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A B S T R A C T   

Photoacoustic imaging (PAI) is a promising emerging imaging modality that enables spatially resolved imaging 
of optical tissue properties up to several centimeters deep in tissue, creating the potential for numerous exciting 
clinical applications. However, extraction of relevant tissue parameters from the raw data requires the solving of 
inverse image reconstruction problems, which have proven extremely difficult to solve. The application of deep 
learning methods has recently exploded in popularity, leading to impressive successes in the context of medical 
imaging and also finding first use in the field of PAI. Deep learning methods possess unique advantages that can 
facilitate the clinical translation of PAI, such as extremely fast computation times and the fact that they can be 
adapted to any given problem. In this review, we examine the current state of the art regarding deep learning in 
PAI and identify potential directions of research that will help to reach the goal of clinical applicability.   

1. Introduction 

Photoacoustic imaging (PAI) is a comparatively young and rapidly 
emerging imaging modality that promises real-time, noninvasive, and 
radiation-free measurement of optical tissue properties [1]. In contrast 
to other optical imaging modalities, PAI induces the emergence of 
acoustic signals to enable structural imaging of chromophores – mo
lecular structures that absorb light – up to several centimeters deep into 
the tissue. Typical reported penetration depths range from 1 cm up to 
6 cm [2–4], heavily depending on the imaged tissue. This high depth 
penetration is possible because the acoustic scattering of the arising 
sound waves is orders of magnitude smaller than the optical scattering of 
the incident light in biological tissue. The underlying physical principle 
for signal generation is the PA effect [5]. It is induced by extremely short 
light pulses that cause an initial pressure rise p0 inside the tissue. The 
initial pressure p0 = Γ ⋅ μa ⋅ ϕ is proportional to the optical absorption 
coefficient μa, the local light fluence ϕ, and the temperature-dependent 
Grüneisen parameter Γ. The deposited energy is released in form of 
sound waves that can be measured as time-series pressure data p(t) =A 
(p0, θ) with appropriate acoustic detectors, such as ultrasound trans
ducers. Here, acoustic forward operator A operates on the initial pres
sure distribution p0 taking into consideration the acoustic properties θ 
(such as the speed of sound, density, or the acoustic attenuation) of the 

medium. 
Due to its rapid development, PAI has seen various clinical applica

tion attempts over the last few years. Among these, cancer research is a 
field where PAI shows serious potential [3,6–15]. In this use case, he
moglobin is the enabling endogenous chromophore, due to amplified 
and sustained angiogenesis [16] being one of the hallmarks of cancer 
and due to the cancer cells’ increased metabolism, which potentially 
induces a decrease in local blood oxygenation [17]. Furthermore, 
because inflammatory processes also change the hemodynamic behavior 
of tissue, PAI is also used for imaging of inflamed joints [18–20] or 
staging of patients with Crohn’s disease [21–23]. To further increase the 
potential of PAI, it is also applied in combination with other imaging 
modalities, especially ultrasound imaging [15,24–28]. PAI is further 
used for brain imaging [29–33] or surgical and interventional imaging 
applications, such as needle tracking [34,35]. 

The signal contrast of PAI is caused by distinct wavelength- 
dependent absorption characteristics of the chromophores [36]. But to 
exploit information of μa for answering clinical questions, open research 
questions remain that can be categorized into four main areas. In the 
following, we explain these four major categories and summarize their 
principal ideas. 

Acoustic inverse problem. The most pressing problem concerns the 
reconstruction of an image S from recorded time-series data by 
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estimating the initial pressure distribution p0 from p(t). This problem is 
referred to as the acoustic inverse problem. To this end, an inverse 
function A− 1 for the acoustic operator A needs to be computed in order 
to reconstruct a signal image S =A− 1(p(t)) ≈ p0 = μa ⋅ ϕ ⋅ Γ that is an 
approximation of p0. Typical examples of algorithms to solve this 
problem are the universal back-projection [37], delay-and-sum [38], 
time reversal [39], or iterative reconstruction schemes [40]. While the 
acoustic inverse problem can be well-posed in certain scenarios (for 
example by using specific detection geometries) and thus can have a 
unique solution, several factors lead to considerable difficulties in 
solving it. These include wrong model assumptions [41], limited-view 
[42] and limited-bandwidth detectors [43], or device modeling [44] 
and calibration errors [45]. 

Image post-processing. PAI, in theory, has exceptionally high 
contrast and spatial resolution [46]. Because the acoustic inverse 
problem is ill-posed in certain settings and because of the presence of 
noise, many reconstructed PA images suffer from distinct artifacts. This 
can cause the actual image quality of a PA image to fall short of its 
theoretical potential. To tackle these problems, image post-processing 
algorithms are being developed to mitigate the effects of artifacts and 
noise and thus improve overall image quality. 

Optical inverse problem. Assuming that a sufficiently accurate 
reconstruction of p0 from p(t) has been achieved, the second principle 
problem that arises is the estimation of the underlying optical properties 
(most importantly the absorption coefficient μa). It is an inverse problem 
and is referred to as the optical inverse problem. Furthermore, the 
problem has proven to be exceptionally involved, which can be derived 
by the fact that methods to solve the problem have not been successfully 
applied to in vivo data yet. It belongs to the category of ill-posed inverse 
problems, as it does not necessarily possess a unique solution. Further
more, several other factors make it hard to tackle, including wrong 
model assumptions [41], non-uniqueness and non-linearity of the 
problem [47], spectral coloring [48], and the presence of noise and 
artifacts [49]. Quantification of the absorption coefficient has, for 
example, been attempted with iterative reconstruction approaches [50], 
via fluence estimation [51], or by using machine learning-based ap
proaches [52]. 

Semantic image annotation. Based on the diagnostic power of 
optical absorption it is possible to generate semantic image annotations 
of multispectral PA images and a multitude of methods for it are being 
developed to specifically tackle questions of clinical relevance. To this 
end, algorithms are being developed that are able to classify and 
segment multispectral PA images into different tissue types and that can 
estimate clinically relevant parameters that are indicative of a patient’s 
health status (such as blood oxygenation). Current approaches to create 
such semantic image annotations suffer from various shortcomings, such 
as long computation times or the lack of reproducibility in terms of 
accuracy and precision when being applied to different scenarios. 

Simultaneously to the rapid developments in the field of PAI, deep 
learning algorithms have become the de facto state of the art in many 
areas of research [53] including medical image analysis. A substantial 
variety of medical applications include classical deep learning tasks such 
as disease detection [54], image segmentation [55], and classification 
[56]. Recently, deep learning has also found entrance into the field of 
PAI, as it promises unique advantages to solve the four listed problems, 
thus promoting clinical applicability of the developed methods. One 
further prominent advantage of deep learning is the extremely fast 
inference time, which enables real-time processing of measurement 
data. 

