by

a circular structuring element with radius of two pixels (SE⊙½2�), followed by a bitwise AND

operation of the resultant mask with Wm. If the expanded binary mask bwðjÞ
i does not change

after applying Eq. (4) (bwðjÞ
i ¼ bwðj−1Þ

i ), the algorithm quits the iterative expansion loop and

adds the binary mask bwðjÞ
i to the output LR binary mask BWlr [see Eq. (5)]. The operation

is continued until all of the seed regions are processed by the algorithm.

EQ-TARGET;temp:intralink-;e005;116;623BWlr ¼ BWlr

[
bwðjÞ

i : (5)

Bronchus extraction. The LR of the remaining structures (bronchi and alveoli) are
mostly white and can be directly extracted using Wm. The next step is to separate the LR of
the bronchi from the alveoli’s LR. Based on unique visual characteristics of the LR of the bron-
chi, multiple morphological and textural features are extracted from each individual LR, which is
used for classification of the remaining structures. These features are briefly introduced in the
following:

a. Area of the LR: One of the salient visual features in classification of the remaining LRs is
the area of the LR. In the room air condition (i.e., RA group), there is a considerable size
difference between the LR area of bronchi compared to the LR of alveoli, and therefore
the size feature plays an effective role in classification of bronchi versus alveoli.
However, in O2 þ LPS experimental group, the alveoli structures are enlarged. As such,
LR area may not be as reliable a feature for the O2 þ LPS group and the classifier may be
more reliant on the other extracted features.

We define the area of an object as the overall comprising pixels in the LR of the object.

b. Shape of the LR: Based on our visual observation, the shape of the LR is another dis-
tinguishing feature to discern bronchi versus alveoli LR. For instance, the LR of bronchus
structures are mostly ovular and do not contain many branches. The alveoli LR are often
non-ovular and contain many sub-branched [see Fig. 7(a)]. We used Eq. (6) to quantify
the circularity of the LR.

EQ-TARGET;temp:intralink-;e006;116;326Scircularity ¼ 4π areaðbwÞ∕perimeterðbwÞ2: (6)

In Eq. (6), areað: : : Þ and perimeterð: : : Þ represent the functions that calculate the area and
the perimeter of the input binary mask input contour bw, respectively. The value of Scircularity is
an integer between “0” and “1”, where 1 represents a circular contour.

c. Thickness of the boarder wall region: The majority of bronchus structures have a thick
border wall region in comparison to other structures in lung tissue [see Fig. 7(a)].
Therefore, the thickness of the border-wall region of the remaining structures are
extracted. To quantify the thickness of the boarder-wall region, the complete segmenta-
tion of the boarder-wall of each structure is not required. Instead, we expand the selected
LR using Eq. (7) until the ratio of Wm pixels in the expanded area become larger than
25%. The number of times that Eq. (7) will be used to expand the LR can be used as an
indication of the border-wall region thickness.

EQ-TARGET;temp:intralink-;e007;116;147bwðjÞ ¼ fbwðj−1Þ � SE⊙½1�g − bwðj−1Þ: (7)

Equation (7) shows the morphological dilation operation (�) of input binary mask bwðj−1Þ

by a circular structuring element with radius of one pixels (SE⊙½2�), followed by removing the
pixels of the bwðj−1Þ from the resultant binary mask (bwðjÞ).
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d. LR’s perimeter ripple pattern: Another important biological feature is the frequent
detection of ripple shape patterns on the perimeter of the LR of bronchi [see
Fig. 7(f)]. Considering the fact that this ripple pattern is more apparent in the LR of the
bronchi, it can be a valuable discerning feature. For each LR, this feature is quantified
by calculation of the ratio of the total area of the ripples over the area of the LR
[Eq. (8)].

EQ-TARGET;temp:intralink-;e008;116;236

�
bwripple ¼ bw ∩ ðbw ∘ SE⊙½3�Þ
R ¼ areaðbwrippleÞ∕areaðbwÞ : (8)

In Eq. (8), bw is the generated binary mask from the input LR, bwripple is the binary mask of

the ripple pattern, ∘ SE⊙½3� represents the opening morphological operator with a circular struc-
turing element with a radius of three, areað: : : Þ represents the function that calculates the area of
the input binary mask, and R is the ripple pattern feature.

