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Abstract

The hostile hypoxic microenvironment takes primary responsibility for the rapid expansion of breast cancer tumors.
However, the underlying mechanism is not fully understood. Here, using RNA sequencing (RNA-seq) analysis, we
identified a hypoxia-induced long noncoding RNA (IncRNA) KB-1980E6.3, which is aberrantly upregulated in clinical
breast cancer tissues and closely correlated with poor prognosis of breast cancer patients. The enhanced IncRNA KB-
1980E6.3 facilitates breast cancer stem cells (BCSCs) self-renewal and tumorigenesis under hypoxic microenvironment both
in vitro and in vivo. Mechanistically, IncRNA KB-1980E6.3 recruited insulin-like growth factor 2 mRNA-binding protein 1
(IGF2BP1) to form a IncRNA KB-1980E6.3/IGF2BP1/c-Myc signaling axis that retained the stability of c-Myc mRNA
through increasing binding of IGF2BP1 with m6A-modified c-Myc coding region instability determinant (CRD) mRNA. In
conclusion, we confirm that IncRNA KB-1980E6.3 maintains the stemness of BCSCs through IncRNA KB-1980E6.3/
IGF2BP1/c-Myc axis and suggest that disrupting this axis might provide a new therapeutic target for refractory hypoxic
tumors.

Introduction
Hypoxia fractions in tumor microenvironments, caused by

insufficient vascularization and high tumor metabolic and
proliferation rates, contribute to the rapid development of

Supplementary information The online version of this article (https://
doi.org/10.1038/s41388-020-01638-9) contains supplementary
material, which is available to authorized users.

>< Manran Liu
manranliu@cqmu.edu.cn

Key Laboratory of Laboratory Medical Diagnostics, Chinese
Ministry of Education, Chongqing Medical University,
Chongqing 400016, China

Department of pharmacy, The First Affiliated Hospital of
Chongqing Medical University, Chongqing 400016, China

Experimental Teaching Center of Basic Medicine Science,
Chongqing Medical University, Chongqing 400016, China

Department of Endocrine and Breast Surgery, The First Affiliated
Hospital of Chongqing Medical University, Chongqing 400016,
China

Department of Oral Biology and Dx Sciences, Dental College of
Georgia; Georgia Cancer Center, Augusta University,
Augusta, GA 30907, USA

many solid tumors including breast cancer [1-3]. Despite
recent advances in screening and diagnostic tools, breast
cancer remains the most common malignancy and the
second leading cause of cancer-related mortality for
women worldwide [4, 5]. The high rates of tumor inci-
dence and death associated with this cancer are linked to
diverse factors that are underscored by its intratumoral
heterogeneous nature [6]. As a subpopulation of tumor
cells, breast cancer stem cells (BCSCs) display a strong
self-renewal ability and multidirectional differentiation
potential. Conventional cancer therapies, therefore, are
insufficient for eradicating BCSCs due to their highly
resistant nature, leading to poorer therapeutic results
[7-9]. Consequently, it is of particular importance to
unveil the detailed regulatory mechanism of hypoxia in
breast cancer from the perspective of BCSCs, which may
aid in implementing personalized treatment strategies for
breast carcinomas.
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Long noncoding RNAs (IncRNAs) are a series of tran-
script RNAs greater than 200 nucleotides that have limited
or no protein-coding capacity. Increasing evidence
demonstrates the pivotal role of IncRNAs in governing a
plethora of cancer-related cellular processes, such as pro-
liferation, invasion, migration, apoptosis, and stemness
[10-12]. LncRNAs may serve as oncogenic regulators
through various mechanisms, including chromatin mod-
ification, genomic imprinting, and transcriptional, and
posttranscriptional regulation, and thus, may contribute to
cancer formation and progression [13—-16].

Interestingly, a specific group of IncRNAs are modulated
by tumor microenvironmental conditions, such as hypoxia.
These hypoxia-responsive IncRNAs (HRLs), such as
NORAD, LncHIFCAR, RAB11B-AS1, and AC020978, may
underlie the survival of cancer cells and promote disease
progression [17-20]. HRLs can be categorized into two
subgroups, hypoxia-inducible factor (HIF)-dependent and
HIF-independent, with the former subgroup composing the
majority of HRLs. In hypoxic tumor microenvironments, HIF
can directly bind with the hypoxia response element (HRE)
located in the promoter regions of HRLs and regulate its
expression. The abnormally expressed HRLs could activate
some tumor-specific molecular profile and further contribute
to tumor hallmarks [21-24]. Despite this, the biological
characteristics of HRLs in breast cancer remain elusive.

A vast array of m6A RNA readers, such as YT521-B
homology (YTH) domain-containing proteins (YTHDFI,
YTHDF2, YTHDF3, YTHDCI1, YTHDC2) and insulin-like
growth factor 2 mRNA-binding proteins (IGF2BPI,
IGF2BP2, IGF2BP3) can recognize m6A-modified RNA
and control its fate by affecting mRNA stability, translation,
alternative splicing, and subcellular localization [25-27].
Among them, IGF2BP1 has the potential to regulate gene
stability through recognizing m6A-modified RNA of target
genes, which further facilitates cancer progression [25, 28].

In this context, we performed RNA sequencing (RNA-seq)
profiling to define HRLs in breast cancer. The KB-1980E6.3
(also named AP002852.1) is located at human chromosome
8g22.3 and gives rise to two transcripts, KB-1980E6.3-001
(Transcript  Accession ENST00000523572.1) and KB-
1980E6.3-002 (Transcript Accession ENST00000519630.1).
After filtration, we identified KB-1980E6.3-001 as a hypoxia-
induced target, which locates in chr8:102528755-102529801.
LncRNA KB-1980E6.3 was significantly upregulated in breast
tumor tissues compared with normal tissues and closely asso-
ciated with short survival of breast cancer patients. Functional
research revealed that IncRNA KB-1980E6.3 significantly
promotes BCSCs stem-like properties by binding to IGF2BP1
to enhance the stability of c-Myc mRNA under hypoxia con-
ditions. Collectively, our data demonstrate that IncRNA KB-
1980E6.3 plays a critical role in breast cancer progression and
might act as a potential therapeutic target.
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Results

LncRNA KB-1980E6.3 is a new hypoxic IncRNA and
correlated with a poor prognosis in breast cancer

