
RESEARCH ARTICLE

Attention based GRU-LSTM for software

defect prediction

Hafiz Shahbaz Munir, Shengbing RenID*, Mubashar Mustafa, Chaudry Naeem Siddique,

Shazib Qayyum

Computer Science and Engineering, Central South University, Changsha, China

* rsb@csu.edu.cn

Abstract

Software defect prediction (SDP) can be used to produce reliable, high-quality software.

The current SDP is practiced on program granular components (such as file level, class

level, or function level), which cannot accurately predict failures. To solve this problem, we

propose a new framework called DP-AGL, which uses attention-based GRU-LSTM for

statement-level defect prediction. By using clang to build an abstract syntax tree (AST), we

define a set of 32 statement-level metrics. We label each statement, then make a three-

dimensional vector and apply it as an automatic learning model, and then use a gated

recurrent unit (GRU) with a long short-term memory (LSTM). In addition, the Attention

mechanism is used to generate important features and improve accuracy. To verify our

experiments, we selected 119,989 C/C++ programs in Code4Bench. The benchmark tests

cover various programs and variant sets written by thousands of programmers. As an evalu-

ation standard, compared with the state evaluation method, the recall, precision, accuracy

and F1 measurement of our well-trained DP-AGL under normal conditions have increased

by 1%, 4%, 5%, and 2% respectively.

Introduction

Software largely depends on where you are and the type of life you live in. Software is an

important functional component, man-machine interface, and it is also the most unique and

valuable part of the solution. A software defect is an infected part of a system program, which

sometimes terminates the program unexpectedly, or may help hackers control your program,

which may have a devastating effect on the quality and safety of the software. Nowadays, every-

one believes more and more in software programs in every field. As a result, recent software

programs have become more complicated and expensive [1]. As the size and complexity of

software increase every day, it is difficult to detect defects in software code. The importance

and challenges of defect prediction have made it a dynamic research field in software engineer-

ing [2]. Software Defect Prediction (SDP) in software engineering is one of the most important

research fields. It has aroused the curiosity of many researchers in academia and industry [3].

Machine learning technology is easy to build defect prediction models. Machine learning

techniques such as Naive Bayes, Random Forests, and Support Vectors are used to derive

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Munir HS, Ren S, Mustafa M, Siddique

CN, Qayyum S (2021) Attention based GRU-LSTM

for software defect prediction. PLoS ONE 16(3):

e0247444. https://doi.org/10.1371/journal.

pone.0247444

Editor: Le Hoang Son, Vietnam National University,

VIETNAM

Received: November 2, 2020

Accepted: February 6, 2021

Published: March 4, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0247444

Copyright: © 2021 Munir et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: https://zenodo.org/

record/2582968#.X5TCBygzY2w.

Funding: This paper has no financial support by

the funders. This is a pre-research project.

https://orcid.org/0000-0001-7709-4234
https://doi.org/10.1371/journal.pone.0247444
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247444&domain=pdf&date_stamp=2021-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247444&domain=pdf&date_stamp=2021-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247444&domain=pdf&date_stamp=2021-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247444&domain=pdf&date_stamp=2021-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247444&domain=pdf&date_stamp=2021-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247444&domain=pdf&date_stamp=2021-03-04
https://doi.org/10.1371/journal.pone.0247444
https://doi.org/10.1371/journal.pone.0247444
https://doi.org/10.1371/journal.pone.0247444
http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/record/2582968#.X5TCBygzY2w
https://zenodo.org/record/2582968#.X5TCBygzY2w

various functions for software feedback and encode them into a general category. A lot of

research [4] wisely absorbed design features that can distinguish defective code from non-

defective code, such as code size and complexity [5] (e.g., MOOD function, Halstead Features,

CK features, McAbe), micro-interactions, [6] code loss metric, such as the total number of

lines of code changed), smelly statements, [7] and process metric. However, these functions

and technologies cannot replicate the semantics and syntax of the program. In addition, the

software’s metric function is usually not widely used with well-defined functions, because in

some software projects [8], employers may not perform well in other projects. Because the

semantic and syntactic information are not similar [9]. Functions that include these types of

structural information and the semantics of defect prediction should improve performance.

The rich functions of code semantics and syntactic structure have specific statistical functions,

and ASTs [10] hides these specific statistical functions, which can help locate and analyze faults

more accurately.

The benefits of SDP in the research society are widely recognized; however, serious criti-

cisms of SDP are limited world applications [11]. For this method, a root cause seems to be

crucial, and it relies on failure prediction at a high level of granularity. Developers need to

detect and locate faults that take unimportant time in modules that have been classified as

prone to faults. In order to identify the location of the failure during the acceleration process,

fine-grained failure prediction is used [12]. We assume that the precise location of error-prone

locations through sentence-level SDP has sufficient potential granularity. Therefore, defects

can be detected and located with less influence and time.

In our proposed model, we use statement-level granularity and attention-based

GRU-LSTM (DP-AGL) for defect prediction.

1. Our goal is to classify faults and continuously learn to improve the accuracy of deep

learning.

2. We first use Clang to parse the source code into AST, and introduce 32 level matrix features

and tags for each statement, because the feature is the number of unary operators or oper-

ands used in each sentence.

3. As the learning part of DP-AGL, we use gated recurrent unit [13] and long-short-term

memory with attention mechanism.

The improved version of the LSTM unit is the “gated recurrent unit” [6]. The input and for-

get gate of the GRU unit are combined into one gate, called the update gate. GRU also com-

bines internal state with its temporary output. By using the previous hidden state, after the gate

control is completed, there are most of the differences in the complete gate control unit. There-

fore, the bias adopts various simplified forms and combinations, which are called minimum

gate control units. The fully gated unit is parallel to the smallest gated unit, rather than parallel

to the reset gate, and the updated vector is merged into the forget gate [14]. Sequential defect

prediction also requires memory.

This function of failure prediction provides practical utility due to the less troublesome or

flawed data in its collection, and these instructions will prevent companies from using [15] for

training in the SDP method.

To verify our experiment, in Code4Bench, we selected 119,989 C/C++ programs [16]. The

Code4Bench benchmark contains every version of every program we wrote to introduce met-

rics. For insufficient data, we label each statement as a morpheme; we use equivalent ready-

made statistics by using code4bench. After that, we make a matrix for each row of each pro-

gram, dedicated to press releases. The equivalent column is used for each statement of the

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 2 / 19

Competing interests: This paper has no

Competing Interests. Because this is a pre-

research project, which has no financial support.

https://doi.org/10.1371/journal.pone.0247444

metric data (including lexemes). The label indicates no failure or prone to failure, and failure

data [1]. Finally, we train the data on the novel model.

Background and related work

A brief explanation about fundamental concepts discussed will be in this segment, which sup-

ports the paper for state of the art techniques. Then, we put the central part of the literature

review that is software defect prediction. We also wrap up this section with specific gaps and

lesson-learned.