After the feature extraction step, we classify the remaining structures as bronchi or alveoli
using a decision tree based classifier. The classifier is trained on FOV images extracted from
eight WSIs and will be tested on the remaining two WSIs at each fold. In our dataset, the pop-
ulation ratio of the bronchus samples to alveoli samples is ∼1∶100. Therefore, we perform syn-
thetic oversampling of minority class method (SMOTE)24 to address the class imbalance in our
dataset. In this approach, the synthetic observations are created based on the existing minority

(f)(e)(d)

(c)(b)(a)

(i)(h)(g)

Fig. 7 (a) A sample FOV image. The blue arrows indicate the border-wall region of the bronchi
structures. (b) Red color binary maskRm . (c) The extracted vessel’s seed region. (d) The extracted
vessel LR. (e) The extracted bronchi LR. (f) The visualization of the ripple pattern in bronchi struc-
tures. The ripple pattern is marked as red in this figure. (g) The corresponding seed region in
border-wall extraction step. (h) The extracted border-wall regions of every vessel and bronchi.
(i) The segmented bronchi and vessel in the FOV image.
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observations. For each minority class observation, SMOTE calculates k-nearest neighbors.
Depending on the number required oversampled observations, one or more of the k-nearest
neighbors are selected to create the synthetic examples.

After identification of the LRs of the bronchi structures, the vessels, and the bronchi struc-
tures LR will be used in the next step for extraction of the boarder-wall region.

2.3.5 Border-wall extraction

As seen in Fig. 7(a), all of the biological structures in the FOV image are surrounded by a border-
wall. From a biological standpoint, these border-wall regions are considered as a part of each
structure in the lung tissue. Therefore, the border-wall corresponding to each vessel and bron-
chus LR, are extracted. Here, we use a region growing approach similar to that of the extraction
of the vessels LR. First, we acquire the initial seed pixels using the surrounding neighboring
pixels of each structure LR [see Fig. 7(g)]. The initial seed pixel is then iteratively expanded
using Eq. (9) until the entire border-wall region of the selected LR is extracted.

EQ-TARGET;temp:intralink-;e009;116;555BWborder ¼ ffBWborder � SE⊙½2�
1 g& Pmg ∘ SE⊙½T�

2 : (9)

In Eq. (9), BWborder is the binary mask containing the border-wall pixels, �SE⊙½2�
1 is the

morphological dilation of the input binary mask by a circular structuring element SE1 with radius
of two pixels, & indicates the arithmetic AND operation, Pm is the purple color binary mask,

and ∘ SE⊙½T�
2 is the morphological opening operation by a circular structuring element SE2 with

radius of T.
To define the expansion stopping criteria, we take advantage of the fact that the border-wall

surrounding each vessel and bronchus LR is relatively thicker than the alveoli’s border-wall (i.e.,
septa). As a result, it is possible to separate the border-wall of the vessel and bronchi from septa
by measuring the thickness of the wall [see Fig. 7(h)]. The erosion criteria is implemented as the
morphological opening term in Eq. (9), using a circular structuring element with radius of T. The
optimized value of the T over our training data (extracted FOV images, which were used for
training at each fold) was 16 pixels in average.

2.3.6 Intersection counting

To calculate the MLI score, we are required to count the total number of intersections of the
horizontal guideline with septa within the FOV image. First, we reject any FOV image, where
the horizontal guideline touches a vessel or bronchus. Then, in the remaining FOV images, we
segment the septa regions using Eq. (10). Figure 8 visualizes different steps in segmentation of
septa region in a FOV image.

EQ-TARGET;temp:intralink-;e010;116;272

�
temp ¼ ffarea<THartifactgðWmÞ
bwcr ¼ ffarea>THalveoligðtempÞ

: (10)

In Eq. (10), bwcr is the estimated septa region, ffarea<THartifactgð:Þ is an operator that removes
the contours with area less than the threshold THartifact, and ffarea<THalveoligð:Þ is an operator that
removes the contours with area larger than the threshold THalveoli. After extraction of septa
regions, it is straightforward to count the total number of intersections in each FOV image.

The values of THalveoli and THartifact were determined using the grid search hyper-
parameter optimization algorithm25 (see Fig. 9). To acquire the optimum values of the hyper-
parameters at each fold, the algorithm was run multiple times (number of grid points used in the
grid search) using different hyper-parameters values. The cost value [calculated using Eq. (11)]
was observed to capture the hyper-parameters associated with the minimum cost values.