This review paper summarizes the development of deep learning in 
PAI from the emergence of the first PA applications in 2017 until today 
and evaluates progress in the field based on the defined task categories. 
In Section 2, we outline the methods for our structured literature 
research. General findings of the literature review including the topical 
foci, data acquisition techniques, used simulation frameworks as well as 
network architectures are presented in Section 3. The reviewed 

literature is summarized according to the four principal categories in 
Sections 4–7. Finally, the findings are discussed and summarized in 
Section 8. 

2. Methods of literature research 

Above, we described the PAI-specific challenges that deep learning 
can be applied to and thus divided the topic into four major categories: 
I. Acoustic inverse problem, II. Image post-processing, III. Optical inverse 
problem, and IV. Semantic image annotation. We conducted a systematic 
literature review for the period between January 2017 and September 
2020 and assigned each identified paper to the most suitable categories. 
For the search, we used several scientific search engines: Google Scholar, 
IEEE Xplore, Pubmed, Microsoft Academic Search Engine, and the arXiv 
search function with the search string (”Deep learning” OR ”Neural 
Network”) AND (”photoacoustic” OR ”optoacoustic”). The search 
results were then refined in a multi-step process (see Fig. 1). 

First, potential candidates were identified based on an initial search 
using their title, as well as the overview presented by the search engine. 
The search results were complemented by adding additional papers 
found by means other than the named search engines. For this purpose, 
we specifically examined proceedings of relevant conferences, websites 
of key authors we identified, and websites of PA device vendors. Finally, 
non-relevant papers were excluded by removing Journal/Proceeding 
paper duplicates and by abstract scanning to determine whether the 
found papers match the scope of this review. Using the abstract, we 
excluded papers that did not apply deep learning, and those that did not 

Fig. 1. Overview of the literature review algorithm. First, potentially fitting 
papers are identified based on an initial search. The search results are com
plemented by adding additional papers found by other means than the search 
engines, and finally, non-relevant papers are excluded by removing duplicates 
and by abstract scanning. 
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match the scope of biomedical PAI. The remaining articles were sys
tematically examined by the authors using a questionnaire to stan
dardize the information that was to be extracted. While writing the 
paper, we continuously monitored the mentioned resources for new 
entries until the end of December 2020. 

In total, applying the search algorithm as detailed above, we iden
tified 83 relevant papers (excluding duplicates and related, but out-of- 
scope work) that have been published since 2017. 

3. General findings 

The application of deep learning techniques to the field of PAI has 
constantly been accelerating over the last three years and has simulta
neously generated a noticeable impact on the field. 

Topical foci. After categorization of the papers into the pre
determined four areas, the papers were arranged into thematic sub
categories (see Fig. 2). Papers related to the Acoustic Inverse Problem 
(Section 4) generally focus on the reconstruction of PA images from raw 
time-series pressure data but also related topics, such as dealing with 
limited-view or limited data settings, as well as the estimation of the 
speed of sound of tissue. The image post-processing (Section 5) category 
entails papers that deal with image processing algorithms that are being 
applied after image reconstruction. The aim of such techniques usually is 
to improve the image quality, for example by noise reduction or artifact 
removal. The three papers assigned to the optical inverse problem 
(Section 6) deal with the estimation of absolute chromophore concen
trations from PA measurements. Finally, papers dealing with semantic 
image annotation (Section 7) tackle use cases, such as the segmentation 
and classification of tissue types or the estimation of functional tissue 
parameters, such as blood oxygenation. 

Data. Data is key to successfully apply machine learning techniques 
to any given problem. We analyzed the usage of data in the reviewed 
papers and summarized the findings in Fig. 3. 

Training. The number of training data ranged from 32 to 286,300 
samples with a median number of training samples of 2000. As evident 
from these findings, one of the core bottlenecks of the application of 
deep learning algorithms to PAI is the lack of reliable experimental 
training data. This can in particular be caused by a lack of ground truth 
information on the underlying optical tissue properties or the underlying 
initial pressure distribution when acquiring experimental measure
ments. To address this issue, researchers make heavy use of simulated 
data and as a matter of fact, approximately 65% of papers relied 
exclusively on these for training the neural network. Table 1 shows the 
distribution of papers that use experimental data. The table shows that 
the lack of experimental training data is particularly emphasized for the 
optical and acoustic inverse problem. In contrast to the other tasks, 
where manual image annotations can be used as a ground truth 

reference, the underlying initial pressure distribution or optical tissue 
properties are generally not known in experimental settings. We have 
identified three main strategies for generating synthetic training data in 
this review: random, model-based, and reference-based data generation:  

1. Random data generation. The first and simplest strategy generates 
data by creating completely random distributions of the optical and 
acoustic properties that are necessary for the simulation framework 
[57]. Here, usually, a Gaussian distribution of the parameters in 
question is assumed and no dedicated structures are added to the 
data.  

2. Model-based data generation. Training data is created by defining 
geometrical structures that are assigned optical and acoustic prop
erties according to a hand-crafted model [58]. Such a model might 
include literature references e.g. for the size, shape, and properties of 
typical absorbers in tissue. For the generation of training data, many 
different instances of the model are created that all yield different 
distributions of chromophores.  

3. Reference-based data generation. For the reference-based approach, 
reference images of different imaging modalities are taken as the 
basis for data generation [59]. They are processed in a way that al
lows for their direct usage to either create distinct segmentation 
patterns of, for example, vessels or as the initial pressure distribution 
for subsequent acoustic forward modeling. 

Naturally, researchers also utilized combinations of these ap
proaches, including training on a large data set of simulated data and 
utilizing a smaller experimental data set to adjust the neural network to 
the experimental data distribution in a process called transfer learning 
[59,60]. 

Testing. In the field of medical imaging, only few prospective studies 
warrant reliable insights into the fidelity of deep learning methods [54]. 
One of the major problems is that algorithms are not directly usable by 
clinicians due to technical or bureaucratic limitations [61]. Given the 
fact that most approaches use simulated data to train their algorithms, 
there is a high probability that many of the presented algorithms – while 
yielding superb results on the publication data – could fail in a clinical 
scenario. This can be attributed to the fact that training data can suffer 
from several shortcomings compared to the data distribution in reality, 
such as a significant difference in the data (domain gap) [62], an 
insufficient number of samples (sparsity) [63], or a selection bias [64]. 
Fig. 3 shows that in PAI 50% of papers tested their deep learning ap
proaches on multiple data sets that are significantly different from the 
training data distribution. Nearly all of these papers test their ap
proaches on experimental data, and about 35% of the examined papers 
test on in vivo data. 

Neural network architectures. Convolutional neural networks 

Fig. 2. Overview over the topical foci of current research towards applying deep learning algorithms to problems in biomedical PAI.  
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(CNNs) [65] are currently the state-of-the-art method in deep 
learning-based PAI. Here, especially the U-Net [66] architecture is 
highly popular and has been used or compared to in most of the 
reviewed papers. 