Traditional concepts

The prediction of software defects is a noteworthy research area in software engineering (SE)

[17]. SDP can automatically anticipate the parts of the software that are prone to defects for

effective software trial [18]. Software defect prediction technology supports software metrics

and error data to build predictable [19] models. Incorrect data may arrive from other projects,

or the same previous version of the project to training data [20]. The resulting model provides

a task that comes from invisible software and is used to predict error-prone parts. For example,

a similar software program to be released is using [21]. When we obtain the same training data

as the project’s predictive model, we may implement a project Within Project Defect Predic-

tion (WPDP). On the contrary, when most or all of the training data is obtained from other

similar projects, we will obtain a cross-project defect prediction system (CPDP) [21].

Literature review

General review in defect prediction. Most of the references focused on designing new

identification functions, filtering fault data, and building effective classifiers. Ball and Nagap-

pan [22] proposed customer churn indicators and attached them to software-dependent

defects and failure predictions. Moser et al. [23] introduced the efficiency of detailed analysis

and capability of static code attributes and changed metrics for defect or failure prediction. In

addition, Ayan and Arar [24] proposed a naive Bayes technique suitable for selecting suitable

features for unnecessary filters. Mousavi et al. [25] solved the problem of class imbalance in

software failure prediction through integrated learning. Besides, Jing et al. [26] proposed a pro-

cess of dictionary learning, which requires calculating the cost of misclassification to predict

software defects.

Kamei etc. [12] observed the real-time performance of the model from the perspective of

cross-project SDP. In their research, they used 11 open source projects. They also developed

predictive models because they are built with finer granularity and can be simplified using pro-

cess metrics. They also introduced cross-projects, where instant models tend to have better

performance in the environment. In contrast, the model is trained on the same project, and

the amount of project data used, combined, and grouped is derived from many models and

developed on many projects.

Khoshgoftaar et al. [27] defined debugging churning as the number of code blocks or lines

changed or added to fix errors. Their motivation was to mark modules where debug code loss

exceeds a threshold to be classified as vulnerable to defects. They studied the large-scale tele-

communications legacy system that was released twice in a row. The system consists of more

than 38,000 methods consisting of 171 modules. Differentiating and analyzing modules that

identify easy defects support six static software package metrics. When their model was used

in the second edition, the misclassification rates of type II and I were 19.1% and 21.7%, respec-

tively. And the overall misclassification rate was 21.0%.

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 3 / 19

https://doi.org/10.1371/journal.pone.0247444

Turhan et al. [15] introduced neighbor filter technology to get rid of those instances of the

source item whose characteristics are not close enough to those of the target item. Researchers

can use Transmission Component Analysis (TCA +) [28] to formulate a single goal of predic-

tion technology. However, large amounts of data on unrelated projects usually lead to a reduc-

tion in regulation. Most researchers focus on the source project’s function or filter instances

that are unrelated to the target project to solve this problem. Besides, Yu et al. [29] chose char-

acteristics based on correlation to select those strongly related to the target item.

Canfora et al. [30] used SDP’s multi-goal formulation problem. The primary purpose was

to improve the recall performance and accuracy of the model. However, in the single objective

formula, the objective of a useful model is often insufficient. Developers are responsible for

checking the categories that are prone to defects and assigning time and energy. These catego-

ries and roles play an important role; the larger class is so beautiful that the hope is more signif-

icant. Therefore, the researcher recommended checking the best performance of the model to

identify faults, thus saving developers’ time. Then, they integrated this information into multi-

ple targets for SDP.

Ma etc. [31] proposed a method of using gravitational data to transmit naive Bayes, on

which [32] developed a naive Bayes classifier and standardized the weights of coach examples.

Some studies have recently shown that if we use a small part of the labeled data in the target

project, it will bring higher predictive performance.

Choudhary et al. [33] researched to study the changes in metrics and the code that supports

the precise measurement of the SDP model. Researchers use various versions of Eclipse proj-

ects as experimental subjects. Besides, to take advantage of significant changes in metrics,

many novel metrics have been proposed. They also observed that the SDP model’s new change

indicators’ performance is better than the leading metrics of the SDP model. Also, an advan-

tage is provided by changing the building metrics using the SDP model of high-performance

metrics.

Shippey et al. [34] considered the flawed Java code extraction features of the SDP model to

improve accuracy. To understand this, they used a bottom-up approach and applied it to the

Abstract Syntax Tree (AST) n-gram. They influenced non-parametric testing to detect the

association between AST n-grams and software failures. They also used open-source systems

and commercial software for subjective testing.

Finally, Chen et al. [35] first started the source item’s data weight with the information of

the gravitational method, and then adjust it using a limited number of marker features inside

the target item through the building of a predictive model called TrAdaboost [36]. Qiu et al.

[37] used the kernel mean matching (KMM) algorithm to construct the unique weight of the

multi-component learning model. It was divided into multiple parts of the source project data,

and KMM was used to adjust the source instance’s weight in each part. After that, it uses a part

of the labelled data and the source instance with weight for each component in the target

instance to build a predictive model. Finally, it can be optimized and prepared for source com-

ponent weights to develop more accurate integrated classifiers.

Deep learning in SDP. As conventionally fault prediction, the data set that is planned by

manual measurement features and manual features may not be used for quality insurance or

has no significant association with category labels. These characteristics may be pretentious

manifestations of prediction. These metrics cannot obtain syntactic and semantic information

from the code.

We can express the syntax and semantic information of the code in two ways. One is the

Control Flow Graph (CFG), and the other is the Abstract Syntax Tree (AST) [38]. The AST of

the program meticulously shows the high-level relationship between different parts of the

code. Pan et al. [39] extracted CFG from the assembly code of the project and designed a

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 4 / 19

https://doi.org/10.1371/journal.pone.0247444

convolutional graph network to study the semantic features of the program. CFG represents

the code of the software, which is displayed during program execution, and all paths can be

traversed. Dam etc. [2] assembled a software defect prediction algorithm based on AST based

on the deep tree. Fan et al. [10] the attention-based recurrent neural network is applied to the

vector encoding structure of the code as a deep learning model. They built the AST code and

converted it into a digital vector. Wang et al. [18] used DBN to obtain hidden functions, which

contain the semantics and syntax of the program and provided preprocessed input for the clas-

sifier to predict defective codes. Qiao and Wang [40] to implement instant SDP, which used

deep learning technology. They made the deep learning model suitable for the SDP context

and were mainly able to select operational input structures when the relationship between

input and output was complex.

Pan etc. [41] used the upgraded version of Convolutional Neural Network (CNN) by using

the in-project SDP and evaluated 12 different versions of the project. They compared it with

the SDP method based on baseline deep learning. Li et al. [42] Combined artificial metrics and

deep learning-based functions to build a hybrid model learned by Convolutional Neural Net-

work (CNN). Lin et al. [43] the LSTM model network is used for weak function discovery to

find out the cross-item transfer representation of the AST code.

LSTM solved the vanishing gradient problem by inventing the constant error carousel

(CEC) unit. The main version of the LSTM block includes unit, input and output gates [44].