EQ-TARGET;temp:intralink-;e011;116;110Loss ¼ 1

m
×
Xm
i¼1

ðĈRi − CRiÞ2; (11)
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where, ĈRi is the estimated intersections in the i’th FOV image, CRi is the true number of
intersections according to the manual assessment, and m is the batch size.

2.4 Evaluation of the Developed Method

The overall performance of the proposed method is affected by three main steps: (1) Foreground
extraction, (2) detection of main biological structures, and (3) intersection counting.
Performance metrics are provided for each step. We performed five-fold cross validation.
Within each fold, we used eight of the WSIs from the dataset (four from RA and four from
O2 þ LPS) as the training dataset, and the remaining two WSIs were used as the test dataset
in each stage of the proposed pipeline. This was repeated five times such that each WSI was
used as the test set.

Fig. 8 An example of septa segmentation in a FOV image.

Fig. 9 An example of hyper-parameters grid search at each fold. At each fold, the values of
THalveoli and THar t i f act were determined over eight training WSIs and will be tested on two
remaining WSIs in the test set. This procedure continues until all WSIs used as test set.
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2.4.1 Foreground extraction

In the foreground extraction step, the training dataset (i.e., eight WSIs) was used for training and
validation (90% training and 10% validation) of the CNN and the test dataset (i.e., remaining two
WSIs) for testing. On average, 28,092 image patches were generated from the eight WSIs at each
fold, which were assigned to the training and validation sets with a 9:1 ratio (i.e., 25,283 and
2809 for training and validation, respectively). The remaining two WSIs in each fold, used for
the test dataset, had the average of 7023 image patches.

The proposed foreground extraction results were compared with the manual segmentation.
Manual segmentation of the foreground was performed on each individual WSI image using
ImageJ software26 by Sina Salsabili. The manual segmentation was used as the ground truth
for our foreground extraction approach.

To quantitatively evaluate the performance of our segmentation method, we used both region-
based and boundary-based metrics. For region-based, we computed the Dice similarity
coefficient27 (DSC) and pixel-wise accuracy (AC).

EQ-TARGET;temp:intralink-;e012;116;561DSC ¼ 2 × jX ∩ Yj
jXj þ jYj ; (12)

EQ-TARGET;temp:intralink-;e013;116;504AC ¼ TPþ TN
TPþ TN þ FPþ FN

; (13)

where,

• X: are the set of pixels within the ROI region in the manual segmentation.

• Y: are the set of pixels within the ROI region in the CNN segmentation.

• |·|: is the cardinality of the set.

• True positive (TP): ROI region is correctly detected as ROI region (i.e., jX ∩ Yj).
• True negative (TN): Non-ROI region is correctly detected as Non-ROI region

(i.e., jX ∪ Yj).
• False positive (FP): Non-ROI region is incorrectly detected as ROI region

(i.e., jYj − jX ∩ Yj).
• False negative (FN): ROI region is incorrectly detected as non-ROI region

(i.e., jXj − jX ∩ Yj).
For boundary-based, the Hausdorff distance28 between the border of the segmented WSI and

that of the ground truth was calculated.

2.4.2 Detection of main biological structures

For our dataset, we extracted 18,321 FOV images of size 1072 × 1388 pixels (9009 FOV images
from the RA group and 9312 FOV images from the O2 þ LPS group). At training phase, we used
the ground truth foreground extraction as the guideline for extraction of FOV images to generate
the training data. At each fold, an average of 14,657 FOV images extracted from the eight WSIs,
which were used for training of the later steps (i.e., bronchi versus alveoli classification) of our
pipeline. At the testing phase, the CNN model was used to extract FOV images from the test
dataset (i.e., the remaining two WSIs). An average of 3664 FOV images were used for testing at
each fold.

Manual MLI scoring was conducted independently by co-authors Sina Salsabili and Shreyas
Sreeraman (both are considered novice scorers, who were provided 5 h of training in Bernard
Thebaud’s laboratory), and co-author Marissa Lithopoulos (verified by co-author Bernard
Thebaud; and considered an expert scorer with three years of experience), referred to as rater
1, rater 2, and rater 3, respectively.