Hypoxia is a common feature in solid tumors and plays key
roles in tumor development. To explore the effects of
hypoxia on breast tumor malignancy, we performed an
RNA-seq analysis to acquire genomic expression profiles of
BT549 cells exposed to normoxia (20% O,) or hypoxia (1%
O,) for 8 h. One hundred eighty-one upregulated and 229
downregulated IncRNAs were identified under hypoxia
conditions (Fig. Sla), and the top 100 differentially
expressed IncRNAs were depicted by heat map (Fig. 1a). To
validate the RNA-seq analysis data, we randomly chose 11
upregulated IncRNAs with a fold change greater than five
times (p <0.01) to test their expression levels in BT549 cells
cultured at normoxia or hypoxia for 8 h by quantitative real-
time PCR (qRT-PCR). Of which, IncRNA KB-1980E6.3-
001 (Transcript Accession ENST00000523572.1) was the
most increased IncRNA under hypoxia conditions when
compared with normoxia (Fig. 1b). Moreover, the upregu-
lated IncRNA KB-1980E6.3-001 was further verified in
other hypoxic breast cancer cells, especially in hypoxic
BT549 and HsS578T cells (Fig. 1c); thus, these two cells
were chosen for subsequent functional studies. To further
confirm its hypoxia-dependence in breast cancer cells,
BT549 and Hs578T cells were cultured under hypoxia
conditions at varying time intervals (0, 6, 12, 24, and 48 h)
and a gradual increase in IncRNA KB-1980E6.3 expression
was detected (Fig. S1b). We then analyzed the correlation
between IncRNA KB-1980E6.3 and the hypoxia-responsive
genes in breast cancer tissues from The Cancer Genome
Atlas (TCGA) and found that IncRNA KB-1980E6.3 was
positively correlated with VEGFA (r=0.4593, P<0.001),
SLC2A1 (r=0.4182, P<0.001), PAHA1 (r=0.4341, P<
0.001), and CA9 (r=0.5421, P<0.001) (Fig. Slc), the
known targets of HIF in breast cancer.

The sequences of IncRNAKB-1980E6.3 have been listed in
Supplementary Table 1. The online prediction software Cod-
ing Potential Calculator (CPC) (http://cpc.cbi.pku.edu.cn/) and
RNA coding potential assessment tool (CPAT) (http://lilab.
research.bcm.edu/cpat/index.php) were performed to predict
the potential protein-coding capacity of IncRNA KB-1980E6.3
and the data showed that IncRNA KB-1980E6.3 was a non-
coding RNA (Fig. S1d). After analyzing its nuclear and
cytoplasmic RNA fractionation, we revealed that IncRNA KB-
1980E6.3 was mainly located in the cytoplasm of hypoxic
BT549 and Hs578T cells (Fig. Sle).

We next evaluated the expression level of IncRNA KB-
1980E6.3 in 71 pairs of breast tumors and their adjacent
normal tissues and found that most tumor tissues (40/71)
showed higher levels of IncRNA KB-1980E6.3 when
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Fig. 1 LncRNA KB-1980E6.3 is upregulated by hypoxia and correlated with a poor prognosis in breast cancer. a The heat map from RNA
sequencing analysis showing the top 100 differentially expressed IncRNAs in hypoxic BT549 cells compared with normoxic BT549 cells.
b Expression of 11 randomly selected upregulated IncRNAs were verified by qRT-PCR in hypoxic BT549 cells compared with normoxic BT549
cells. ¢ qRT-PCR was performed to determine the IncRNA KB-1980E6.3 expression in various hypoxic breast cancer cells compared with that in
normoxic breast cancer cells. d The heights of the columns in the chart represent the log2-transformed fold changes (tumor vs normal) in IncRNA
KB-1980E6.3 expression in 71 paired breast cancer tissues and adjacent non-cancerous tissues. e The relative log2-transformed fold changes
(tumor vs normal) of IncRNA KB-1980E6.3 in 71 cases of breast tumors with different clinical stages were measured by qRT-PCR. f, g The
IncRNA KB-1980E6.3 expression levels in non-paired (f) or paired (g) breast tumor tissues and normal tissues based on the RNA-seq data
extracted from the TCGA database. h Kaplan—Meier survival analysis of overall survival according to the IncRNA KB-1980E6.3 expression levels
based on TCGA cohort. Data are shown as mean + SD of three independent experiments (**P <0.01; ***P <(0.001).

compared with adjacent normal tissues (Fig. 1d). Moreover, = We then conducted an RNA-seq data analysis including
increased IncRNA KB-1980E6.3 was positively related to 1100 breast cancer specimens and 113 normal specimens
tumor stage of breast cancer patients (Fig. le and Table 1).  from TCGA database to expand our findings. Consistent
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Table 1 Correlation ~between KB-1980E6.3  expression and  HIF-loa or HIF-2o plasmids were additionally transfected
clinicopathologic characteristics of breast cancer patients. into BT549 and HsS78T cells and it was found that the
Characteristics All cases KB-1980E6.3 P value transient transfection of HIF-1a, rather than HIF-2a,
Low  High increased IncRNA KB-1980E6.3 levels in BT549 and

Hs578T cells under normoxic conditions (Fig. S2i). From

All cases 71 31 40 analysis using bio-informatics, we identified an HRE (—144
Age to —140bp) in the promoter of IncRNA KB-1980E6.3
<60 33 18 15 0.085 (Fig. 2a). To further evaluate HIF-1a’s involvement in the
260 38 13 25 regulation of IncRNA KB-1980E6.3 expression, luciferase
T reporter assay and chromatin immunoprecipitation (ChIP)
Tl 29 23 6 <0.001*  assay were conducted. Transfection of pGL3-IncRNA KB-
T2/3/4 42 8 34 1980E6.3 wild-type (WT) reporter combined with HIF-1a
N or HIF-2a plasmid in HEK293T cells showed HIF-1a,
NO/1 39 21 18 0.056 rather than HIF-2a, increased IncRNA KB-1980E6.3 HRE-
N2/3 32 10 22 driven luciferase activity in a dose-dependent manner in
M normoxic HEK293T cells (Fig. 2b, middle panel). How-
MO 35 19 16 0.075 ever, HRE mutation in the promoter of IncRNA KB-
Mi 36 12 24 1980E6.3 abolished its transcript activity caused by HIF-1a
Stage (Fig. 2b, right panel). To further verify these findings, we
VI 23 18 5 <0.001* co-transfected pGL3-IncRNA KB-1980E6.3 WT reporter
VIV 48 13 35 combined with siHIF-1a or siHIF-2a into hypoxic BT549
. and Hs578T cells, and found that the loss of HIF-1a, rather

with our aforementioned data, higher expression of IncRNA
KB-1980E6.3 was found in breast cancer tissues compared
with adjacent tissues (Fig. 1f, g).
Kaplan—Meier survival curve demonstrated that a higher
level of IncRNA KB-1980E6.3 was closely correlated with
poor survival of breast cancer patients (Fig. 1h). These
results highlight the clinical significance of IncRNA KB-
1980E6.3 in breast cancer.

non-cancerous

LncRNA KB-1980E6.3 is upregulated by HIF-1a
during hypoxia

HIF is the key hypoxia-dependent transcriptional factor in
regulating hypoxia-associated gene expression and pro-
moting the malignant process of breast cancer. To confirm
whether HIF promotes the expression of IncRNA KB-
1980E6.3 in breast cancer cells, we used lentivirus-
mediated shRNAs against HIF-1ao or HIF-2a to knock-
down HIF expression in BT549 and Hs578T cells
(Fig. S2a—d), which was further confirmed by expression of
VEGFA, a known HIF target under hypoxia conditions
(Fig. S2e, f). Indeed, hypoxic IncRNA KB-1980E6.3 was
significantly decreased in HIF-1a knockdown breast cancer
cells rather than in HIF-2a silenced cells under hypoxia
conditions. Further, low levels of IncRNA KB-1980E6.3
were detected in normoxic HIF-1a or HIF-2a silenced cells,
indicating that IncRNA KB-1980E6.3 is an HIF-la
dependent IncRNA under hypoxia conditions (Fig. S2g, h).