Table 2 shows the frequency of the main model architecture 
employed in each paper. It should be noted that often modified versions 
of the base architectures have been used to specifically fit the target 
application or to encompass novel ideas. 

Simulation frameworks. Given the necessity to create synthetic 
data sets for algorithm training, it is crucial to realistically simulate the 
physical processes behind PAI. To this end, we have identified several 
eminent open-source or freely available frameworks that are being uti
lized in the field and briefly present five of them here:  

1) The k-Wave [39] toolbox is a third-party MATLAB toolbox for the 
simulation and reconstruction of PA wave fields. It is designed to 
facilitate realistic modeling of PAI including the modeling of detec
tion devices. As of today, it is one of the most frequently used 
frameworks in the field and is based on a k-space pseudo-spectral 
time-domain solution to the PA equations.  

2) The mcxyz [67] simulation tool uses a Monte Carlo model of light 
transport to simulate the propagation of photons in heterogeneous 
tissue. With this method, the absorption and scattering properties of 
tissue are used to find probable paths of photons through the me
dium. The tool uses a 3-dimensional (3D) Cartesian grid of voxels and 
assigns a tissue type to each voxel, allowing to simulate arbitrary 
volumes.  

3) The Monte Carlo eXtreme [68] (MCX) tool is a graphics processing 
unit (GPU)-accelerated photon transport simulator. It is also based 
on the Monte Carlo model of light transport and supports the simu
lation of arbitrarily complex 3D volumes using a voxel domain, but is 
also capable of simulating photon transport for 3D mesh models (in 
the MMC version). Its main advantage is the support of GPU accel
eration using a single or multiple GPUs.  

4) The NIRFAST [69] modeling and reconstruction package was 
developed to model near-infrared light propagation through tissue. 
The framework is capable of single-wavelength and 
multi-wavelength optical or functional imaging from simulated and 
measured data. It recently integrated the NIRFAST optical compu
tation engine into a customized version of 3DSlicer.  

5) The Toast++ [70] software suite consists of a set of libraries to 
simulate light propagation in highly scattering media with hetero
geneous internal parameter distribution. Among others, it contains 
numerical solvers based on the finite-element method, the discon
tinuous Galerkin discretization scheme, as well as the boundary 
element method. 

4. Acoustic inverse problem 

The acoustic inverse problem refers to the task of reconstructing an 
image of the initial pressure distribution from measured time-series 
pressure data. Reconstructing a PA image from time-series data consti
tutes the main body of work, either by enhancing existing model-based 
approaches (39% of papers) or by performing direct image reconstruc
tion (39% of papers). Furthermore, auxiliary tasks are being examined as 
well, such as the localization of wavefronts from point sources (13% of 
papers) and the estimation of the speed of sound of the medium (9% of 
papers). Information on these parameters is important to achieve 
optimal image reconstruction, thereby enhancing the image quality and 
improving the image’s usefulness in clinical scenarios. The evaluation 
metrics that were used to assess the quality of the reconstruction results 
and their relative frequencies are shown in Table 3. 

In total, we identified 23 papers that tackle the acoustic inverse 
problem, all of which use simulated PA data for training. Surprisingly, 
approximately 43% of papers presented results on experimental data 
either using phantoms or in vivo (animal or human) measurements. In 
the following, we summarize the literature partitioned into the already 
mentioned sub-topics: deep learning-enhanced model-based image 

Fig. 3. Analysis of the data used in the reviewed papers. (a) The distribution of the number of samples in the training data set, (b) the percentage of papers working 
with synthetic or experimental training data, (c) the percentage of papers that tested their approaches on multiple data sets including test data from a data dis
tribution different than the training data and (d) how many papers tested their approach on real data. 

Table 1 
Overview of the findings for training and test data used in the reviewed papers. 
The table shows the absolute and relative number of papers that use experi
mental data for testing or for training.  

Problem Exp. test data Exp. train data 

Acoustic inverse problem 10 (43%) 1 (4%) 
Image post-processing 23 (79%) 14 (48%) 
Optical inverse problem 1 (33%) 1 (33%) 
Semantic image annotation 14 (54%) 11 (42%)  

Table 2 
The frequency of the main deep learning architec
ture that was used in each paper. CNN = Con
volutional neural network; FCNN = fully-connected 
neural network; ResNet = residual neural network; 
DenseNet = dense neural network; RNN = recur
rent neural network; INN = invertible neural 
network.  

Architecture Frequency 

U-Net 43 (52%) 
CNN 18 (22%) 
FCNN 9 (11%) 
ResNet 5 (6%) 
DenseNet 3 (4%) 
RNN 1 (1%) 
INN 1 (1%) 
Other 3 (4%)  
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reconstruction, direct image reconstruction, point source localization, 
and speed of sound estimation. 

4.1. Deep learning-enhanced model-based image reconstruction 

The central idea is to leverage the flexibility of deep learning to 
enhance already existing model-based reconstruction algorithms [71, 
72], by introducing learnable components. To this end, Schwab et al. 
[73] proposed an extension of the weighted universal back-projection 
algorithm. The core idea is to add additional weights to the original 
algorithm, with the task of the learning algorithm then being to find 
optimal weights for the reconstruction formula. By learning the weights, 
the authors were able to reduce the error introduced from limited view 
and sparse sampling configurations by a factor of two. Furthermore, 
Antholzer et al. [74,75] and Li et al. [76] leveraged neural networks to 
learn additional regularization terms for an iterative reconstruction 
scheme. Hauptmann et al. [59] demonstrated the capability for CNNs to 
perform iterative reconstruction by training a separate network for each 
iteration step and integrating it into the reconstruction scheme. The 
authors showed that since their algorithm was trained on synthetic data, 
several data augmentation steps or the application of transfer learning 
techniques were necessary to achieve satisfactory results. Finally, Yang 

et al. [77] demonstrated the possibility to share the network weights 
across iterations by using recurrent inference machines for image 
reconstruction. 

Key insights: An interesting insight shared in one of the papers by 
Antholzer et al. [74] was that model-based approaches seem to work 
better for “exact data”, while deep learning-enhanced methods outper
form purely model-based approaches on noisy data. This makes the 
application of deep learning techniques very promising for the typically 
noisier and artifact-fraught experimental data [49,78]. On the other 
hand, currently employed deep learning models do not seem to gener
alize well from simulated to experimental data as evident from the fact 
that only 43% of papers tested their method on experimental data (cf. 
Table 1). Ideally, the algorithms would have to be trained on experi
mental data. 

4.2. Direct image reconstruction 

The principal idea of direct image reconstruction with deep learning 
is to reconstruct a photoacoustic image directly from the time series 
data. In addition to the time series data, some approaches also use hand- 
crafted features or reference reconstructions obtained from a conven
tional reconstruction algorithm for regularization. An overview of these 
principle ideas is summarized in Fig. 4. 