The recurrent neural network using LSTM units is usually in a controlled method. On a set of

guidance sequences, it is proficient in optimization algorithms (such as gradient descent) and

back-propagates over time to calculate the gradient required in the optimization process. The

error of the LSTM model network that changes each weight is proportional to the error deriva-

tive of the equivalent weight (in the yield layer of the LSTM model network). For ordinary

RNNs that use gradient descent, one problem is that between important events with a delay

magnitude, the error gradient will quickly disappear. This is because if the spectral radius is

less than 1, then limn!1Wn = 0. However, for LSTM units, when the error value propagates

back from the output layer, the error will remain in the cells of the LSTM unit. This “error con-

veyor belt” continuously feeds errors back to each door of the LSTM unit until they learn to

chop off valuable [45].

Conclusions

SLDeep is learning model [1] has defined the matrix and can improve and optimize, and it

also needs the attention layer to save the information. Our work is based on SLDeep that have

used only LSTM as the learning model, but our novel model combines LSTM and GRU with

the attention mechanism. The technology mentioned above used the measurement of semantic

and syntactic information without source code, and the model was suitable for internal or

cross-project defect prediction but is used to collect semantic and syntactic information in our

proposed AST-based model. Besides, we choose attention mechanisms for crucial features to

save information.

The above SDP cannot accurately predict failures in program granular components (such

as file level, class level or function level). To solve this problem, we propose a novel framework

based on statement-level granularity for high-precision defect prediction DP-AGL.

Methodology of DP-AGL

To develop an effective SDP structure, we must be inclined to suggest calculations at each sen-

tence level. The whole framework shows the high-level architecture of DP-AGL in Fig 1. The

process is divided into eight stages. For the purpose of defining the process of architecture, we

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 5 / 19

https://doi.org/10.1371/journal.pone.0247444

must always outline the relevant metrics of the code to approximate each slanted defect state-

ment. We tend to give away the files of the nodes presented by parsing the source code in Sec-

tion 3.1. Then, we marked each code statement in section 3.2. We tend to use coaching

knowledge to create regional units that are different from the shared knowledge created in the

literature. Therefore, we must always use appropriate learning techniques. We tend to suggest

a combination of Bi-GRU between Bi-LSTM and LSTM. The characteristics of this technical

area unit are carefully applied in Section 3.3. To obtain critical features, we used the attention

mechanism in Section 3.4. The new method of our SDP method, especially DP-AGL, is

designed by learning sentence slanted sentences through collective actions measured by nodes.

We tend to define the subsequent DP-AGL in Section 3.4.

Parsing source code into nodes

AST (Abstract Syntax Tree) is a suitable picture that reflects the structure and semantic code

information. We use Clang 5.0.1 https://clang.llvm.org/index.html tools to develop AST theme

programs. Then, we tend to use AST to encrypt the metrics of each subject program. To run

our random forest and DP-AGL, we tend to use keras, Tensorflow and sci-kit learning. We are

using YACC and LEX tools, tokenization of each statement.

We are familiar with the metric level of 32 node statement to capture complexity. We have

defined 22 internal linear metrics and ten external linear metrics for the nodes shown in the

Table 1. External linearity measures can capture the features of external discourse that will

affect the quality of statements. The internal linear metric estimates the quality of the sentence

Fig 1. The high-level overview of the DP-AGL architecture.

https://doi.org/10.1371/journal.pone.0247444.g001

Table 1. The selected metric nodes of ASTs.

Internal Nodes External Nodes

Literal String Pointer count Function

Integer Literal User-defined function count Recursive Function

Literal count Function call count Blocks Count

Variable count Binary operator Recursive Blocks Count

IF Statement Unary operator For Block

FOR Statement Compound assignment count Do Block

WHILE Statement Operator count While Block

DO Statement Array usage IF Block

SWITCH statement SWITCH Block

Condition and loop count Condition Count

Variable Declaration

Function Declaration Count

Variable Declaration statement

Declaration Count

https://doi.org/10.1371/journal.pone.0247444.t001

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 6 / 19

https://clang.llvm.org/index.html
https://doi.org/10.1371/journal.pone.0247444.g001
https://doi.org/10.1371/journal.pone.0247444.t001
https://doi.org/10.1371/journal.pone.0247444

based on the current attributes of the sentence itself. Note that we occupy every row due to the

unit of calculation. As an example of the degree of relevance, in the operation of extremely

algorithms, the incidence of recursive functions in a statement is an external linear measure.

The difference is that the number of binary operators used in the statement is related to the

occurrence of internal linear metrics. To obtain effective metrics, we tend to use the insights in

the literature to form coarse-grained indicators. Then, we adjust them to obtain fine-grained

relevant metrics.

Embedding tokens for statement metrics

The index column is divided into two categories. The main classes are dedicated to the 32 met-

rics introduced in Section 3.1 above, which are installed on each program. The second category

of a given column is dedicated to each token used in each row. This class is essential because it

provides us with a way to capture our structural code. Category 2 can even break any relation-

ship that leads to the introduction of measurement code utilization in Category 1.

The token is the sequence of many characters containing a vocabulary unit in the source

code [1]. Each token is finally stored as a pair (t and v), where the type and value of the token

correspond. We use a dictionary to identify tokens of IDENTIFIER type. The dictionary is not

the only standard in the entire program but not in all programs. These numbers are private

based on the order in which they are accessed, and are used as tokenized values for identifiers.

We compute to increase the number of tokens across all lines of programs as max(nTi,j). that’s

why we show an Eq (1)

The total number of columns in metrics ¼ 32þmaxðTi;jÞ ð1Þ

T: total number of tokens for the jth row of given program pi, where i is between 1 and p or

equal to 1 or p and j is between 1 and rj or equal to 1 or rj. p is the number of given programs;

rj is the number of rows of program pi.
The tokens in each statement are then padded with the metrics values. For the rows whose

tokens are less than the tokens of max(t), we add enough pairs of (0,0) for solving the imbal-

ance problem. Table 2 shows the overall structure of columns of metrics and tokens. The last

column shows whether defective or clean.

The general metric and the token information are considered to differentiate the same

sequences of statements of code. For example, consider an order of statements as a = 0; c = 2/a;

and the second-order of statements as a = 1; c = 2/a; in which they vary only in an integer lit-

eral at the very 1st statement. The metric group together with the other extracted tokens will

differentiate these two arrangements.

Bi-LSTM and Gated Recurrent Unit (GRU)

Conventional RNN splits order data in vectors with static length. Each element in the vector

symbolizes a particular instant. The result o(t) is not just have influenced for a particular

instant t by the up-to-date given x(t) as well as depends over conducted the collection of

Table 2. The matrix form for each program constructed.