SPRINGER NATURE

than HIF-2a (Figs. 2c and S3a), significantly decreased
IncRNA KB-1980E6.3 HRE-driven luciferase activity in
BT549 and Hs578T cells (Figs. 2d and S3b, left panels). In
addition, the HRE mutation in IncRNA KB-1980E6.3 pro-
moter impaired the hypoxia-induced luciferase activities in
BT549 and Hs578T cells (Figs. 2d and S3b, right panels).
Consistent with the luciferase data, ChIP assay also vali-
dated that HIF-1«, rather than HIF-2a, could bind to the
HRE site of IncRNA KB-1980E6.3 promoter in hypoxic
BT549 or Hs578T cells (Figs. 2e and S3c). These data
demonstrate that hypoxia-stimulated HIF-1a, but not HIF-
2a, plays a role in regulating IncRNA KB-1980E6.3
expression.

Hypoxia-mediated enhanced IncRNA KB-1980E6.3
promotes stemness maintenance of BCSCs

To explore the function of IncRNA KB-1980E6.3 in breast
cancer cells, IncRNA KB-1980E6.3 stable knockdown or
overexpressed BT549 and Hs578T cells were established
and utilized as cell models (Fig. 3a, b). RNA-seq analysis
showed that 2331 genes (1082 upregulated and 1249
downregulated) were differentially expressed in the
IncRNA KB-1980E6.3 overexpressed tumor cells in com-
parison to the control cells under normoxic conditions
(Fig. 3c, d), and 537 genes (324 upregulated and 213
downregulated) were differentially expressed in the
IncRNA KB-1980E6.3 knockdown tumor cells in compar-
ison to the control cells under hypoxia conditions (Fig. S3d, e).
The genes were then classified by using Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway database
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Fig. 2 HIF-1a binds to the HRE in IncRNA KB-1980E6.3 pro-
moter to regulate IncRNA KB-1980E6.3 transcription. a Schematic
illustration of the putative HRE in the promoter of IncRNA KB-
1980E6.3, the WT and MUT of IncRNA KB-1980E6.3 luciferase
promoter vector construct. “—"" arrow indicates the location of primers
used in ChIP assay. b HEK293T cells were transfected with pGL3-
IncRNA KB-1980E6.3 WT reporter, pGL3-IncRNA KB-1980E6.3
MUT reporter or the control reporter combined with HIF-1a or HIF-2a
(0, 25, 50, and 100 ng) encoding vectors and cultured under normoxia
conditions for 24 h. The Dual-luciferase reporter activity was analyzed.
¢ BT549 cells were transfected with pGL3-IncRNA KB-1980E6.3 WT
reporter, pGL3-IncRNA KB-1980E6.3 MUT reporter combined with

(Figs. 3e and S3f). Interestingly, TNF signaling pathway,
Hippo signaling pathway, and signaling pathways regulat-
ing pluripotency of stem cells were identified in both
IncRNA KB-1980E6.3 knockdown and overexpressing cell
models. Signaling pathways regulating the pluripotency of
stem cells, which are associated with disease recurrence and
metastasis, caught our attention among these signaling
pathways, suggesting that IncRNA KB-1980E6.3 may play

siHIF-1a or siHIF-2a under hypoxia conditions. The expression levels
of endogenous HIF-1a or HIF-2a at designed time point (0, 4, 8, 16,
24, and 48 h) were checked by western blotting. d BT549 cells were
transfected with pGL3-IncRNA KB-1980E6.3 WT reporter, pGL3-
IncRNA KB-1980E6.3 MUT reporter coupling with siHIF-la or
siHIF-2a under hypoxia conditions. Dual-luciferase reporter activity
was tested at the designed hypoxia exposure time (0, 4, 8, 16, 24, and
48 h). e ChIP assay used to measure the binding of HIF-1a or HIF-2a
on the IncRNA KB-1980E6.3 promoter in BT549 cells under hypoxia
conditions. The binding on the VEGFA promoter served as a positive
control for the HIF response. Data are shown as mean + SD of three
independent experiments (*P <0.05; **P <0.01; ***P <0.001).

a role in BCSCs characteristics. Indeed, hypoxia could
notably stimulate spheroid formation of breast cancer cells
in suspended culture and loss of IncRNA KB-
1980E6.3 significantly abrogated the spheroid formation
abilities of breast cancer cells under hypoxia conditions
(Fig. 3f-h), whereas ectopic IncRNA KB-1980E6.3 over-
expressing breast cancer cells acquired strong spheroid
formation potentials in comparison with their controls under

SPRINGER NATURE
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normoxia conditions (Fig. S4a—c). Consistently, clone sur-
vival of breast cancer cells was strikingly increased under
hypoxia conditions, while the loss of IncRNA KB-
1980E6.3 reduced clone survival; however, ectopic
IncRNA KB-1980E6.3 notably increased clone survival of
breast cancer cells under normoxic conditions (Fig. S4d-g).

CSCs are essential for tumor initiation. To understand
whether IncRNA KB-1980E6.3 mediated changes in
BCSCs characteristics that impact tumorigenicity, we tested
breast tumor initiation using mammosphere cells from
Hs578T in vivo. Three doses (1 x 10°, 1 x 10%, and 1 x 10%)
of spheres derived from IncRNA KB-1980E6.3 silenced
Hs578T cells (labeled as shKB) or control cells (labeled as
shNC) were subcutaneously injected into 4- to 6-week-old
female nude mice (n =15 per group), respectively. These
mice were also treated with bevacizumab to form hypoxic
microenvironment in tumor. As shown in Fig. 3i and Fig.
S4h, at least 1x 10* spheres derived from shKB were
required to generate tumors in xenograft mice, whereas 1 x
10° spheres derived from shNC could form tumors in
xenograft mice. LncRNA KB-1980E6.3 knockdown atte-
nuated tumor growth and tumor weight of xenograft mice
(Fig. S44i, j). These data suggest that IncRNA KB-1980E6.3
is essential for the maintenance of BCSCs stemness and
tumorigenic ability of breast cancer cells.