The first approaches to direct image reconstruction with CNNs were 
proposed in 2018 by Waibel et al. [42] and Anas et al. [79]. Modified 
U-Net architectures were used by Waibel et al. [42] and Lan et al. [80] to 
estimate the initial pressure distribution directly from time-series pres
sure data, whereas Anas et al. [79] used a CNN architecture with dense 
blocks. Furthermore, Lan et al. [81–83] proposed a method based on a 
generative adversarial network [84] approach that – in addition to 
time-series data – also uses a reconstructed PA image as additional in
formation to regularize the neural network. Guan et al. [85] compared 
implementations of all these techniques to assess their merit in brain 
imaging within a neurological setting. They compared an algorithm that 
directly estimates the reconstructed image from time-series data, a 
post-processing approach, as well as a custom approach with 
hand-rafted feature vectors for the model. Their results show that adding 
additional information improves the quality of the reconstructed image, 
that iterative reconstruction generally worked best for their data, and 
that deep learning-based reconstruction was faster by 3 orders of 
magnitude. Kim et al. [86] propose a method that uses a 
look-up-table-based image transformation to enrich the time series data 

Table 3 
Listing of the metrics that were reported in the 
literature to evaluate the quality of the image 
reconstruction. PSNR = Peak signal-to-noise ratio; 
SSIM = structural similarity; MSE = mean squared 
error; SNR = signal-to-noise ratio; MAE = mean 
absolute error; RMSE = root mean squared error; 
FWHM = full width at half maximum; CC = corre
lation coefficient.  

Metric Frequency 

PSNR 12 (52%) 
SSIM 9 (39%) 
Relative MSE 5 (22%) 
SNR 4 (17%) 
MAE 4 (17%) 
Relative MAE 3 (13%) 
MSE 2 (9%) 
RMSE 1 (4%) 
FWHM 1 (4%) 
CC 1 (4%)  

Fig. 4. Visualization of the principal approaches to deep learning-based PA image reconstruction. The time-series data is either given directly to a neural network, or 
after preprocessing steps, such as reference reconstructions or the calculation of hand-crafted feature maps. The goal of the reconstruction is to estimate the un
derlying initial pressure distribution. 
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before image reconstruction with a U-Net. With this method they are 
able to achieve convincing reconstruction results both on phantom and 
in vivo data sets. 

Key insights: In contrast to deep learning-enhanced model-based 
reconstruction, direct deep learning reconstruction schemes are 
comparatively easy to train and most of the papers utilize the U-Net as 
their base architecture. In several works it was demonstrated that the 
infusion of knowledge by regularizing the network with reference re
constructions or additional data from hand-crafted preprocessing steps 
led to very promising results [81,82], generalizing them in a way that 
led to first successes on in vivo data. Considering that deep 
learning-based image reconstruction outperforms iterative reconstruc
tion techniques in terms of speed by orders of magnitude (the median 
inference time reported in the reviewed papers was 33 ms), it is safe to 
say that these methods can be a promising avenue of further research. It 
has to be noted that, especially in terms of robustness and 
uncertainty-awareness, the field has much room for improvement. For 
example, Sahlström et al. [44] have modeled uncertainties of the 
assumed positions of the detection elements for model-based image 
reconstruction, but no comparable methods were applied in deep 
learning-based PAI as of yet. 

4.3. Point source localization 

The localization of the spatial position of point sources from time- 
series PA measurements was identified as a popular sub-task concern
ing PA image reconstruction. An algorithm for this could for example be 
used for the automatic detection and localization of point absorbers, 
such as needle tips, in a PA image. The general idea is to take time-series 
data to either regress numerical values for the pixel coordinates of the 
sources of the wavefronts or to output a two-dimensional map of the 
possible source locations (see Fig. 5). 

To this end, Reiter et al. [87] presented an approach that uses a CNN 
to transform the time-series data into an image that identifies the 
2-dimensional (2D) point localization of the wavefront origin. They 
further use this approach to distinguish between signals and artifacts in 
time-series data. Johnstonbaugh et al. [88] also use a CNN in an 
encoder-decoder configuration to reconstruct the PA signal into an 
image containing a single point source. A similar architecture proposed 
by the same group [89] is also used to process the time-series data and 
output cartesian coordinates of the point source location. 

Key insights: Similar to the deep learning-based direct reconstruction 
methods, methods for point source localization are exceptionally easy to 
train and can even be trained on in vitro experimental data. This ease of 
accessibility made this task the first application of deep learning in PAI 
[87]. However, the integrability of these methods into clinical practice 
and their future impact beyond certain niche applications is question
able because in vivo scenarios do typically not exclusively consist of 

point sources but comprise a very complex and heterogeneous distri
bution of chromophores. 

4.4. Speed of sound estimation 

A correct estimate of the speed of sound within the medium is an 
important constituent to successful image reconstruction. We identified 
two papers that explicitly incorporated the estimation of the speed of 
sound into their reconstruction. Shan et al. [90] used a CNN to recon
struct the initial pressure distribution as well as the speed of sound 
simultaneously from the time-series data and Jeon et al. [91] trained a 
U-Net to account for the speed of sound aberrations that they artificially 
introduced to their time-series data. 

Key insights: Automatically integrating estimates of the speed of 
sound into the image reconstruction algorithm can substantially 
enhance image quality and hence is an interesting direction of research. 
Nevertheless, the formulation of a corresponding optimization problem 
is inherently difficult, as it is not straightforward to assess the influence 
of a speed of sound mismatch on a reconstruction algorithm. Further
more, the validation of these methods is difficult, as there typically is no 
in vivo ground truth available. 

5. Image post-processing 

Being a comparatively young imaging modality, PAI still suffers from 
distinct artifacts [49]. These can have multiple origins and are primarily 
caused by hardware limitations such as light absorption in the trans
ducer membrane or fluctuations in the pulse laser energy [78]. Other 
issues can also lead to decreased image quality, such as under-sampling 
or limited-view artifacts, as well as other influences such as motion ar
tifacts or artifacts specific to the reconstruction algorithm (see Fig. 6). 
Research in the field of using post-processing algorithms can broadly be 
divided into two main areas: the elimination of artifacts (Section 5.1) 
which mostly encompass systematic error sources and the enhancement 
of image quality (Section 5.2) which is lost mainly through stochastic 
error sources. 

The evaluation metrics that were used to assess the quality of the 
post-processing results and their relative frequencies are shown in 
Table 4. 

5.1. Artifact removal 

One principal approach to speed up image reconstruction is to use 
sparse data that only contains a fraction of the available time-series data. 
While this potentially leads to a significant increase in reconstruction 
speed, it comes with a cost in form of the deterioration of the image 
quality and the introduction of characteristic under-sampling artifacts. 
Several groups [92–99] have shown that a large portion of these artifacts 

Fig. 5. Approaches for point source localization use time-series data as input to estimate either the pixel coordinates of the point of origin of the pressure wave or a 
heat map containing the probability of the source being in a certain location of the image. 
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can be recovered using deep learning techniques. A core strength of such 
approaches is that experimental PA data can be utilized for training, by 
artificially undersampling the available channels and training the al
gorithm to predict the reconstructions from (1) full data, (2) sparse data, 
or (3) limited-view data [100–106]. 