Rows/Columns Metric1 . . . Metric32 Token1 . . . Tokenmax Class

line1 m1,1 . . . m1,32 (t1, v1)1 . . . (tmax, vmax)1 clean/faulty

. .

https://doi.org/10.1371/journal.pone.0247444.t002

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 7 / 19

https://doi.org/10.1371/journal.pone.0247444.t002
https://doi.org/10.1371/journal.pone.0247444

information from the instant t-1 (i.e., h(t-1)), that can be expressed by Eqs (2) and (3):

hðtÞ ¼ f ðXðtÞ � U þ hðt � 1Þ �W þ bÞ ð2Þ

oðtÞ ¼ gðhðtÞ � V þ cÞ ð3Þ

Among them, U, W, V, b and c represent the weight and deviation of the network, and the

activation functions are f and g. The standard recurrent neural network can only remember

short-term sequence information, but cannot transmit long-term sequence information. The

long and short-term storage unit is mainly composed of associated input gates, associated out-

put gates, and forgetting gates. To prevent the components of the network from disappearing,

passing past data (filtered by the forgotten gate), etc. LSTM feeds it and gets current informa-

tion from the input gate to the output gate. The detail processing of our DP-AGL learning

model algorithm is depicted in the Algorithm 1

Algorithm 1: DP-AGL model learning algorithm
Input: D: Dataset;
C: columns containing the code info;
A: Archive of actual code;
l: List codes files of folder;
Source File F = {f1, f2, f3, . . ., fn};
S: Scanner for CPP programs;
Lit: Defining literals;
Tok: Defining tokens;
Tok2N: Tokens to integer;
N2Tok: Integers to token;
Node of representation NR = {n1, n2, n3, . . ., ni};
WL: Weight for loss, importance to binary;
Output: Final accuracy model M
1 Initialize a list of Matrix, a dictionary tok2N and N2Tok;
2 Initialize learning rate lr = 5e-4;
3 Initialize Results for train and test = [];
4 Initialize Verbose = 0;
5 Initialize k = 10;
6 Initialize size: number of codes in each fold = math.ceil(len(l)/k;
7 Initialize units = 250;
8 for i = 1 ! k do
9 start = i � size;
10 end = min(len(l), (i + 1) � size);
11 samples from the entire dataset D as training samples
data_train = l[:start] + l[end:];
12 samples from the entire dataset D as testing samples data_test = l
[start: end];
13 if length of data_train and data_test <= 0 then
14 continue;
15 end
16 for j = 1 ! units do
17 Predict = model.predict(d_test);
18 Preparing confusion matrix for different measurement for
accuracy;
19 end
20 end
21 return the classification of Train and Test result accuracy;

Moreover, to obtain a vast dependence on the bidirectional instants included in the time t.

Bi-directional long and short-term memory (Bi-LSTM) can achieve this durability.

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 8 / 19

https://doi.org/10.1371/journal.pone.0247444

The extension of the GRU model in the given figure is displayed through multiple unified

hidden layers. The module structure of GRU is repetitive, which is more straightforward than

long and short-term memory because each recurrent neural network feature of the module is

the same. It has only two doors, the updated door and the reset door, namely zt and rt in Fig 2.

The update gate is used to supervise the extent to which the knowledge of the previously hid-

den state is extended to the current state. The greater the value of the update gate, the more

knowledge of the previous state is introduced. Therefore, if the reset gate is used to adjust the

degree of knowledge transfer of the past state, the smaller the value of the reset gate, the more

it will be transferred. Therefore, the capture of short-term dependence is usually in the cyclic

activation of the reset gate, while the long-term dependence is in the activation of the update

gate.

That’s why we used Bi-GRU and LSTM with a fully connected layer with an attention

mechanism. In our research, the Gated Recurrent Unit (Fig 2) is given by equation Eqs (4) to

(8), where σ is that the logistic sigmoid function. x and ht hare the input and therefore the

prior hidden state. Wr, Wz, and Wh are weight matrices that are learned. (The [] indicates that

the two vectors are connected, and � denotes the multiplication of the matrix elements.)

rðtÞ ¼ sðWðrÞ:½hðt � 1Þ; xðtÞ�Þ ð4Þ

zðtÞ ¼ sðWðzÞ:½hðt � 1Þ; xðtÞ�Þ ð5Þ

~hðtÞ ¼ tanhðW~h:½r1 � hðt � 1Þ; xðtÞ�Þ ð6Þ

hðtÞ ¼ ð1 � zðtÞÞ � hðt � 1Þ þ zðtÞ � ~hðtÞ ð7Þ

yðtÞ ¼ sðWðoÞ:hðtÞÞ ð8Þ

Fig 2. Gated recurrent unit [12].

https://doi.org/10.1371/journal.pone.0247444.g002

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 9 / 19

https://doi.org/10.1371/journal.pone.0247444.g002
https://doi.org/10.1371/journal.pone.0247444

Attention mechanism

Every time we get the hidden features of the nodes in the sequence from the results of the Bi-

LSTM network. These nodes that help explain the meaning of the sequence are not equivalent.

To enhance the effect of crucial nodes, after the Bi-LSTM layer, we embed the attention layer.

The critical nodes of the meaning of the sequence are clustered together, making the sequence

vector necessary for applying the eye contact phenomenon. Its entire process is shown in Fig

3, and we describe it as an Eq (9)

uit ¼ tanhðWnhit þ bnÞ;

ait ¼
expðuT

itunÞP
texpðuT

itunÞ
;

si ¼
X

t

aithit

ð9Þ

That is to say, first mentioned in the Eq (9), we hit the node annotation in the multi-layer per-

ception (MLP) to obtain uit. Then, we found the node-level context vector of the hidden sym-

bol of the node un, which can be checked as the top-level description of the request for the

Fig 3. The process of attention mechanism.

https://doi.org/10.1371/journal.pone.0247444.g003

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 10 / 19

https://doi.org/10.1371/journal.pone.0247444.g003
https://doi.org/10.1371/journal.pone.0247444

appearance of the critical node. Then, we check the importance of the node, because the scalar

product of uit and un is similar, and the importance of the stable ait weight is obtained through

the SoftMax function. Finally, as a weighted sum of all nodes, we calculate a sequence of vec-

tors i with related weights. The node-level input of the context vector is randomly initialized

and may be updated during the training process.

Empirical study and analysis

In this segment, we are designing the experiments to authenticate the efficiency of the

DP-AGL. Three research questions (RQs) need to be answered as follows:

1. RQ1: How DP-AGL method perform with different parameters setting?

2. RQ2: Does DP-AGL perform better than basic deep learning techniques, including RF and

SLDeep?

3. RQ3: Does the DP-AGL method give better performance of fault prediction as compared to

state-of-art methods based on static code metrics?

To give answers to the above research questions, we used the DP-AGL architecture shown

in Fig 4. In the experiment on the answer to RQ1, we chose TensorFlow and Keras to develop

an attention-based two-way-GRU-LSTM network. We also choose dask-jobqueue, dask and

dask-ml for machine learning execution on the backend. The implementation of another

benchmarking method mainly depends on Python 3.6 and scikit-learn. The experimental

operation is set to 2.50 GHz @ 2.71 GHz Intel1Core™i5-7200U CPU, RAM 8.00 GB and 64-bit

operating system, based on x64 processor.