LncRNA KB-1980E6.3 enhances c-Myc protein levels
by increasing c-Myc mRNA stability

It is well known that c-Myc, KLF4, SOX2, OCT4, and
Nanog are the major regulators involved in BCSCs stem-
ness and self-renewal functions. Thus, we asked whether
IncRNA KB-1980E6.3 might contribute to BCSCs forma-
tion by regulating some of these CSC-associated gene or
protein expressions. Confirmed by qRT-PCR and western
blot, we found that IncRNA KB-1980E6.3 knockdown had
less impact on CSC-associated gene expression in normoxic
conditions (Fig. S5a, b). However, IncRNA KB-1980E6.3
knockdown decreased the expression levels of CSC-
associated genes (Fig. S6a), especially the c-Myc gene in
hypoxic BT549 and Hs578T cells (Fig. 4a); ectopic
IncRNA KB-1980E6.3 could increase these gene expres-
sions (Fig. S6b), particularly the c-Myc gene in normoxic
BT549 and Hs578T cells (Fig. 4b). Similarly, effect of
IncRNA KB-1980E6.3 on c-Myc protein level was more
apparent than other pluripotency-associated markers (e.g.
OCT4, KLF4, SOX2, and Nanog), which western blotting
further validated (Fig. 4c, d), suggesting that hypoxic
IncRNA KB-1980E6.3 is closely correlated with c-Myc
expression.

To expand our findings, we assessed HIF-1a, c-Myc, and
CD44 levels in our clinic breast tumor tissues. Coinciding
with IncRNA KB-1980E6.3, higher levels of HIF-1a, c-

Myc, and CD44 were detected in most tumor tissues, and
their levels were increased in accompany with tumor stages
(Fig. S6c, d and Fig. 4e). After analyzing the correlation of
c-Myc and IncRNA KB-1980E6.3 levels in breast cancer
tissues from TCGA, we further found a positive correlation
between c-Myc mRNA and IncRNA KB-1980E6.3 levels
(r=0.4514, P<0.001) in breast tumors (Fig. 4f). More
importantly, in our clinic breast tumor tissues, we found that
c-Myc protein were much higher in IncRNA KB-1980E6.3-
high tumor tissues than those in IncRNA KB-1980E6.3-low
tumor tissues (Fig. 4g), and there was a positive correlation
between IncRNA KB-1980E6.3 levels and c-Myc protein
scores (Fig. 4h).

To understand whether IncRNA KB-1980E6.3 could
impact c-Myc expression at the transcriptional level, luci-
ferase reporter assay was conducted. The data showed that
IncRNA KB-1980E6.3 knockdown had no impact on the
promoter activity of c-Myc in normoxic or hypoxic breast
cancer cells, however, the transcription potential of c-Myc,
a known target of STAT3, was reduced in STAT3 silencing
group (Fig. 5a, b), indicating that IncRNA KB-1980E6.3
may regulate c-Myc at the posttranscriptional level. We then
tested c-Myc mRNA stability under treatment of Actino-
mycin D. Indeed, knockdown of IncRNA KB-1980E6.3
resulted in a reduced half-life of c-Myc mRNA (Fig. 5c, d),
and ectopic IncRNA KB-1980E6.3 could notably increase
the half-life of c-Myc mRNA (Fig. 5Se, f). These data reveal
that IncRNA KB-1980E6.3 closely governs c-Myc expres-
sion through stabilizing c-Myc mRNA.

LncRNA KB-1980E6.3 increases c-Myc mRNAs
stability via binding with m6A reader IGF2BP1

Next, we asked how IncRNA KB-1980E6.3 affects c-Myc
mRNAs stability. The aforementioned data showed that
IncRNA KB-1980E6.3 was mainly located in the cytoplasm
of hypoxic BT549 and Hs578T cells (Fig. Sle), indicating
that IncRNA KB-1980E6.3 could serve as a scaffold to
involve in posttranscriptional regulation of c-Myc mRNAs
by directly interacting with a specific RNA-binding protein
(RBP), as has been revealed for other IncRNAs [29, 30].
Thus, public bio-informatics resources, such as RNA-
Protein interaction prediction (RPISeq) website, were
used. After careful analysis using RPISeq, we found that
IGF2BP1 was the potential RBP, binding with IncRNA KB-
1980E6.3. The scores predicted by Random Forests (RF)
Classifier and Support Vector Machine (SVM) Classifier
were 0.5 and 0.85, respectively (Fig. 6a), suggesting a
potential interaction between IncRNA KB-1980E6.3 and
IGF2BPI1. Through review of previous work, it was sug-
gestive that IGF2BP1 could work as an mRNA stabilizing
RBP [25, 31]. To confirm the interaction of IncRNA KB-
1980E6.3 with IGF2BP1, RNA immunoprecipitation (RIP)
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assay was carried out using an antibody directly against  with IGF2BP1 antibodies to further confirm the interaction
IGF2BP1. A significant enrichment of IncRNA KB-  between IGF2BPI and IncRNA KB-1980E6.3. As shown in
1980E6.3 with IGF2BP1 was identified under hypoxic  Fig. 6d, IGF2BP1 was co-precipitated with synthesized
BT549 and Hs578T cells (Fig. 6b). Interestingly, c-Myc sense IncRNA KB-1980E6.3 rather than antisense IncRNA
mRNA was also clearly enriched in IGF2BP1 immuno-  KB-1980E6.3 in hypoxic BT549 and Hs578T cells. In order
precipitates under hypoxia conditions (Fig. 6¢c). We next  to understand which fragment is necessary for the interac-
performed RNA pull-down followed by western blotting  tion between IncRNA KB-1980E6.3 and IGF2BPI,
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<« Fig. 4 LncRNA KB-1980E6.3 is positive correlated with c-Myc

expression. a, b c-Myc mRNA levels in IncRNA KB-1980E6.3
knockdown BT549 and Hs578T cells under hypoxia conditions (a) or
IncRNA KB-1980E6.3 overexpressing BT549 and Hs578T cells under
normoxia conditions (b). ¢, d The protein levels of c-Myc, KLF4,
SOX2, OCT4, and Nanog in IncRNA KB-1980E6.3 knockdown
BT549 and Hs578T cells under hypoxia conditions (¢) or IncRNA KB-
1980E6.3 overexpressing BT549 and Hs578T cells under normoxia
conditions (d). e The heights of the columns in the chart represent the
log2-transformed fold changes (tumor vs normal) in c-Myc expression
in 71 paired breast cancer tissues and adjacent non-cancerous tissues
(left panel). The relative log2-transformed fold changes (tumor vs
normal) of c-Myc in 71 cases of breast tumors with different clinical
stages were measured by qRT-PCR (right panel). f The correlation
between c-Myc mRNA and IncRNA KB-1980E6.3 expression levels
in breast cancer patients based on the data from TCGA database.
g Representative IHC staining images showing c-Myc protein levels in
IncRNA KB-1980E6.3 high or low tumor tissues (left panel). Scale
bar, 50 um. LncRNA KB-1980E6.3 levels in the IncRNA KB-
1980E6.3 high or low tumor groups (right panel). h The correlation
between IncRNA KB-1980E6.3 RNA level and c-Myc protein IHC
scores. Data are shown as mean =+ SD of three independent experi-
ments (**P <0.01; ***P <(.001).

mapping assay was employed. Our data showed that the
second region (201-400 nt) of IncRNA KB-1980E6.3 was
required for its interaction with IGF2BP1 (Fig. 6e).
IGF2BP1 is a canonical RBP, including two RNA recog-
nition motifs (RRM) and four K homology (KH) domains,
in which the KH1/2 domain is necessary for stabilization of
IGF2BP-RNA complexes, and the KH3/4 domain is
essential for its binding function with target RNA [32]. To
investigate which domain of IGF2BP1 might play a key role
in interacting with IncRNA KB-1980E6.3, RIP assays using
antibodies against HA-tagged full-length or truncated
IGF2BP1 (RRM, KH domains) were carried out. The
results showed that the KH1/2 domain of IGF2BP1 was
required for association with IncRNA KB-1980E6.3 in
hypoxic BT549 cells (Fig. 6f).