Reflection artifact can be introduced by the presence of acoustic 
reflectors in the medium (for example air). Allman et al. [107] showed 
that deep learning can be used to distinguish between artifacts and true 
signals and Shan et al. [108] demonstrated that the technology is also 
capable of removing such artifacts from the images. Furthermore, Chen 
et al. [109] introduced a deep learning-based motion correction 
approach for PA microscopy images that learns to eliminate 
motion-induced artifacts in an image. 

Key insights: For limited-view or limited-data settings, experimental 
training data can easily be created by artificially constraining the 
available data, for example, by under-sampling the number of available 
time series data. On the other hand, for the task of artifact removal, it 
can be comparatively difficult to train models on in vivo experimental 
settings for different sources of artifacts. This is, because artifacts can 
have various origins and are also dependent on the specific processing 
steps. Nevertheless, impressive results of the capability of learning al
gorithms to remove specific artifacts were demonstrated. 

5.2. Image quality enhancement 

The quality and resolution of PA images are also limited by several 
other factors including the limited bandwidth of PA detectors, the in
fluence of optical and acoustic scattering, the presence of noise due to 
the detection hardware, and fluctuations in the laser pulse-energy. 

To remedy this, Gutta et al. [110] and Awasthi et al. [111] proposed 
methods that aim to recover the full bandwidth of a measured signal. 

This is achieved by obtaining pairs of full bandwidth and limited 
bandwidth data using simulations that are used to train a neural 
network. Since experimental systems are always band-limited, the au
thors of these works rely on the presence of simulated data. On the other 
hand, more classical deep learning-based super-resolution algorithms 
were proposed by Zhao et al. [112,113] to enhance the resolution of PA 
devices in the context of PA microscopy. For training of super-resolution 
approaches, the authors are theoretically not restricted by the domain of 
application and as such can also use data from sources unrelated to PAI. 
In a similar fashion, Rajendran et al. [114] propose the use of a 
fully-dense U-Net architecture to enhance the tangential resolution of 
measurements acquired with circular scan imaging systems. To this end, 
they use simulated data for training of the algorithm and test their 
approach on experimental data in vivo. 

Several approaches have been proposed to enhance the image 
quality by improving the signal-to-noise ratio of image frames acquired 
with low energy illumination elements, such as LED-based systems. This 
has generally been done using CNNs to improve a single reconstructed 
image, for example by Vu et al. [115], Singh et al. [116], Anas et al. 
[117], Sharma et al. [118], Tang et al. [119], and Hariri et al. [120] or 
by using a neural network to fuse several different reconstructions into a 
higher-quality version, as proposed by Awasthi et al. [121]. 

Key insights: For the enhancement of image quality, common deep 
learning tasks from the field of computer vision [122] can be translated 
to PA images relatively easily, as the algorithms are usually astonish
ingly straightforward to train and validate. We believe that applying 
well-established methods from fields adjacent to PAI can be of excellent 
benefit to the entire field. 

6. Optical inverse problem 

The optical inverse problem is concerned with estimating the optical 
tissue properties from the initial pressure distribution. The first method 
proposed to solve this inverse problem was an iterative reconstruction 
scheme to estimate the optical absorption coefficient [50]. Over time, 
the iterative inversion schemes have become more involved [123] and 
Buchmann et al. [45] achieved first successes towards experimental 
validation. Recently, data-driven approaches for the optical inverse 
problem have emerged, including classical machine learning [52] as 
well as deep learning approaches. A tabulated summary of the identified 
papers can be found in Table 5. 

For the identified deep learning-based approaches, the key objective 
is to estimate the optical absorption coefficients and subsequently the 
absolute concentrations of chromophores from the initial pressure dis
tribution (see Fig. 7). 

Cai et al. [57] trained a U-Net with residual blocks to estimate the 
absolute concentration of indocyanine green (ICG) alongside the relative 
ratio of Hb and HbO2. To this end, they simulated random smoothed 
maps of optical tissue properties for training and tested their approach 
on several simulated data sets, including one created from a digital 
mouse model [126]. Gröhl et al. [124] trained a total of four U-Net 
models to estimate fluence and optical absorption from the initial 
pressure distribution as well as directly from time-series pressure data. 

Fig. 6. Post-processing techniques are tasked to improve the image quality of a reconstructed PA image. The image quality can be reduced by many factors including 
under-sampling, limited-view artifacts, low laser energy, or the presence of motion during the measurement. 

Table 4 
Listing of the metrics that were reported in the 
literature to evaluate the quality of the post pro
cessed images. SSIM = Structural similarity; PSNR =
peak signal-to-noise ratio; MSE = mean squared 
error; SNR = signal-to-noise ratio; CNR = contrast- 
to-noise ratio; MAE = mean absolute error; RMSE 
= root mean squared error; PCC = Pearson corre
lation coefficient; EPI = edge preserving index; NCC 
= normalized correlation coefficient.  

Metric Frequency 

SSIM 21 (72%) 
PSNR 19 (66) 
MSE 6 (21%) 
SNR 6 (21%) 
CNR 5 (17%) 
MAE 3 (10%) 
Relative MSE 3 (10%) 
RMSE 3 (10%) 
PCC 2 (7%) 
EPI 1 (3%) 
NCC 1 (3%)  
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They also presented a method to estimate the expected error of the 
inversion, yielding an indicator for the model uncertainty. Their 
approach was trained and tested on simulated data, which contained 
tubular structures in a homogeneous background. Finally, Chen et al. 
[125] trained a U-Net to directly estimate optical absorption from 
simulated images of initial pressure distribution. They trained and tested 
their model on synthetic data comprising geometric shapes in a homo
geneous background, as well as another model on experimental data 
based on circular phantom measurements. 

Key insights: Model-based methods to tackle the optical inverse 
problem suffer from the fact that many explicit assumptions have to be 
made that typically do not hold in complex scenarios [52]. With 
data-driven approaches, many of these assumptions are only implicitly 

made within the data distribution, leaving room for a substantial 
improvement. Obtaining ground truth information on the underlying 
optical tissue properties in vivo can be considered impossible and is 
exceptionally involved and error-prone even in vitro [124]. As such, 
there has been no application yet to in vivo data, leaving the optical 
inverse problem as one of the most challenging problems in the field of 
PAI, which is reflected by the comparatively low amount of published 
research on this topic. 

7. Semantic image annotation 

While the topical areas until now have mostly considered PA data at 
a single wavelength, the power of PAI for clinical use cases lies in its 

Table 5 
Tabulated overview of the identified literature regarding the optical inverse problem. The table shows the publication, the base network architecture, the range of 
absorption and scattering parameters used for the training data, and the type of data that the approach was validated with.  