The critical components of DP-AGL for learning models are Bi-GRU, Bi-LSTM and atten-

tion layer. Our network model contains four layers. The first layer is Bi-LSTM, the second

layer is Bi-GRU, the third layer is LSTM, each node has 150 nodes, and the fourth layer is the

attention layer. Fig 4 shows the high-level architecture of our proposed network. The first two

layers of loops represent feedback. The first layer of LSTM accepts pre-processed data, and

vice versa provides a version of the data in the reverse process. The first row of the measure-

ment is read from the first layer to the last row, and then the first row of the measurement is

read backwards.

• 150 nodes of Bi-LSTM, with using dropout 0.1 by the recurrent node-set

• 150 nodes of bidirectional GRU, with activation ReLU

• 150 nodes of simple LSTM, with a set of 0.2 dropout

To answer RQ2 to verify the results of Bi-GRU and LSTM on DP-AGL, we supervised dif-

ferent experimental algorithms using different classifiers. The reason why we choose Random

Forest (RF) and SLDeep is that the tree-based decision model gives better results in the frame-

work of cross-item [21]. DP-AGL is also a CPDP framework and an application of transfer

learning because Benchmark covers various programs and variant sets written by thousands of

programmers.

RF is a standard method that includes a collection of classifiers. The purpose of the combi-

nation is to assemble the accuracy of the entire model. Each classifier in the random forest

method is a decision tree. However, RF proposes a better determination method than a single

decision tree.

For the development of predictive models, we tend to run a modified neural network by

using the node matrix of the entire program as input. Every program is using indicators. We

tend to use the model for our survey information, which involves the use of tenfold cross-

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 11 / 19

https://doi.org/10.1371/journal.pone.0247444

validation in a week. Our persistent execution model is due to two motivations. First, consider

a lot of training knowledge. Second, for model analysis, we used ten-fold cross-validation. Nev-

ertheless, persistent execution can provide two benefits. First, the subsequent model is used to

indicate global attributes because it has learned knowledge from many projects and may be

used in many alternative projects.

Fig 4. The high-level topology of DP-AGL learning model.

https://doi.org/10.1371/journal.pone.0247444.g004

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 12 / 19

https://doi.org/10.1371/journal.pone.0247444.g004
https://doi.org/10.1371/journal.pone.0247444

Experimental datasets

To answer RQ3, we use Code4Bench for C/C++ code [16], which contains code written by dif-

ferent developers for different problems. Even for every pair of questions and users, there are

many versions and defective and clean versions. In the extracted data set, 119,989 subject pro-

grams contain 2,356,458 lines of code and 2,920,64 defective lines. For each subject program,

the defect data contained in the benchmark. More precisely, for C/C++, the Code4Bench pro-

gram contains some tables in which the defective version and the correct version are specified.

Performance evaluation and the results

To evaluate the performance of DP-AGL, we tend to use the software defect prediction litera-

ture [20] to calculate four effectiveness metrics, and the area unit is the most important of the

same metric. Evaluate area unit accuracy, precision, recall and F-measurement area unit

respectively to calculate utilization Eqs (10) to (13). True (TP) represents the number of posi-

tive tuples, which contains code lines and code lines that are correctly marked as positive by

the classifier in the equation. The true negative number (TN) represents the number of nega-

tive tuples that are correctly marked as negative by the classifier. False positives (FP) represent

the number of negative tuples containing incorrectly labelled positives. Finally, false negatives

(FN) represent the number of positive tuples that contain negatives by correct labelling. In our

setup, the defective prone line is positive.

Accuracy ¼
TPþ TN

TP þ TN þ FP þ FN
ð10Þ

Precision ¼
TP

TP þ FP
ð11Þ

Recall ¼
TP

TP þ FN
ð12Þ

F � measure ¼ 2�
precision� recall
precisionþ recall

ð13Þ

The experimental results of DP-AGL are shown in Tables 3 and 4. Table 3 shows the well-

trained performance evaluation model, and Table 4 shows the tested performance evaluation

model. The corresponding rows of Tables 3 and 4 are shown respectively. Therefore, it means

equivalent model training and testing within the same iteration and the same multiple. During

ten-fold cross-validation, each slice of the two tables is linked to a specific fold. We have

reported the results of applying DP-AGL in the table and applying the Random Forest model

and SlDeep model simultaneously according to the subject program. In our experiment, we

measured the accuracy of the neighbourhood. For a defective free sentence that is classified as

error-prone by the model, if the defective sentence is at most n lines before or after the sen-

tence, we predict it to be true.

In the training and testing phases of Tables 3 and 4 and Figs 5 and 6 with neighbourhoods

4, the average performance indicators have respectively determined DP-AGL, SlDeep and RF.

The Tables 5 and 6 shows the average results of Training and Testing with neighbourhoods 2.

The chart mainly shows the performance results of DP-AGL, SLDeep and RF. Likewise, the

top and bottom charts are similar to the training and testing phases. In the two graphs, the

three legends of Precision, Accuracy, and F-measurement are represented by Havelock blue,

orange, and dark grey bars, respectively, and the accuracy is displayed in four neighbourhoods.

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 13 / 19

https://doi.org/10.1371/journal.pone.0247444

The graph shows the ten times fold average values. At the peak point legends in graph

expressed the DP-AGL model position as compared to others. They are also comparing the

each and everything (measurements, models). Both graphs have taken the the some random

fold from table of results. The results show how to fit the model on the training data in Table 3.

The results show how to fit the model to the test data in Table 4.

Discussion

We are exploring the weaknesses and strengths of the most advanced models to analyze the

DP-AGL learning model. To ensure the validity of the results, we will introduce these aspects

in this section.

LSTM is popular because it solves the problem of vanishing gradient. However, when data

is moved from one unit to another, problems can arise during evaluation. As the additional

Table 3. Experimental results on training with accuracy neighborhood 4.

Fold Model Recall Precision Accuracy F-measure

1 DP-AGL 0.983 0.601 0.751 0.753

SLDeep 0.987 0.581 0.716 0.731

RF 0.20 0.578 0.630 0.30

2 DP-AGL 0.978 0.619 0.753 0.732

SLDeep 0.987 0.578 0.712 0.729

RF 0.195 0.582 0.629 0.292

3 DP-AGL 0.980 0.629 0.763 0.742

SLDeep 0.983 0.590 0.726 0.737

RF 0.179 0.576 0.627 0.273

4 DP-AGL 0.990 0.589 0.733 0.744

SLDeep 0.991 0.570 0.704 0.724

RF 0.180 0.578 0.615 0.275

5 DP-AGL 0.992 0.599 0.743 0.738

SLDeep 0.986 0.583 0.718 0.733

RF 0.144 0.576 0.623 0.231

6 DP-AGL 0.984 0.639 0.733 0.740

SLDeep 0.983 0.590 0.725 0.737

RF 0.174 0.575 0.624 0.267

7 DP-AGL 0.988 0.579 0.763 0.739

SLDeep 0.989 0.573 0.707 0.725

RF 0.205 0.574 0.628 0.302

8 DP-AGL 0.995 0.581 0.753 0.760

SLDeep 0.990 0.573 0.707 0.726

RF 0.194 0.574 0.627 0.290

9 DP-AGL 0.985 0.610 0.741 0.763

SLDeep 0.988 0.579 0.714 0.730

RF 0.201 0.574 0.627 0.297

10 DP-AGL 0.981 0.615 0.753 0.756

SLDeep 0.984 0.585 0.719 0.734

RF 0.13 0.578 0.620 0.216

average DP-AGL 0.986 0.606 0.749 0.744

SLDeep 0.987 0.580 0.715 0.731

RF 0.18 0.577 0.625 0.275

https://doi.org/10.1371/journal.pone.0247444.t003

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 14 / 19

https://doi.org/10.1371/journal.pone.0247444.t003
https://doi.org/10.1371/journal.pone.0247444