Previous studies have shown a control of IGF2BP1 on c-
Myc mRNA stability under normoxia [33]. To further validate
the result in breast cancer cells, the IGF2BP1 was knocked
down or overexpressed in BT549 and Hs578T cells. The
results showed that knockdown of IGF2BP1 led to reduced c-
Myc mRNA stability, and ectopic IGF2BP1 could further
increase c-Myc mRNA stability in normoxic breast cancer
cells (Fig. S7a—d). To further confirm the stability of c-Myc
mRNA is associated with IncRNA KB-1980E6.3 mediated
IGF2BP1 recruitment under hypoxia conditions, we then
performed a rescue experiment in IncRNA KB-1980E6.3
knockdown tumor cells and found that the decreased mRNA
stabilities, mRNA and protein of c-Myc caused by IncRNA
KB-1980E6.3 knockdown were partially restored by ectopic
IGF2BP1 expression in hypoxic BT549 and Hs578T cells
(Fig. S7e-h). This suggested that IncRNA KB-1980E6.3
could recruit IGF2BP1 to retain c-Myc mRNA stability in
hypoxic breast cancer cells. In addition, endogenous

IGF2BP1 levels remained the same in IncRNA KB-1980E6.3
knockdown breast cancer cells under nomorxia and hypoxia
(Fig. S7i, j). Thus, a low ratio of IncRNA KB-1980E6.3/
IGF2BP1 was found under normoxia, and hypoxia-induced
high level of IncRNA KB-1980E6.3 resulted in a high
IncRNA KB-1980E6.3/IGF2BP1 ratio under hypoxia, which
was reduced in accompany with IncRNA KB-1980E6.3
knockdown in hypoxic breast cancer cells (Fig. S7k). These
data indicate that IGF2BP1 is not the target of IncRNA KB-
1980E6.3, and c-Myc mRNA stability is dependent on
IncRNA KB-1980E6.3 mediated recruitment of IGF2BPI
rather than hypoxia-regulated IGF2BP1 expression.

Finally, we asked why the interaction of IGF2BP1 with
IncRNA KB-1980E6.3 is essential for c-Myc mRNA sta-
bility. It was reported that m6A methylation impacted
mRNA stability and that IGF2BP1 could serve as m6A-
reader in recognition of mRNA m6A methylation [25].
Studies have shown that there is a ~250 nucleotide cis-
acting element, named coding region instability determinant
(CRD), in the 3’-terminus of c-Myc mRNA coding region
that is vital for IGF2BP1 binding; and high m6A mod-
ifications in the CRD region are helpful to c-Myc stability
[25, 33]. The c-Myc CRD has six m6A consensus
sequences (-GGACT-, -GAACA-, —-AAACA-,
—AAACT-, -GAACA-, -GAACT-; WT). We mutated
those m6A sites to obtain a c-Myc CRD mutant construct
(-GGTCT-, -GATCA-, -AATCA-, -AATCT-,
—GATCA-, -GATCT-; mutant, MUT), then the c-Myc
CRD WT or c-Myc CRD MUT plasmid was co-transfected
with or without silGF2BP1 into endogenous c-Myc
knockdown BT549 cells or endogenous c-Myc and
IncRNA KB-1980E6.3, doubly silencing BT549 cells,
respectively. Then using a biotin-labeled antisense DNA
probe specifically against IncRNA KB-1980E6.3 in pull-
down assay, we found that IGF2BP1 and IncRNA KB-
1980E6.3 were co-enriched in the pull-down precipitates of
hypoxic BT549 cells confirmed by western blotting and
gRT-PCR; the loss of IGF2BP1 or IncRNA KB-1980E6.3
notably decreased IGF2BP1 and IncRNA KB-1980E6.3
levels in the pull-down precipitates (Fig. 7a, b), suggesting
IGF2BP1 could be recruited by IncRNA KB-1980E6.3. To
understand whether IncRNA KB-1980E6.3-mediated
recruitment of IGF2BP1 could facilitate recognition
between IGF2BP1 and c-Myc CRD mRNA under hypoxia,
we detected the enrichment of c-Myc CRD mRNA in the
pull-down precipitates. Indeed, the recruited IGF2BP1 by
IncRNA KB-1980E6.3 could bind significantly more with
c-Myc CRD WT than c-Myc CRD mutant under hypoxia
(Fig. 7c), indicating a IncRNA KB-1980E6.3-mediated
recognition between IGF2BP1 and c-Myc CRD mRNA in
hypoxic BT549 cells. Knockdown of IncRNA KB-
1980E6.3 or IGF2BP1 markedly reduced the recognition
between IGF2BP1 and c-Myc CRD mRNA in hypoxic
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BT549 cells (Fig. 7c). In addition, using gene-specific m6A
gPCR, we detected more m6A-modified c-Myc CRD
mRNA in the precipitates derived from hypoxic BT549
under IncRNA KB-1980E6.3/IGF2BP1 complex binding
with WT c-Myc CRD; the loss of IncRNA KB-1980E6.3 or
IGF2BP1, or transfection of c-Myc CRD mutant, sig-
nificantly decreased m6A-modified c-Myc CRD mRNA in
hypoxic BT549 cells (Fig. 7d).

We next detected whether IncRNA KB-1980E6.3/
IGF2BP1-mediated m6A methylation in c-Myc CRD could
play a key role in regulating c-Myc mRNA stability. As
shown in Fig. 7e, significantly stable c-Myc mRNA was
detected in hypoxic BT549 cells with ectopic WT c-Myc
CRD rather than mutant c-Myc CRD; the loss of IncRNA
KB-1980E6.3 or IGF2BP1 dramatically decreased the sta-
bility of c-Myc mRNA in hypoxic tumor cells. In contrast,
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there was weak c-Myc stability in normoxic BT549 cells.
Correspondingly, high levels of c-Myc mRNA and protein
were detected in BT549 cells with ectopic WT c-Myc CRD
in compared with those of any other groups under hypoxia
conditions (Fig. 7f, g). These data demonstrate that IncRNA
KB-1980E6.3 increases the binding of IGF2BP1 with m6A-
modified c-Myc CRD mRNA and leads to the stability of
c-Myc mRNA in hypoxic breast cancers.