Publication Base architecture Target μa [cm− 1] Background μa [cm− 1] Background μ′

s [cm− 1]  Validation data 

Cai et al. [57] U-Net with residual blocks N/A 0.2–0.4 5–10 In silico 
Gröhl et al. [124] U-Net 2–10 Const. 0.1 Const. 1.5 In silico 
Chen et al. [125] U-Net 0.1–2 0.1–0.4 Const. 10 In vitro  

Fig. 7. To solve the optical inverse problem, a neural network is tasked to estimate the underlying optical tissue parameters, primarily the optical absorption co
efficient, from the initial pressure distribution p0. 

Fig. 8. For semantic tissue annotation (typically multispectral) PA measurements are used as the input and the algorithm is tasked to estimate the desired pa
rameters, such as tissue oxygenation or segmentation maps of different tissue types. The black color in the oxygenation estimation denotes areas where oxygenation 
values cannot be computed. 
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ability to discern various tissue properties through analysis of the 
changes in signal intensity over multiple wavelengths (see Fig. 8). This 
allows for the estimation of functional tissue properties, especially blood 
oxygenation (Section 7.1), but also for the classification and segmen
tation (Section 7.2) of tissues and tissue types. 

7.1. Functional property estimation 

The estimation of local blood oxygenation sO2 is one of the most 
promising applications of PAI. In principle, information on the signal 
intensities of at least two wavelengths are needed to unmix the relative 
signal contributions of oxyhemoglobin HbO2 and deoxyhemoglobin Hb: 
sO2 =HbO2/(HbO2 +Hb). For PAI, wavelengths around the isosbestic 
point (≈800 nm) are commonly chosen for this task. Because linear 
unmixing should not directly be applied to the measured signal in
tensities due to the non-linear influence of the fluence, a lot of work has 
been conducted to investigate the applicability of neural networks to 
tackle this problem. Due to the unavailability of ground truth oxygen
ation information, the networks are currently being trained exclusively 
on simulated data. The problem was approached using fully-connected 
neural networks [58] as well as CNNs [127]. 

The use of feed-forward fully-connected neural networks was 
demonstrated by Gröhl et al. [58] to be capable to yield accurate 
oxygenation estimations in silico from single-pixel p0 spectra. In addi
tion, it was demonstrated that the application of the method to experi
mental in vitro and in vivo data yielded plausible results as well. This was 
also confirmed in an in silico study by Nölke et al. [128] using invertible 
neural networks, showing that using multiple illumination sources can 
potentially resolve ambiguity in the sO2 estimates. Olefir et al. [129] 
demonstrated that introducing prior knowledge to the oxygenation 
estimation can improve performance. Specifically, the authors intro
duced two sources of information for regularization. On the one hand, 
they introduced fluence eigenspectra which they obtained from simu
lated data and on the other hand, they also estimated their results based 
on spectra from a larger patch of tissue thus introducing spatial regu
larization. They demonstrated the applicability of the method to in vitro 
and in vivo data in several experiments. 

To make full use of the spatial context information, CNNs were 
employed to estimate blood oxygenation using the spectra of entire 2D 
images rather than single-pixel spectra. This was demonstrated by Yang 
et al. [130,131], Luke et al. [132], and Hoffer-Hawlik et al. [133]. 
Furthermore, Bench et al. [127] showed the feasibility to estimate 
oxygenation from multispectral 3D images. It has to be noted that there 
exists a trade-off regarding the spatial extent and number of voxels of the 
input images and the number of training images that can feasibly be 
simulated for algorithm training. The approaches demonstrate the 
feasibility of using CNNs for estimating oxygenation with high accuracy 
(for reported values in the publication see Table 6), however, a suc
cessful application of these methods in vitro or in vivo has not yet been 
shown, which is most probably caused by the large domain gap between 
simulated and experimental PA images. 

The estimation of other functional tissue properties has also been 
investigated, such as the detection and concentration estimation of 
glucose by Ren et al. [134] and Liu et al. [135], the size of fat adipocytes 
by Ma et al. [136], as well as the unmixing of arbitrary chromophores in 
an unsupervised manner by Durairaj et al. [137]. 

Key insights: The estimation of functional tissue properties is closely 
related to the optical inverse problem, as functional properties can be 
derived from the optical properties of the tissue. But the direct estima
tion of the desired properties without quantification of the optical 
properties in an intermediate step is very popular. One reason for this is 
that there exist reference methods that can measure the functional 
properties and can be used to validate the results [129]. This potentially 
also enables training an algorithm on experimental data, when using 
reference measurements as the ground truth. Taking the estimation of 
tissue oxygenation as an example showcases the potential rewards of 

comprehensively solving this family of problems, as it would enable a lot 
of promising applications, such as oxygen-level specific dosimetry in 
radiotherapy [138] or cancer type classification based on local varia
tions in blood oxygenation in the tumor’s microenvironment [139]. 

7.2. Tissue classification and segmentation 

Multispectral image information can also be used to differentiate 
between different tissue types or to identify and detect tissue pathol
ogies. In such cases, strategies for dataset curation differ depending on 
the use case but using experimental datasets is possible with manual 
data annotation. In the work of Moustakidis et al. [140] in vivo images of 
a raster-scan optoacoustic mesoscopy (RSOM) system were utilized to 
automatically differentiate between different skin structures, while Lafci 
et al. [141] used neural networks to segment the entire imaged object. 
Furthermore, Nitkunanantharajah et al. [142] used deep learning to 
automatically differentiate photoacoustic nailfold images from patients 
with systemic sclerosis and from a healthy control group, Wu et al. [143] 
imaged ex vivo tissue samples to monitor lesion formation during 
high-intensity focused ultrasound (HIFU) therapy, and Jnawali et al. 
[144–146] also analyzed ex vivo tissue to differentiate cancer tissue from 
normal tissue in pathology samples. 

On the other hand, we identified several papers that used simulated 
data to train their networks. Typically, simulations of acoustic waves are 
conducted using pre-processed images of a different modality, such as 
CT images, and treating the intensity distribution as the initial pressure 
distribution. This was done by Zhou et al. [147] to investigate the 
feasibility to differentiate healthy bone tissue from pathologies such as 
hyperosteogeny and osteoporosis. Further work by Zhang et al. [148] 
also examined the feasibility of DL-based breast cancer classification, 
Lin et al. [149] investigated the feasibility of endometrial cancer 
detection, and several groups including Zhang et al. [150], Luke et al. 
[132], Chlis et al. [151], and Boink et al. [152] examined the segmen
tation of blood vessels. Finally, Allman et al. [153] conducted feasibility 
experiments that demonstrated the capability of neural networks to 
automatically segment needle tips in PA images. Yuan et al. [154] 
proposed an approach for vessel segmentation based on manually an
notated images of mouse ear measurements, achieving best results with 
a hybrid U-Net/Fully CNN architecture and Song et al. [155] used a 
classification algorithm for the detection of circulating melanoma tumor 
cells in a flow cytometry setup. 