function of the door is forgotten, the unit becomes quite complicated. During the LSTM train-

ing model, more time is required and a lot of resources are consumed. Since there is a linear

layer in each unit, high storage bandwidth is required, and the system usually cannot provide

it with high storage bandwidth. Because of dependencies, simple neural networks need to be

processed in parallel, so they become better and may provide you with more data. The infor-

mation in the training model may be lost. Neural networks will slow down over time and expe-

rience relative degradation and will not immediately corrode network problems.

The SLDeep model uses a combination of LSTM and 6 neural networks, which increases

the complexity of the learning model. In order to solve this problem, we introduced the

DP-AGL method that combines Bi-GRU and attention mechanism. The GRU algorithm also

uses a gating mechanism to control the memory process. Compared with LSTM, its calculation

speed is significantly improved and the complexity is lower. GRU has two gates (reset and

update doors). The attention mechanism is to assign high attention weights to the source

Table 4. Experimental results on testing with accuracy neighborhood 4.

Fold Model Recall Precision Accuracy F-measure

1 DP-AGL 0.978 0.579 0.703 0.712

SLDeep 0.989 0.554 0.675 0.708

RF 0.187 0.550 0.612 0.279

2 DP-AGL 0.979 0.581 0.711 0.715

SLDeep 0.978 0.553 0.679 0.707

RF 0.185 0.551 0.618 0.277

3 DP-AGL 0.970 0.585 0.739 0.732

SLDeep 0.971 0.579 0.703 0.725

RF 0.180 0.578 0.615 0.275

4 DP-AGL 0.971 0.583 0.716 0.713

SLDeep 0.985 0.554 0.681 0.709

RF 0.179 0.580 0.627 0.274

5 DP-AGL 0.974 0.571 0.743 0.722

SLDeep 0.975 0.570 0.699 0.719

RF 0.142 0.576 0.620 0.229

6 DP-AGL 0.973 0.574 0.763 0.736

SLDeep 0.972 0.582 0.722 0.728

RF 0.176 0.581 0.636 0.271

7 DP-AGL 0.980 0.578 0.773 0.742

SLDeep 0.981 0.588 0.721 0.735

RF 0.220 0.608 0.637 0.323

8 DP-AGL 0.983 0.583 0.752 0.732

SLDeep 0.985 0.573 0.707 0.725

RF 0.215 0.595 0.635 0.316

9 DP-AGL 0.988 0.584 0.743 0.737

SLDeep 0.979 0.570 0.706 0.720

RF 0.209 0.580 0.635 0.307

10 DP-AGL 0.983 0.598 0.754 0.736

SLDeep 0.977 0.576 0.719 0.725

RF 0.12 0.585 0.635 0.202

average DP-AGL 0.978 0.582 0.739 0.728

SLDeep 0.978 0.570 0.701 0.720

RF 0.182 0.579 0.627 0.275

https://doi.org/10.1371/journal.pone.0247444.t004

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 15 / 19

https://doi.org/10.1371/journal.pone.0247444.t004
https://doi.org/10.1371/journal.pone.0247444

Fig 5. Training result.

https://doi.org/10.1371/journal.pone.0247444.g005

Fig 6. Testing result.

https://doi.org/10.1371/journal.pone.0247444.g006

Table 5. Experimental results on training with accuracy neighborhood 2.

Fold Model Recall Precision Accuracy F-measure

average DP-AGL 0.981 0.511 0.659 0.624

SLDeep 0.985 0.427 0.599 0.596

RF 0 0 0.699 0

https://doi.org/10.1371/journal.pone.0247444.t005

Table 6. Experimental results on testing with accuracy neighborhood 2.

Fold Model Recall Precision Accuracy F-measure

average DP-AGL 0.971 0.514 0.692 0.663

SLDeep 0.966 0.414 0.579 0.580

RF 0 0 0.699 0

https://doi.org/10.1371/journal.pone.0247444.t006

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 16 / 19

https://doi.org/10.1371/journal.pone.0247444.g005
https://doi.org/10.1371/journal.pone.0247444.g006
https://doi.org/10.1371/journal.pone.0247444.t005
https://doi.org/10.1371/journal.pone.0247444.t006
https://doi.org/10.1371/journal.pone.0247444

sequences of interest and save them in the missing data after one-to-one attention is paid to

them. The source code is available at https://github.com/shahbazshahbaz106/DP-AGL.

Conclusions

The main purpose of this article is to ensure the safety of the software and reduce the burden

on developers by accurately locating fault statements to provide high-quality software with

fewer resources and time. In this article, to improve the reliability of the software, we propose

a deep learning-based method called DP-AGL (defect prediction through attention-based

GRU-LSTM) to support code review and software testing to predict the possible defective code

in the software. We defined 32 nodes for the metric and used the learning models Bi-GRU and

Bi-LSTM. The attention mechanism is used to extract key features from the output of LSTM.

We evaluated DP-AGL on 100,000 Code4Banch C/C++ programs. The average performance

of our well-trained DP-AGL model in terms of recall, precision, accuracy and F1 metrics are

0.98, 0.617, 0.75, and 0.757, respectively. DP-AGL is a novel method for sentence-level granu-

larity, which is more effective than SLDeep and Random Forest.

In the future, this research work may be expanded in several ways to improve performance.

We can predict defect predictions by using within and between projects. We can design more

indicators to extract more features. We can also use these indicators in different languages

instead of C/C++ programs. We can choose DP-AGL for Android or commercial or com-

pany-based software for evaluation. In the future, this work can be expanded in many ways.

We can design more indicators to extract more features. We can also use these indicators in

different languages instead of C/C++ programs. We can choose DP-AGL for Android or com-

mercial or company-based software for evaluation.

Author Contributions

Conceptualization: Shengbing Ren, Mubashar Mustafa, Chaudry Naeem Siddique.

Data curation: Hafiz Shahbaz Munir.

Investigation: Mubashar Mustafa, Chaudry Naeem Siddique.

Methodology: Hafiz Shahbaz Munir, Shengbing Ren.