The detection of vessels and bronchi is necessary to properly reject FOV images, where the
horizontal guideline touches one of these biological structures. In this step, the metrics in
Eqs. (14)–(16) were utilized to evaluate the performance of the proposed method in detection
of the accepted/rejected FOV images.
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EQ-TARGET;temp:intralink-;e014;116;735Precision ¼ TP

TPþ FP
; (14)

EQ-TARGET;temp:intralink-;e015;116;691Recall ¼ TP

TPþ FN
; (15)

EQ-TARGET;temp:intralink-;e016;116;658F1 − score ¼ 2 × Recal × Precision

Recallþ Precision
: (16)

We compared the performance of the proposed method against the ground truth, which con-
sists of manual scores for calculation of the MLI for eachWSI by three human raters. Our ground
truth includes the assessment of accepted/rejected FOV images and the number of intersections
with alveoli wall in each accepted FOV image. To evaluate our method in detection of accepted/
rejected FOV images, two evaluation approaches were conducted:

1. Acquiring the ground truth for accepted/rejected FOV images based on the majority vote
(i.e., correct if it agrees with at least two of the raters).

• TP: an FOV image is rejected, and at least two raters rejected the FOV image.

• FP: an FOV image is rejected, and at least two raters accepted the FOV image.

• FN: an FOV image is accepted, and at least two raters rejected the FOV image.

2. A less restrictive approach, where the automated method is deemed correct if it agrees with
at least one of the raters.

• TP: an FOV image is rejected, and at least one rater rejected the FOV image.

• FP: an FOV image is rejected, and no rater rejected the FOV image.

• FN: an FOV image is accepted, and no rater accepted the FOV image.

2.4.3 Intersection counting

To evaluate the reliability of agreement between the manually assessed FOV images and the
algorithm-generated assessment, the Fleiss’ Kappa29 statistical measure is calculated in each
study group (i.e., RA and O2 þ LPS). The Fleiss’ Kappa score reflects the performance of our
method for counting the number of intersections in accepted FOV images.

As the final step in the evaluation of the results, the MLI scores were calculated and com-
pared to that of the manually assessed scores.

3 Results

Figure 10 visualizes an example of foreground extraction over a histopathology WSI and the
corresponding manual segmentation. Table 1 contains performance metrics for foreground
extraction, which indicate that the proposed method performed well for all WSIs.

Original Ground truth CNN

(a) (b) (c)

Fig. 10 An example of the complete foreground extraction approach. (a) The original WSI. (b) The
manually segmented ground truth mask. (c) The proposed method segmentation mask.
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To evaluate the performance of the proposed method in detection of accepted FOV images,
the precision, recall, and F1-score metrics are calculated for each fold for the RA group and the
O2 þ LPS group. Table 2 gives the distribution of rejected and accepted FOV images in our
dataset. In Table 3, the results for evaluation of our proposed method in detection of FOV images
for different evaluation approaches are presented. As it is shown in Table 3, the RA group as
compared to O2 þ LPS group has higher precision and lower recall in both evaluation
approaches, whereas the F1-scores are similar. Examples of automated FOV image assessment
using our proposed method are visualized in Fig. 11.

Another step in the determination of the overall performance is the accuracy by which our
method can count the number of intersections in each accepted sample FOV image. Figure 12
shows the comparison between the proposed method accuracy in detection of the intersections in
accepted FOV images against the manually generated scores by human raters. Rater 1 exibits
a slight negative skew [Fig. 12(a)] and rater 3 a slight positive skew [Fig. 12(c)], rater 2
[Fig. 12(b)], and the rater’s average [Fig. 12(d)] distributions are quiet symetric. Figure 12(d)
shows a comparison between the proposed method intersection counting scores and the rater’s
average score (i.e., the arithmetic mean over the reported intersections by human raters and
rounding it to the nearest whole number). In Fig. 12(e), the intersection difference between the
proposed method and the manual scores is visulized, when all three raters were agreed on the
number of intersections.

The calculated Fleiss’ Kappa scores are presented in Table 4, showing the reliability
of agreement in counting the number of intersections in accepted FOV images between
manual assessment by human raters and automated algorithm. In Table 4, the qualitative
interpretation of scores’ agreement in “agreement assessment” section has been derived from
Ref. 30.

Table 1 The evaluation of the foreground extraction step performance using
pixel-wise accuracy (AC), Dice coefficient (DSC), and Hausdorff distance.

Image AC (%) DSC (%) Hausdorff distance (μm)

Average score 98.34 98.22 109.68

Maximum 98.95 98.58 182.85

Minimum 97.50 97.49 39.55

Table 2 Distribution of extracted FOV images. The “completely inside pleural space” column
represents the FOV images that contain no specific tissue compartments and therefore, are elim-
inated in the foreground extraction step. The remaining FOV images are used in detection of main
biological structures step to identify the accepted FOV images.