Key insights: Semantic image annotation enables intuitive and fast 
interpretation of PA images. Given the number of potential applications 
of PAI, we believe that semantic image annotation is a promising future 
research direction. Because the modality is comparatively young, high- 

Table 6 
Overview of some of the reported errors on sO2 estimation. Standard deviations 
or interquartile ranges (IQR) are shown if reported. It has to be noted that the 
used metrics as well as the conventions which pixels the error metrics are 
calculated on vary drastically between papers. As such the numbers are not 
directly comparable. For more detailed results, please refer to the linked papers. 
MedRE = Median relative error; MedAE = median absolute error; MRE = mean 
relative error; MAE = mean absolute error; RSME = root mean squared error; 
*depending on dataset.  

Publication Reported sO2 estimation error 

Bench et al. [127] 4.4% ± 4.5% MAE 
Cai et al. [57] 0.8% ± 0.2% MRE 
Gröhl et al. [58] 6.1% MedRE, IQR: [2.4%, 18.7%] 
Hoffer-Hawlik et al.  

[133] 
RSME consistently below 6% 

Luke et al. [132] 5.1% MedAE at 25dB SNR 
Olefir et al. [129] 0.9%, IQR [0.3%, 1.9%] to 2.5%, IQR [0.5%, 3.5%] 

MedAE* 
Yang et al. [131] 1.4% ± 0.2% MRE 
Yang and Gao [130] 4.8% ± 0.5% MAE 
Nölke et al. [128] 2%, IQR [0%, 4%] to 9%, IQR [3%, 19%] MedAE*  
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quality reference data for algorithm training that are annotated by 
healthcare professionals are very rare. Furthermore, the cross-modality 
and inter-institutional performance of PAI devices has to our knowledge 
not been examined as of yet. This makes validation of the proposed al
gorithms in vivo difficult, as reflected by some of the presented work. As 
discussed throughout this review, the image quality of photoacoustic 
(PA) images relies heavily on the solutions to the acoustic and optical 
inverse problems. This potentially introduces difficulties for manual 
data annotation and thus makes it more difficult to integrate developed 
methods into clinical practice. 

8. Discussion 

The clinical translation of deep learning methods in PAI is still in its 
infancy. Even though many classical image processing tasks, as well as 
PA-specific tasks, have already been tackled using deep learning tech
niques, vital limitations remain. For instance, many researchers resort to 
simulated data due to the lack of high-quality annotated experimental 
data. Accordingly, none of the proposed techniques were validated in a 
large-scale clinical PAI study. In this section we will discuss the chal
lenges for clinical translation of deep learning methods in PAI and will 
conclude by summarizing the key findings of this review. 

The challenges of clinical translation of spectroscopic optical imag
ing techniques have previously been extensively examined by Wilson 
et al. [156]. While their work focused primarily on the general chal
lenges and hurdles in translating biomedical imaging modalities into 
clinical practice, in this review, we focused on the extent to which the 
application of deep learning in particular could facilitate or complicate 
the clinical integration of PAI. To this end, we have summarized 
important features that a learning algorithm should fulfill, based on the 
findings in other literature [156–158]: 

Generalizability. In general, training data must be representative of 
the data encountered in clinical practice to avoid the presence of biases 
[159] in the trained model. The acquisition of high-quality experimental 
data sets in PAI is extremely problematic due to, for example, the high 
intra-patient signal variability caused by changes in local light fluence, 
the small amount of clinically approved PAI devices, and the lack of 
reliable methods to create ground truth annotations. 

The lack of experimental data can be attributed to the comparative 
youth of PAI, but also to the fact that semantic information for images is 
only available via elaborate reference measurement setups or manual 
data annotations, which are usually created by healthcare professionals. 
But even in commonplace imaging modalities like computed tomogra
phy (CT) or magnetic resonance imaging (MRI), high-quality annota
tions are extremely costly, time-consuming and thus sparse compared to 
the total number of images that are taken. Finally, annotations of optical 
and acoustic properties are intrinsically not available in vivo, as there 
currently exist no gold standard methods to non-invasively measure, for 
example, optical absorption, optical scattering, or the speed of sound. 

To account for the lack of available experimental data, approxi
mately 65% of models were trained on simulated photoacoustic data. 
This practice has led to many insights into the general applicability and 
feasibility of deep learning-based methods. But methods trained purely 
on simulated data have shown poor performance when being applied to 
experimental data. Systematic differences between experimental PA 
images and those generated by computational forward models are very 
apparent. These differences are commonly referred to as the domain gap 
and can cause methods to fail on in vivo data despite thorough validation 
in silico, since deep learning methods cannot easily generalize to data 
from different distributions. Closing this gap can make the in silico 
validation of deep learning methods more meaningful. We see several 
approaches to tackle this problem:  

1. Methods to create more realistic simulations. This comprises the 
implementation of digital twins of the respective PA devices or the 
simulation of anatomically realistic geometric variations of tissue.  

2. Domain adaptation methods that are currently developed in the field 
of computer vision [122] could help translate images from the syn
thetic to the real PA image domain.  

3. Methods to refine the training process, such as extensive data 
augmentation specific for PAI, the weighting of training data [160], 
content disentanglement [161] or domain-specific architecture 
changes [81], as well as the tight integration of prior knowledge into 
the entire algorithm development pipeline [59]. 

A promising opportunity could lie in the field of life-long learning 
[162,163]. This field strives to develop methods that have the ability to 
continuously learn over time by including new information while 
retaining prior knowledge [164]. In this context, research is conducted 
towards developing algorithms that efficiently adapt to new learning 
tasks (meta-learning) [165] and can be trained on various different but 
related tasks (multi-task learning) [166]. The goal is to create models that 
can continue to learn from data that becomes available after deploy
ment. We strongly believe that the integration of such methods into the 
field of PAI can have exceptional merit, as this young imaging modality 
can be expected to undergo frequent changes and innovations in the 
future. 

Uncertainty estimation. We strongly believe that methods should 
be uncertainty-aware, since gaining insight into the confidence of deep 
learning models can serve to avoid blindly assuming estimates to be 
accurate [167,168]. The primary goal of uncertainty estimation 
methods is to provide the confidence interval for measurements, for 
example, by calculating the average and standard deviation over a 
multitude of estimation samples [169]. On the other hand, such metrics 
might not be sufficient and a current direction of research is to recover 
the full posterior probability distribution for the estimate given the 
input, which for instance enables the automatic detection of 
multi-modal posteriors [170]. Uncertainty estimation and Bayesian 
modeling of the inverse problems is an active field of research in PAI 
[44,171,172]. While a first simulation study [124] has demonstrated the 
benefits of exploiting uncertainty measures when using deep learning 
methods, the potential of this branch of research remains largely 
untapped. 