LncRNA KB-1980E6.3-mediated c-Myc stability is
essential for BCSCs stemness and tumorigenesis
in vivo

To understand whether hypoxic IncRNA KB-1980E6.3-
mediated c-Myc stability is pivotal in maintaining BCSCs
stemness, we investigated the CSC stemness of hypoxic
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Fig. 6 LncRNA KB-1980E6.3 increases the stability of c-Myc mRNA through binding with IGF2BP1. a The probability of the interaction
between IncRNA KB-1980E6.3 and IGF2BP1 was predicted by RNA-Protein interaction prediction (RPISeq). b RIP assay was performed using
cell lysates from normoxic or hypoxic breast cancer cells using anti-IGF2BP1 antibody. IgG served as a negative control. The IncRNA KB-
1980E6.3 enrichment in the RIP precipitates was analyzed by qRT-PCR. GAPDH mRNA served as a negative control. ¢ The enriched c-Myc in
the RIP precipitates derived from normoxic and hypoxic BT549 and Hs578T cells was analyzed by qRT-PCR. GAPDH mRNA served as a
negative control. d Lysates from hypoxic BT549 and Hs578T cells were subjected to RNA-pulldown with biotin-labeled IncRNA KB-
1980E6.3 sense or antisense probe, followed by western blotting with anti-IGF2BP1 antibody. GAPDH was used as a negative control. e Top,
schematic diagrams of IncRNA KB-1980E6.3 full-length and truncated fragments. Bottom, the interaction between IncRNA KB-1980E6.3
truncates and IGF2BP1 in hypoxic BT549 cells was examined by western blotting. f Top, diagrams of full-length and truncated fragments of
IGF2BP1. Bottom, the immunoprecipitation efficiency of HA-tagged full-length or truncated IGF2BP1 in RIP assays (left panel). RIP-qPCR was
used to identify the IncRNA KB-1980E6.3 binding domain in IGF2BP1 using full-length or truncated IGF2BP1 protein (right panel). Data are
shown as mean + SD of three independent experiments (**P < 0.01; ***P < 0.001).
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BT549 and Hs578T under interfering IncRNA KB-1980E6.3/
IGF2BP1/c-Myc complex. Indeed, decreased spheroid for-
mation capacity and cell colony formation under IncRNA KB-
1980E6.3 or IGF2BP1 depletion were observed and could be
partially rescued by ectopic c-Myc expression in hypoxic
BT549 and Hs578T cells (Fig. S8a—e). Next, we explored
whether IncRNA KB-1980E6.3/IGF2BP1/c-Myc complex
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could contribute to BCSCs-derived tumor initiation and tumor
growth in vivo. Three doses (1 x 10°, 1 x 10%, and 1 x 103) of
spheres derived from the engineered Hs578T and 1 x 10° of
spheres derived from the engineered BT549, including shKB/
vector, shKB/c-Myc, shIGF2BP1/vector, shiIGF2BP1/c-Myc,
and shNC/vector control cells, were subcutaneously inoculated
into 4- to 6-week-old female nude mice (n =35 per group),
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Fig. 7 LncRNA KB-1980E6.3 increases the stability of c-Myc
mRNA through recruitment of IGF2BP1 to bind with m6A-
modified c-Myc CRD mRNA. a, b The plasmid of c-Myc wild type
CRD (WT) or mutated CRD (MUT) was co-transfected with or
without silGF2BP1 into endogenous c-Myc knockdown BT549 cells
or c-Myc and IncRNA KB-1980E6.3 double knockdown BT549 cells,
respectively. The indicated BT549 lysates were incubated with either
sense or antisense biotin-labeled probe against IncRNA KB-1980E6.3
for the RNA pull-down assay. Western blotting was used to detect the
IGF2BP1 protein (a), and qRT-PCR was used to detect IncRNA KB-
1980E6.3 (b) in the pull-down precipitates. ¢ qRT-PCR was used to
determine the enrichment of c-Myc CRD mRNA by IncRNA KB-
1980E6.3-recruited IGF2BP1 in the pull-down precipitates. d Gene-
specific m6A qPCR assays were performed in cellular lysates from the
indicated engineered cells described in (a) to detect the m6A-modified
c-Myc CRD mRNA levels. e The indicated engineered BT549 cells
described in (a) were treated with Actinomycin D for the indicated
times, and c-Myc mRNA levels were measured by qRT-PCR. f, g c-
Myc mRNA and protein levels were examined in the engineered cells
described in (a) by qRT-PCR and western blotting. Data are shown as
mean = SD of three independent experiments (**P<0.01; ***P<
0.001).

respectively. Mice were then treated with either bevacizumab
to form a hypoxic tumor microenvironment or PBS to form a
non-hypoxic condition. ~Bevacizumab-induced hypoxic
microenvironment in mouse tumor increased tumorigenesis
and tumor growth compared with PBS administrated xeno-
grafts (Figs. 8a, b, and S9a, b). Knockdown of IncRNA KB-
1980E6.3 or IGF2BP1 in Hs578T CSCs significantly
decreased tumor initiation and tumor growth in comparison
with their control groups; however, ectopic c-Myc could
effectively rescue tumor initiation and tumor growth caused by
IncRNA KB-1980E6.3 silencing or IGF2BP1 knockdown in
bevacizumab-administrated mice (Figs. 8a, b, and S9a, b).
Correspondingly, high levels of HIF-la, IncRNA KB-
1980E6.3, and c-Myc were efficiently induced in
bevacizumab-administrated tumors compared with control
tumors (Fig. 8c, d). Silence of IncRNA KB-1980E6.3 or
IGF2BP1 led to reduction of c-Myc (Figs. 8c, d, and S9c¢) and
CD44 biomarker of BCSCs in hypoxic tumors (Fig. S9c),
which were consistent with reduced tumorigenesis incidence
(Fig. 8a, b). This conclusion was further supported by using
the indicated engineered BT549 CSCs (Fig. S10). Taken
together, these data indicate that hypoxia-induced IncRNA
KB-1980E6.3/IGF2BP1/c-Myc axis is essential for the main-
tenance of BCSCs, thus leading to tumor initiation and tumor
growth in vivo (Fig. 8e).

Discussion

Hypoxic microenvironments are characteristic of rapidly
growing tumors, which profoundly impact tumor progres-
sion across an array of cancer types. The cellular response
to hypoxia insult is mainly governed by HIF. HIF can

stabilize and activate the transcription of specific target
genes by binding to HRE which contains the core sequence
5-(A/G) CGTG-3 under hypoxia conditions. In addition to
being a protein-coding gene, a fair percentage of IncRNAs
can also be regulated in response to hypoxia. Indeed, the
network of HRLs and their downstream targets have
demonstrated to offer an exquisite coordination under
hypoxia conditions. Accordingly, those HRLs, functioning
as oncogenes or anti-oncogenes, have been reported to play
central roles in tumorigenesis, metastasis, and the prognosis
of various solid cancers. For example, lincRNAp21, an
HRL, is essential for hypoxia-enhanced glycolysis [34].
CF129, another HRL, is closely related to multiple clin-
icopathologic characteristics of pancreatic cancer patients
[35]. However, the biological roles of HRLs in breast
cancer have yet to be understood mechanistically.