Fold #
FOV images
in the dataset

Completely inside
pleural space

Number of rejected FOV images

Number of accepted
FOV images

Intersection with
pleural space

Intersection with
vessel/bronchi

1 3219 1637 249 334 999

2 3024 1444 182 300 1098

3 4266 2666 185 276 1139

4 3780 2180 256 302 1042

5 4032 2432 227 291 1082

Total 18,321 10,359 1099 1503 5360
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Figure 13 shows a comparison between calculated MLI scores by the three raters and the
automatically generated MLI scores by the proposed method. As it can be seen in this figure,
there is noticeable varibility in the MLI scores between individual raters and the automated MLI
score falls within this variability. All raters and the automated method successfully discern the
RA and O2 þ LPS conditions based on their MLI score.

(a)

(b)

Fig. 11 Visualization of the automated assessment results. (a) Accepted FOV images. The inter-
sections with the septa are marked as red. The blue color indicates that there are no intersections.
(b) Rejected FOV images.

Fig. 12 The evaluation of the proposedmethod in detection of the intersections against the human
raters. Panels (a), (b), and (c) represent the intersection difference between the automated
method and each individual raters scores. (d) Comparison between the generated intersections
by the proposed method and the average number of intersections reported by human raters.
(e) The comparison in instances that all human raters agree on number of intersections (e.g., all
raters agree that there are five intersections with alveoli septa in the corresponding FOV image).
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4 Discussion

The current approaches in estimation of MLI score involves manual/semi-automated assessment
of histopathology images,14,15,31–33 which can be time-consuming, subjective, and expensive. In
recent years, there has been a growing interest in developing fully automated methods to encoun-
ter the inefficiencies of manual/semi-automated MLI scoring but none of these methods
addressed the segmentation of lung main biological structures, which plays a vital role in esti-
mation of MLI score. Jacob et al.31 proposed an automated approach for estimation of MLI score
in histopathology images of mouse lung tissue. However, their proposed method was not applied
to WSIs and the authors used a few selective images to provide their experimental results.
Rieger-Fackeldey et al.34 proposed an automated method for estimation of MLI score to study
the effects of hyperoxia in histopathology images of newborn mice lung tissue. The authors used
a digital image analysis software (Image Pro Plus version 4.0) and a custom macro commands
for automated investigations of alveolar morphological characteristics. However, they provided
no technical details on their proposed method, nor how well it worked in comparison to manual
assessments by human raters. Sallon et al.12 proposed an automated approach for estimation of
MLI score in WSIs of mouse lung tissue. The authors used a thresholding approach and closed
contour assessment based on size to classify the alveolar structures. However, their proposed
algorithm was unable to distinguish between main lung biological structures (alveoli, bronchi,
and blood vessels). To the best of our knowledge, our fully automated pipeline is the first
approach capable of comprehensively account for main challenges involved with estimation
of MLI score, including (1) taking a histopathology WSIs as input and extract the diagnostically
relevant tissue compartments for extraction of FOV images, (2) screening of the FOV images,
rejecting images based on presence of certain biological structures (bronchi and blood vessel).

To evaluate the performance of our proposed method, we compared our work against MLI
scores from three human raters. Using ten high-resolution WSIs of mouse lung tissue, comprised
of two distinct experimental groups (i.e., RA and O2 þ LPS). We independently tested the per-
formance of each step in our pipeline against manual assessment.

In extraction of the foreground regions, the proposed approach showed promising perfor-
mance in removing the imaging artifacts and undesired biological components and identifying
the ROIs, yielding 98.34%, 98.22%, and 109.68 μm, AC, DSC, and Hausdorff distance,
respectively.

We proposed two different approaches to evaluate the performance of our proposed method
in detection of the main biological structures in histopathology images of mouse lung tissue. In
evaluation approach (1), the proposed method was able to detect the rejected FOV images with

Fig. 13 The evaluation of the calculated MLI score by the proposed method against human raters.
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mean precision, recall, and F1-score of 90.01%, 75.51%, and 81.68%, respectively. In evaluation
approach (2), the proposed method was able to detect the rejected FOV images with mean pre-
cision, recall, and F1-score of 93.37%, 83.47%, and 87.87%, respectively. The higher perfor-
mance metrics of evaluation approach (2), as compared to evaluation approach (1), can be an
indication of the subjectivity involved with the process of calculating the manual MLI scores.