Project administration: Shengbing Ren.

Software: Hafiz Shahbaz Munir.

Supervision: Shengbing Ren.

Validation: Hafiz Shahbaz Munir, Shengbing Ren, Mubashar Mustafa, Chaudry Naeem Siddi-

que, Shazib Qayyum.

Writing – original draft: Hafiz Shahbaz Munir.

Writing – review & editing: Shengbing Ren, Mubashar Mustafa, Chaudry Naeem Siddique,

Shazib Qayyum.

References
1. Majd A., Vahidi-Asl M., Khalilian A., Poorsarvi-Tehrani P., and Haghighi H., “SLDeep: Statement-level

software defect prediction using deep-learning model on static code features,” Expert Syst. Appl., vol.

147, p. 113156, 2020. https://doi.org/10.1016/j.eswa.2019.113156

2. H. K. Dam et al., “A deep tree-based model for software defect prediction,” 2018.

3. Lin G.et al., “Cross-Project Transfer Representation Learning for Vulnerable Function Discovery,” IEEE

Trans. Ind. Informatics, vol. 14, no. 7, pp. 3289–3297, 2018. https://doi.org/10.1109/TII.2018.2821768

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 17 / 19

https://github.com/shahbazshahbaz106/DP-AGL
https://doi.org/10.1016/j.eswa.2019.113156
https://doi.org/10.1109/TII.2018.2821768
https://doi.org/10.1371/journal.pone.0247444

4. A. E. Hassan, “Predicting faults using the complexity of code changes,” in 2009 IEEE 31st International

Conference on Software Engineering, 2009, pp. 78–88.

5. RadjenovićD., Heričko M., Torkar R., and Živkovič A., “Software fault prediction metrics: A systematic

literature review,” Inf. Softw. Technol., vol. 55, no. 8, pp. 1397–1418, 2013. https://doi.org/10.1016/j.

infsof.2013.02.009

6. Lee T., Nam J., Han D., Kim S., and Peter H. In, “Developer Micro Interaction Metrics for Software

Defect Prediction,” IEEE Trans. Softw. Eng., vol. 42, no. 11, pp. 1015–1035, Nov. 2016. https://doi.org/

10.1109/TSE.2016.2550458

7. Palomba F., Zanoni M., Fontana F. A., De Lucia A., and Oliveto R., “Toward a Smell-Aware Bug Predic-

tion Model,” IEEE Trans. Softw. Eng., vol. 45, no. 2, pp. 194–218, Feb. 2019. https://doi.org/10.1109/

TSE.2017.2770122

8. T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-project defect prediction,”

p. 91, 2009.

9. F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulnerability extrapolation using abstract syn-

tax trees,” ACM Int. Conf. Proceeding Ser., pp. 359–368, 2012.

10. Fan G., Diao X., Yu H., Yang K., and Chen L., “Software Defect Prediction via Attention-Based Recur-

rent Neural Network,” Sci. Program., vol. 2019, 2019.

11. Lanza M., Mocci A., and Ponzanelli L., “The Tragedy of Defect Prediction, Prince of Empirical Software

Engineering Research,” IEEE Softw., vol. 33, no. 6, pp. 102–105, Nov. 2016. https://doi.org/10.1109/

MS.2016.156

12. Kamei Y., Fukushima T., McIntosh S., Yamashita K., Ubayashi N., and Hassan A. E., “Studying just-in-

time defect prediction using cross-project models,” Empir. Softw. Eng., vol. 21, no. 5, pp. 2072–2106,

2016. https://doi.org/10.1007/s10664-015-9400-x

13. K. Cho et al., “Learning phrase representations using RNN encoder-decoder for statistical machine

translation,” EMNLP 2014—2014 Conf. Empir. Methods Nat. Lang. Process. Proc. Conf., pp. 1724–

1734, 2014.

14. R. Dey and F. M. Salem, “Gate-variants of Gated Recurrent Unit (GRU) neural networks,” in 2017 IEEE

60th International Midwest Symposium on Circuits and Systems (MWSCAS), 2017, pp. 1597–1600.

15. Turhan B., Menzies T., Bener A. B., and Di Stefano J., “On the relative value of cross-company and

within-company data for defect prediction,” Empir. Softw. Eng., vol. 14, no. 5, pp. 540–578, 2009.

https://doi.org/10.1007/s10664-008-9103-7

16. Majd A., Vahidi-Asl M., Khalilian A., Baraani-Dastjerdi A., and Zamani B., “Code4Bench: A multidimen-

sional benchmark of Codeforces data for different program analysis techniques,” J. Comput. Lang., vol.

53, pp. 38–52, 2019. https://doi.org/10.1016/j.cola.2019.03.006

17. Minku L. L., Mendes E., and Turhan B., “Data mining for software engineering and humans in the loop,”

Prog. Artif. Intell., vol. 5, no. 4, pp. 307–314, 2016. https://doi.org/10.1007/s13748-016-0092-2

18. S. Wang, T. Liu, and L. Tan, “Automatically Learning Semantic Features for Defect Prediction,” in 2016

IEEE/ACM 38th International Conference on Software Engineering (ICSE), 2016, pp. 297–308.

19. Catal C., “Software fault prediction: A literature review and current trends,” Expert Syst. Appl., vol. 38,

no. 4, pp. 4626–4636, 2011. https://doi.org/10.1016/j.eswa.2010.10.024

20. Malhotra R., “A systematic review of machine learning techniques for software fault prediction,” Appl.

Soft Comput., vol. 27, pp. 504–518, 2015. https://doi.org/10.1016/j.asoc.2014.11.023

21. Hosseini S., Turhan B., and Gunarathna D., “A Systematic Literature Review and Meta-Analysis on

Cross Project Defect Prediction,” IEEE Trans. Softw. Eng., vol. 45, no. 2, pp. 111–147, Feb. 2019.

https://doi.org/10.1109/TSE.2017.2770124

22. N. Nagappan and T. Ball, “Using Software Dependencies and Churn Metrics to Predict Field Failures:

An Empirical Case Study,” in First International Symposium on Empirical Software Engineering and

Measurement (ESEM 2007), 2007, pp. 364–373.

23. R. Moser, W. Pedrycz, and G. Succi, “A Comparative analysis of the efficiency of change metrics and

static code attributes for defect prediction,” Proc.—Int. Conf. Softw. Eng., pp. 181–190, 2008.

24. Arar Ö. F. and Ayan K., “A feature dependent Naive Bayes approach and its application to the software

defect prediction problem,” Appl. Soft Comput., vol. 59, pp. 197–209, 2017. https://doi.org/10.1016/j.

asoc.2017.05.043

25. Mousavi R., Eftekhari M., and Rahdari F., “Omni-Ensemble Learning (OEL): Utilizing Over-Bagging,

Static and Dynamic Ensemble Selection Approaches for Software Defect Prediction,” Int. J. Artif. Intell.