In the current study, we identified IncRNA KB-1980E6.3
as a new player for breast cancer cells’ response to hypoxia.
Notably, IncRNA KB-1980E6.3 is upregulated in breast
cancer cells, and breast cancer patients with high level of
IncRNA KB-1980E6.3 demonstrated an adverse prognosis.
Similar with most HIF-dependent HRLs, HIF-la can
directly bind with the HRE in IncRNA KB-1980E6.3 pro-
moter to regulate its transcription activity under hypoxia.
Moreover, IncRNA KB-1980E6.3 plays an essential role for
BCSCs stemness by enhancing c-Myc mRNA stability via
interaction with IGF2BP1, which may provide breast cancer
cells with more flexibility to adapt to hypoxic environ-
mental conditions.

Of note, IncRNA KB-1980E6.3 participates in regulating
posttranscriptional events. In fact, HRLs can utilize multiple
mechanisms to control the fine-tuning of hypoxia-induced
processes. Some HRLs modulate hypoxic gene expression by
epigenetic regulatory mechanism. For example, IncRNA-
AKO058003, could be robustly induced by hypoxia, facilitates
gastric cancer cell migration and invasion through DNA
demethylation of SNCG gene [36]. In addition, some HRLs
can fine-tune hypoxia networks in a transcription regulatory
way. As reported, hypoxia-induced IncRNA-BX111 promoted
metastasis and progression of pancreatic cancer through reg-
ulating ZEB1 transcription [37]. In particular, some HRLs are
subjected to a series of posttranscriptional modifications to
control gene expression, such as IncRNA UCAI, which can
act as a competitive endogenous RNA (ceRNAs) and is
involved in miRNA-mediated mRNA destabilization as an
endogenous miRNA ‘sponge’ or ‘decoy’ in hypoxia-resistant
gastric cancer cells [38]. In addition, hypoxia-induced IncRNA
DARS-ASI exerts its function by binding RNA-binding motif
protein 39 (RBM39), which impedes the interaction between
RBM39 and its E3 ubiquitin ligase RNF147, to prevent
RBM39 degradation [39]. Notably, our current work reveals
that IncRNA KB-1980E6.3 is involved in posttranscriptional
modulation of c-Myc gene by stabilizing c-Myc mRNA,
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Fig. 8 LncRNA KB-1980E6.3- a Tumor Incidence
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which provides a novel orchestrated regulatory network of
HRLs in the control of cancer-related events under hypoxia.
LncRNA KB-1980E6.3 could recruit IGF2BP1 to reg-
ulate c-Myc mRNA stability at the posttranscriptional level.
Emerging evidence indicates that IncRNAs can regulate
mRNA stability through various mechanisms. First,
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IncRNAs could enhance mRNA stability by directly bind-
ing to the 3’-untranslated regions (UTR) of target genes. For
example, IncRNA THOR can directly bind to the 3'UTR of
SOX9, thereby enhancing SOX9 mRNA stability, and
promote the stemness of gastric cancer cells and osteo-
sarcoma cells [40, 41]. Second, IncRNAs could regulate
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mRNA stability via indirectly interacting with RBPs. For
example, IncRNA RMST can increase DNMT3B stability
by enhancing the interaction between DNMT3B and HuR
[42]. Significantly, IncRNAs could competitively combine
with RBPs that have a stabilizational or destabilizational
effect on target genes. For example, linc-RoR could interact
with heterogeneous nuclear ribonucleoprotein (hnRNP) I (a
stabilizing factor) and enhance c-Myc mRNA stability,
which is mostly due to its competition with AUFI (a
destabilizing factor) for c-Myc mRNA [43]. Our work
unveils that hypoxia-stimulated IncRNA KB-1980E6.3
recruits IGF2BP1 to regulate c-Myc mRNA stability via
binding with m6A-modified c-Myc CRD mRNA.

Increasing evidence suggest that IncRNAs share micro-
RNA recognition elements (MREs) with specific mRNAs,
in which IncRNAs act as ceRNA by functioning as decoys
of microRNA, thus regulating the expression of target
mRNAs. Those ceRNA mechanisms play a central role in
promoting the initiation and progression of various cancers
[44—46]. As IncRNA KB-1980E6.3 is highly expressed in
breast cancer and mainly locates in the cytoplasm of
hypoxic BT549 and Hs578T cells, we wonder whether
IncRNA KB-1980E6.3 could regulate the expression of
some oncogenes via acting as a ceRNA under hypoxia
conditions. This speculation and the detailed mechanism
should be explored in future work.

LncRNA KB-1980E6.3 increases c-Myc mRNAs stabi-
lity via binding with m6A reader IGF2BP1. IGF2BP1 is
composed of six canonical RNA-binding domains, includ-
ing two RRM domains and four KH domains. It has been
reported that IGF2BP1 has a potent binding ability to some
well-known mRNA targets, including IGF2, c-Myc,
ACTIN, PTEN, and CTNNBI, to regulate their mRNA
stability [33, 47, 48]. Emerging evidence have highlighted
that a number of IncRNAs play a fine-tuning role in mod-
ulating the interactions between IGF2BP1 and their target
genes [49-51]. Consistent with these findings, our data
showed that hypoxia-induced IncRNA KB-1980E6.3 pri-
marily bound to the KH1/2 domain of IGF2BP1, leading to
an increase in the binding ability of IGF2BP1 to m6A-
modified c-Myc CRD mRNA and maintenance of c-Myc
mRNA stability in breast cancer cells.

LncRNA KB-1980E6.3 is essential for the enhanced
stemness of breast cancer cells in a hypoxic microenviron-
ment. Hypoxia seems to promote a specific environment that
makes it easier for the most robust clone to evolve hier-
archically and grow rapidly. Remarkably, hypoxia or
hypoxia-sensing pathways play a significant role in the
maintenance of BCSCs phenotypes through activation of
target pluripotency factors by HIF. For example, HIF-
dependent ALKBHS expression mediates enrichment of
BCSCs in the hypoxic tumor microenvironment [52]. HIF-
la-dependent expression of adenosine receptor 2B promotes

BCSCs enrichment [53]. Our data further underscore the
important role of the hypoxic niche on BCSCs properties.