Two main observation can be drawn from the Table 3. First, the mean precision in RA group
is higher in comparison to the mean precision in O2 þ LPS group (94.77% versus 85.24%). This
indicates that the number of incorrectly rejected FOV images (i.e., FPs) are higher in O2 þ LPS

group. This may be related to fact that the alveoli’s LR are enlarged in the O2 þ LPS group. As
we used the area of the LR as a feature in our classification approach, this may result in more
misclassifications of alveoli as bronchi (higher number of FPs). This may potentially explain the
higher precision in RA group compared to O2 þ LPS group. Second, the mean recall in RA
group is much lower in comparison to O2 þ LPS group (69.50% versus 81.52%). This indicates
that the total number of incorrectly accepted FOV images (i.e., FNs) are much higher in RA
group. In our dataset, we noticed that the density of remaining blood cells in RA group was
lower in comparison to O2 þ LPS group. Since we used the presence of blood cells as a feature
to identify blood vessels, the reduced amount of remaining red blood cells in the RA group
results in increased number of FNs.

In classification of bronchi versus alveoli strucutres, as the alveoli structures are enlarged in
O2 þ LPS group, there is a possibility of a bronchi misclassified as a bronchi as alveoli or vice
versa. If an alveoli is misclassified as a bronchi, the FOV would be rejected and may result in
underestimation of MLI. If a bronchi is misclassified as an alveoli, the FOV would not be suc-
cessfully rejected and this may result in an overestimation in MLI, as bronchi tend to be larger
than alveoli. These types of misclassifications do not appear to be happening with any noticeable
frequency in our dataset. We speculate that the occasional misclassifications would also not have
a large impact, as the MLI is computed across a large number of FOVs.

We also used Fleiss’ Kappa score to measure the reliability of agreement between the human
raters and automatically generated intersections. The mean Fleiss’ Kappa scores were 0.46 and
0.66 for the RA group and the O2 þ LPS group, respectively. This shows that the proposed
method has a slightly higher agreement with the O2 þ LPS group than the RA group against
the average manual. We hypothesize two contributing factors for this difference: (1) The MLI
scoring task in RA group is a more complex task compared to O2 þ LPS group. The Fleiss
Kappa scores among human raters in RA group and O2 þ LPS group were 0.5949 and
0.6991, respectively. This indicates that the images in the RA group were inherently more dif-
ficult to analyze. (2) As it is mentioned in Sec. 2.3.6, a contributing factor in preparation of the
septa region for automated intersection counting is the value of THalveoli, which represent the
minimum area of the alveoli’s LR. Using this threshold, the white objects that are smaller than
THalveoli are eliminated form the process of intersection counting. We optimized this value over
both study groups (RA and O2 þ LPS). As the alveoli’s LR are enlarged in the O2 þ LPS group,
we expect that the calculated THalveoli would result in more misclassifications of alveoli in RA
group compared to the O2 þ LPS group, affecting the agreement between human raters and the
proposed method.

In Table 4, we observe that the rate of agreement in both experimental groups is increased
considerably, when all raters agree on the number intersections (Fleiss’Kappa scores of 0.67 and
0.84 in RA group and O2 þ LPS group). This is also another indication that the subjectivity of
the manual analysis can dramatically influence the results. The mean difference between the
calculated MLI score between the automated method and average rater’s score was 2.33
(4.25%) with standard deviation of 4.13 (5.67%), which shows that our proposed method has
the ability to accurately estimate the MLI scores with regards to manual scores calculated by
human raters. A Student’s t-test was performed to see if the average MLI scores of the human
raters and the MLI scores from the proposed method could statistically differentiate the RA and
O2 þ LPS groups (α ¼ 0.05, with a Bonferroni correction). Results demosntrate a statistically
signfiicant difference for both the human raters (p ¼ 5.65 × 10−9) and proposed method
(p ¼ 4.03 × 10−9).