Out-of-distribution detection. A major risk of employing deep 
learning-based methods in the context of medical imaging can be seen in 
their potentially undefined behavior when facing out-of-distribution 
(OOD) samples. In these situations, deep learning-based uncertainty 
metrics do not have to be indicative of the quality of the estimate [173] 
and methods that identify OOD situations should be employed to avoid 
trusting wrong estimations. In the field of multispectral imaging, OOD 
metrics were used to quantify domain gaps between data that a deep 
learning algorithm was trained on and newly acquired experimental 
data [174,175]. We expect the investigation of well-calibrated methods 
for uncertainty estimation and the automatic detection of OOD scenarios 
to be integral towards the clinical translation of deep learning-based PAI 
methodologies. 

Explainability. The goal of the field of explainable deep learning is 
to provide a trace of the inference of developed algorithms [176]. The 
estimates of a deep learning algorithm should be comprehensible to 
domain experts in order to verify, improve, and learn from the system 
[177]. In combination with techniques for uncertainty estimation and 
OOD detection, we believe that the explainability of algorithms will play 
an important role in the future of deep learning-based algorithms for 
PAI, especially in the biomedical context. 

Validation. Thorough validation of methods is an integral part of 
clinical translation and as such plays a crucial role in the regulatory 
processes of medical device certification [156]. To this end, algorithms 
can be validated on several different levels, including in-distribution and 
out-of-distribution test data, as well as clinical validation in large-scale 
prospective studies [178]. However, there is a systematic lack of pro
spective studies in the field of medical imaging with deep learning [54], 
and to our knowledge, there have been no such prospective deep 
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learning studies in the field of PAI yet. Some of the most impressive 
clinical trials in the field to date include the detection of Duchenne 
muscular dystrophy [179] and the assessment of disease activity in 
Crohn’s disease [21]. At least half of the reviewed papers have validated 
their methods on experimental data, but only approx. 35% of papers 
have validated their methods on in vivo data and even less on human 
measurements. This further demonstrates the vast differences in 
complexity within data obtained from phantoms versus living organ
isms. We expect that before deep learning methods for PAI can reliably 
be used in a clinical context, much more pre-clinical work is needed to 
mature the proposed methodologies. 

Another crucial aspect that we noticed during this review is the 
difficulty to compare many of the reported results. This is partly due to 
the fact that no standardized metrics or common data sets have so far 
been established in the field. Furthermore, the developed algorithms are 
tested only on in-house data sets that are usually not openly accessible. 
We have high hopes that these problems can be mitigated to a certain 
extent by the ongoing standardization efforts of the PA community, as 
promoted by the International Photoacoustic Standardisation Con
sortium (IPASC) [180]. Amongst other issues, this consortium is work
ing on standardized methods to assess image quality and characterize 
PAI device performance, on the organization of one of the first 
multi-centric studies in which PA phantoms are imaged all across the 
globe, as well as a standardized data format that facilitates the 
vendor-independent exchange of PA data. 

Computational efficiency. Depending on the clinical use case, time 
can be of the essence (with stroke diagnosis being a prominent example 
[181]) and the speed of the algorithm can be considered an important 
factor. PAI is capable of real-time imaging [182–184] and the inference 
of estimates with deep learning can be exceptionally fast due to the 
massive parallelization capabilities of modern GPUs. The combination 
of these two factors can enable the real-time application of complex 
algorithms to PAI. In the reviewed literature, it was demonstrated that 
entire high-resolution 2D and 3D images can be evaluated in a matter of 
milliseconds [185]. In comparison to model-based methods, deep 
learning-based methods take a long time to train and fully optimize 
before they are ready to use. We believe that the drastic run-time per
formance increase could enable many time-critical applications of PAI 
that might otherwise remain unfeasible. 

Clinical workflow integration. Deep learning methods have 
already found success in several medical applications, especially in the 
field of radiology [178,186,187]. Nevertheless, we believe that the 
integrability of deep learning methods in PAI heavily depends on the 
target clinical use case. The deep learning algorithm needs to have a 
clear impact on clinical practice, for example in terms of benefits for 
patients, personnel, or the hospital. Furthermore, the methods need to 
be easy to use for healthcare professionals, ideally being intuitive and 
introducing no significant time-burdens. PAI is very promising for a 
multitude of clinical applications [188], which are mostly based on the 
differences in contrast based on local blood perfusion and blood oxygen 
saturation. To unleash to the full potential of PAI, the inverse problems 
need to be solved to gain quantitative information on the underlying 
optical tissue properties. Deep learning can potentially enable an accu
rate, reliable, uncertainty-aware, and explainable estimation of the 
biomarkers of interest from the acquired PA measurements and thus 
provide unique opportunities towards the clinical translation of PAI. 
Nevertheless, thorough validation of the developed methods constitutes 
an essential first step in this direction. 

8.1. Conclusion 

This review has shown that deep learning methods possess unique 
advantages when applied to the field of PAI and have the potential to 
facilitate its clinical translation in the long term. We analyzed the cur
rent state of the art of deep learning applications as pertaining to several 
open challenges in photoacoustic imaging: the acoustic and optical 

inverse problem, image post-processing, and semantic image 
annotation. 

Summary of findings:  

• Deep learning methods in PAI are currently still in their infancy. 
While the initial results are promising and encouraging, prospective 
clinical validation studies of such techniques, an integral part of 
method validation, have not been conducted. 

• One of the core bottlenecks of the application of deep learning al
gorithms to PAI is the lack of reliable, high-quality experimental 
training data. For this reason, about 65% of deep learning papers in 
PAI rely on simulated data for supervised algorithm training.  

• A commonly used workaround to create suitable experimental 
training data for image post-processing is to artificially introduce 
artifacts, for example, by deliberately using less information for 
image reconstruction.  

• Because the underlying optical tissue properties are inherently 
difficult to measure in vivo, data-driven approaches towards the op
tical inverse problem have primarily relied on the presence of high- 
fidelity simulated data and have not yet successfully been applied in 
vivo. 

• While direct image reconstruction with deep learning shows excep
tional promise due to the drastic speed increases compared to model- 
reconstruction schemes, deep learning methods that utilize addi
tional information such as reconstructions from reference methods or 
hand-crafted feature vectors have proven much more generalizable.  

• Nearly 50% of papers test the presented methods on simulated data 
only and do not use multiple test sets that are significantly different 
from the training data distribution.  

• A successful application of oxygenation estimation methods using 
entire 2D or 3D images has not yet been shown in vitro or in vivo. This 
is most probably caused by the large domain gap between synthetic 
and experimental PA images.  

• Deep learning in PAI has considerable room for improvement, for 
instance in terms of, generalizability, uncertainty estimation, out-of- 
distribution detection, or explainability. 
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