Tools, vol. 27, no. 06, p. 1850024, 2018. https://doi.org/10.1142/S0218213018500240

26. X. Y. Jing, S. Ying, Z. W. Zhang, S. S. Wu, and J. Liu, “Dictionary learning based software defect predic-

tion,” Proc.—Int. Conf. Softw. Eng., no. 1, pp. 414–423, 2014.

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 18 / 19

https://doi.org/10.1016/j.infsof.2013.02.009
https://doi.org/10.1016/j.infsof.2013.02.009
https://doi.org/10.1109/TSE.2016.2550458
https://doi.org/10.1109/TSE.2016.2550458
https://doi.org/10.1109/TSE.2017.2770122
https://doi.org/10.1109/TSE.2017.2770122
https://doi.org/10.1109/MS.2016.156
https://doi.org/10.1109/MS.2016.156
https://doi.org/10.1007/s10664-015-9400-x
https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.1016/j.cola.2019.03.006
https://doi.org/10.1007/s13748-016-0092-2
https://doi.org/10.1016/j.eswa.2010.10.024
https://doi.org/10.1016/j.asoc.2014.11.023
https://doi.org/10.1109/TSE.2017.2770124
https://doi.org/10.1016/j.asoc.2017.05.043
https://doi.org/10.1016/j.asoc.2017.05.043
https://doi.org/10.1142/S0218213018500240
https://doi.org/10.1371/journal.pone.0247444

27. T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, and J. McMullan, “Detection of software modules

with high debug code churn in a very large legacy system,” in Proceedings of ISSRE’96: 7th Interna-

tional Symposium on Software Reliability Engineering, 1996, pp. 364–371.

28. J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in 2013 35th International Conference on Soft-

ware Engineering (ICSE), 2013, pp. 382–391.

29. Q. Yu, S. Jiang, and J. Qian, “Which Is More Important for Cross-Project Defect Prediction: Instance or

Feature?,” in 2016 International Conference on Software Analysis, Testing and Evolution (SATE),

2016, pp. 90–95.

30. Canfora G., De Lucia A, Di Penta M., Oliveto R., Panichella A., and Panichella S., “Defect prediction as

a multiobjective optimization problem,” Softw. Testing, Verif. Reliab., vol. 25, no. 4, pp. 426–459, 2015.

https://doi.org/10.1002/stvr.1570

31. Ma Y., Luo G., Zeng X., and Chen A., “Transfer learning for cross-company software defect prediction,”

Inf. Softw. Technol., vol. 54, no. 3, pp. 248–256, 2012. https://doi.org/10.1016/j.infsof.2011.09.007

32. Peng L., Yang B., Chen Y., and Abraham A., “Data gravitation based classification,” Inf. Sci. (Ny)., vol.

179, no. 6, pp. 809–819, 2009. https://doi.org/10.1016/j.ins.2008.11.007

33. Choudhary G. R., Kumar S., Kumar K., Mishra A., and Catal C., “Empirical analysis of change metrics

for software fault prediction,” Comput. Electr. Eng., vol. 67, pp. 15–24, 2018. https://doi.org/10.1016/j.

compeleceng.2018.02.043

34. Shippey T., Bowes D., and Hall T., “Automatically identifying code features for software defect predic-

tion: Using AST N-grams,” Inf. Softw. Technol., vol. 106, pp. 142–160, 2019. https://doi.org/10.1016/j.

infsof.2018.10.001

35. Chen L., Fang B., Shang Z., and Tang Y., “Negative samples reduction in cross-company software

defects prediction,” Inf. Softw. Technol., vol. 62, pp. 67–77, 2015. https://doi.org/10.1016/j.infsof.2015.

01.014

36. Y. Yao and G. Doretto, “Boosting for transfer learning with multiple sources,” in 2010 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2010, pp. 1855–1862.

37. Jiang S., “Multiple-components weights model for cross-project software defect prediction,” IET Softw.,

vol. 12, no. 4, pp. 345–355(10), Aug. 2018. https://doi.org/10.1049/iet-sen.2017.0111

38. Cooper K., Harvey T. J., and Waterman T., “Building a control-flow graph from scheduled assembly

code,” Dept. Comput. Sci. Rice Univ., pp. 1–10, 2002.

39. A. Viet Phan, M. Le Nguyen, and L. Thu Bui, “Convolutional Neural Networks over Control Flow Graphs

for Software Defect Prediction,” arXiv e-prints, p. arXiv:1802.04986, Feb. 2018.

40. Qiao L. and Wang Y., “Effort-aware and just-in-time defect prediction with neural network,” PLoS One,

vol. 14, no. 2, pp. 1–19, 2019. https://doi.org/10.1371/journal.pone.0211359 PMID: 30707738

41. Pan C., Lu M., Xu B., and Gao H., “An improved CNN model for within-project software defect predic-

tion,” Appl. Sci., vol. 9, no. 10, pp. 1–28, 2019. https://doi.org/10.3390/app9102138

42. J. Li, P. He, J. Zhu, and M. R. Lyu, “Software Defect Prediction via Convolutional Neural Network,” in

2017 IEEE International Conference on Software Quality, Reliability and Security (QRS),

2017, pp. 318–328.

43. Lin G.et al., “Cross-Project Transfer Representation Learning for Vulnerable Function Discovery,” IEEE

Trans. Ind. Informatics, vol. 14, no. 7, pp. 3289–3297, Jul. 2018. https://doi.org/10.1109/TII.2018.

2821768

44. K. Greff, R. K. Srivastava, J. Koutńik, B. R. Steunebrink, and J. Schmidhuber, “LSTM: A Search Space

Odyssey,” arXiv e-prints, p. arXiv:1503.04069, Mar. 2015.

45. S. Hochreiter and P. Frasconi, “Gradient Flow in Recurrent Neural Nets:The Difficulty of Learning Long-

Term Dependencies. A Field Guide to Dynamical Recurrent Neural Network,” A F. Guid. to Dyn. Recurr.

Neural Netw., pp. 401–403, 2001.

PLOS ONE Attention based GRU-LSTM for software defect prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0247444 March 4, 2021 19 / 19

https://doi.org/10.1002/stvr.1570
https://doi.org/10.1016/j.infsof.2011.09.007
https://doi.org/10.1016/j.ins.2008.11.007
https://doi.org/10.1016/j.compeleceng.2018.02.043
https://doi.org/10.1016/j.compeleceng.2018.02.043
https://doi.org/10.1016/j.infsof.2018.10.001
https://doi.org/10.1016/j.infsof.2018.10.001
https://doi.org/10.1016/j.infsof.2015.01.014
https://doi.org/10.1016/j.infsof.2015.01.014
https://doi.org/10.1049/iet-sen.2017.0111
https://doi.org/10.1371/journal.pone.0211359
http://www.ncbi.nlm.nih.gov/pubmed/30707738
https://doi.org/10.3390/app9102138
https://doi.org/10.1109/TII.2018.2821768
https://doi.org/10.1109/TII.2018.2821768
https://doi.org/10.1371/journal.pone.0247444