There is a strong agreement between the manual assessment and the proposed method, when
the average intersections are calculated for all three raters [Fig. 12(d)]. Therefore, the proposed
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method agrees with the average raters’ score in 69.79% of cases and the agreement will include
96.77% of cases, if a maximum of one intersection difference is included in the calculations. The
agreement between manual scores and the proposed method is stronger, when all raters counted
the exact same number of intersections [see Fig. 12(e)]. In the cases where all raters agree on the
number of intersections, the proposed method counts the exact same number of intersections
with a probability of 83.84% or counts a maximum of one intersection difference with prob-
ability of 98.77%. Considering the fact that the proposed method is fully automated and com-
pletely reproducible, this result can be an indication of reproducibility issues in detection of
intersections in FOV images by human raters. To demonstrate the subjectivity in the manual
MLI scoring, a few examples of intersection counting are shown in Fig. 14. This discrepancy
in their counting could imply the raters may have a particular bias in their MLI scoring. The
results suggest the relative MLI scorings of the proposed method in comparison to each indi-
vidual rater’s scores are constant (see Fig. 13). As a result, even if the automated method has a
bias itself, it would be constant and highly reproducible.

The processing time for foreground extraction within a single fold was ∼3 h and few minutes
for CNN training and testing, respectively. This was performed on a standard workstation with
an Intel Core i7-3770 3.40 GHz CPU, 12 GB of installed RAM, and a single NVIDIA RTX 2060
with 6 GB memory. The processing time required for the remaining steps of our proposed pipe-
line (i.e., color slicing, detection of the main biological structures, and intersection counting) was
∼37 h and ∼8 h for each fold for training and testing, respectively. The vast majority of this time
is attributed to detection of main biological structures. The average time required to manually
calculate the MLI score for each WSI was ∼10 h. In total, the time required for the proposed
method and a human rater to score the entire dataset (10 WSIs) was ∼40 h and 100 h, respec-
tively. Considering the fact that the algorithm can automatically run in the background 24/7 with
no supervision, the manual scoring of the dataset by a human rater that may take up to several
weeks for a human rater, can be achieved by the proposed method in less than two days.

It should be noted that optimizing processing time was not a focus of this work. Reduction of
processing time could be easily achieved by leveraging parallel processing capabilities.

In our work, we faced various limitations and challenges that we were not able to address in
our proposed pipeline. One of the limitations of our work was detection of the seed regions in
segmentation of the blood vessels. We used the remaining blood cells in the perimeter of each
vessel as an indication of existing blood vessel. Although, the majority of the blood vessels in
our dataset had remaining blood cells in their perimeters, there were some cases with no blood

Rater #1: 7
Rater #2: 5
Rater #3: 6
Proposed method: 7

Rater #1: 5
Rater #2: 4
Rater #3: 6
Proposed method: 4

Rater #1: 4
Rater #2: 3
Rater #3: 2
Proposed method: 3

Rater #1: 5
Rater #2: 6
Rater #3: 7
Proposed method: 7

Fig. 14 The variability in intersection counting by human raters.
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cells present. As a result, in these cases our algorithm fails to correctly identify and segment the
vessel regions. The complexity of blood vessels made it difficult for us to find a suitable hand-
crafted feature, which could be effective in identification of these structures. Another limitation
was the way we have evaluated the performance of our proposed method in segmentation of
biological structures. Although, the presented evaluation procedure can be a good indication
of how detection error propagates into calculation of MLI scores, it does not evaluate the
segmentation performance of our proposed approach in the detection of the lung structures.
The main barrier is the unavailability of manual segmentation of the various biological structures
of lung tissue in our dataset. Our future work is to develop a database of images with manual
segmentation, which will also support the development of more advanced supervised learning
segmentation algorithms, such as deep learning, that we anticipate will improve the overall
segmentation performance.

In this work, we developed a pipeline to measure the changes in the lung architecture
observed in mice with experimental bronchopulmonary dysplasia compared to control, healthy
animals. The pathology of bronchopulmonary dysplasia in humans is more complex than in
mice. In humans, the disease is variable within the lungs of one patient and there is more vari-
ability between patients. However, by accounting a wider variability in disease pathology, it is
feasible that in the future, the current pipeline to be translated for use in human lung histopa-
thology for bronchopulmonary dysplasia.

5 Conclusion

In this paper, we proposed a new pipeline for automating the estimation of the MLI score. The
proposed method uses U-Net architecture for segmentation of diagnostically relevant tissue spec-
imens, which yielded accurate results. Our proposed method utilized color image analysis and
region growing for segmentation of the main biological structures (bronchi and vessels) in histo-
pathology images of mouse lung tissue, which showed promising performance. The comparison
between the automated method and the manual assessment showed substantial agreement in the
calculation of the MLI score. The result demonstrated that the proposed method could replace
the manual/semi-automated methods for calculating the MLI score.
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