We confirm a pivotal role of IncRNA KB-1980E6.3 in
BCSCs stemness maintenance by regulating c-Myc. c-Myc,
as a master regulator, is well known for its function in
maintaining self-renewal of CSCs in several malignancies.
In recent years, it has become clear that multilayered
microRNAs and IncRNAs can influence the expression
level of c-Myc by regulating its transcription, translation,
and activity. Some microRNAs can regulate c-Myc by
binding to its 3’'UTR, 5'UTR, and protein-coding sequence
[54-56]. In addition, other microRNAs can influence the
protein level of c-Myc by interacting with different target
genes [57, 58]. And, some microRNAs can directly regulate
c-Myc by binding to c-Myc mRNA [59]. Notably, numer-
ous IncRNAs modulate the expression level of c-Myc
through various mechanism. They can regulate the tran-
scription of c-Myc in cis, control mRNA stability and
translation of c-Myec, or affect protein stability and activity
of c-Myc [60-64]. The current work expands our under-
standing on those special HRLs, which play a powerful role
in controlling CSCs characteristics by regulating stemness
related transcription factors in a particular hypoxic
environment.

In conclusion, hypoxia-induced IncRNA KB-1980E6.3
is involved in the self-renewal and stemness maintenance of
BCSCs by recruiting IGF2BP1 to regulate c-Myc mRNA
stability. The newly identified IncRNA KB-1980E6.3/
IGF2BP1/c-Myc axis may potentially be a therapeutic target
for breast cancer.

Materials and methods
Cell culture, RNA interference and plasmids

Human breast cancer cells (BT549, MDA-MB-231, MCF-7,
Hs578T, T47D, MDA-MB-453, BT474, and MDA-MB-
468), and HEK293T embryonic kidney cells were acquired
from the American Type Culture Collection (ATCC). These
cells were cultured in RPMI 1640 or DMEM medium
(Gibco-BRL, Australia) containing 10% fetal bovine serum
(Gibco-BRL, Australia) at 37 °C in humidified atmosphere
containing 5% CO, with 1% O, (Hypoxia condition) or
20% O, (Normoxia condition).

The small interfering RNA (siRNAs) specifically against
HIF-1a, HIF-2a, IGF2BP1, c-Myc, IncRNA KB-1980E6.3
(GenePharama, Shanghai, China) were used to transiently
knockdown target genes in breast cancer cells with Lipo-
fectamine 3000 (Invitrogen, USA) following the manu-
facturer’s instructions. To establish the stably interfered or
target gene expressed cells, lentivirus-mediated shRNA
specifically against HIF-loo (shHIF-1a), HIF-2a (shHIF-
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2a), IncRNA KB-1980E6.3 (shKB), or IGF2BP1
(shIGF2BP1), and lentiviral of IncRNA KB-1980E6.3
overexpressing construct (GenePharama, Shanghai, China)
were respectively transfected into breast cancer cells
according to the manufacturer’s protocols. Positively
infected cells were selected with puromycin treatment and
the selected cell pool was used in experiments.

The IncRNA KB-1980E6.3 promoter containing HIF-
binding sites (WT: -GCGTG-) and its mutant sites (MUT:
—GGCAG-) were cloned into a pGL3 luciferase reporter
vector to obtain the pGL3-IncRNA KB-1980E6.3 WT
reporter or pGL3-IncRNA KB-1980E6.3 MUT reporter.
The promoter of c-Myc was cloned into pGL3 luciferase
reporter vector to construct the pGL3-c-Myc reporter. The
pcDNA3.3/IGF2BP1  (WT), pcDNA3.3/IGF2BP1-RRM
domains, pcDNA3.3/IGF2BP1-KH domains, pcDNA3.3/c-
Myc, pcDNA3.3/HIF-1a, and pcDNA3.3/HIF-2a plasmids
were created by PCR and inserted into a pcDNA3.3 vector.
The sequences of siRNAs and shRNA used in this study
have been listed in Supplementary Table 2 and Supple-
mentary Table 3.

RNA preparation and quantitative real-time PCR
(qRT-PCR)

TRIZOL reagent (Invitrogen) was used to extract total RNA
in both tissues and cells according to the manufacturer’s
instruction. The cDNA was obtained from the purified RNA
using a PrimeScript RT Reagent Kit (Takara). SYBR Pre-
mix Ex Taq II Kit (Takara) was used for qRT-PCR assays.
Results were normalized to f-actin expression. All experi-
ments were performed at least three times. All specific
primers used in this study have been listed in Supplemen-
tary Table 4.

Tissue samples

Human breast tumor tissues and their corresponding normal
breast tissues were obtained from the First Affiliated Hos-
pital of Chongqing Medical University, and the experiments
were approved by the Research Ethics Committee of
Chongqing Medical University. All patients did not receive
any radiotherapy or chemotherapy previously. All patients
have been informed and consented involving this study.

Mammosphere formation assay

BCSCs were cultured as described previously [65]. Briefly,
breast cancer cells were dissociated into single cells by
0.05% trypsin-EDTA solution and plated into six-well
plates coated with 2% poly-HEMA (Sigma) at a density of
1 x 10* cells/ml in primary culture and 5x 10° cells/ml in
following passages in normoxic or hypoxic conditions.
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Mammosphere cells were enriched using serum-free med-
ium, which was composed of DMEM-F12 medium with
epidermal growth factor (EGF, 20 ng/ml), Basic fibroblast
growth factor (b-FGF, 20 ng/mL), insulin (5 ug/ml), and
B27 (Invitrogen). The numbers of secondary generation
spheres were counted using an OLYMPUS IX70 micro-
scope (Tokyo, Japan). The percentage of mammosphere
forming efficiency (MFE) was calculated as previously
described. The average size of the randomly selected
mammospheres (N = 30) was calculated.

TCGA database analysis

TCGA database is a large cancer database that integrates the
global gene expression profiles between multiple tumors
and their corresponding non-tumor tissues, containing
genomic sequencing data of more than 20 kinds of human
tumors [66]. In our analysis, an RNA-seq data with clinical
information of 1100 breast cancer specimens and 113 nor-
mal specimens were scanned and extracted from the cohort:
GDC TCGA Breast Cancer (https://portal.gdc.cancer.gov/).
The expression trend of IncRNA KB-1980E6.3 was deter-
mined by RNA sequencing as Fragments per kilobase of
exon model per million mapped reads (FPKM).

In vivo Xenograft experiments

Animal experiments were performed in accordance with
guidelines on animal care approved by the Chongging
Medical University Experimental Animal Management
Committee. The enriched mammosphere cells derived from
engineered BT549 and Hs578T with silenced IncRNA KB-
1980E6.3 (shKB/vector), BT549, and Hs578T with
IncRNA KB-1980E6.3 knockdown combined with ectopic
c-Myc (shKB/c-Myc), BT549, and Hs578T with silenced
IGF2BP1 (shIGF2BP1/vector), BT549, and Hs578T with
knocked down IGF2BP1 combined with ectopic c-Myc
(shIGF2BP1/c-Myc), and BT549, and Hs578T/shNC/vector
control cells were used in Xenograft experiments. Three
doses (1 x 105, 1% 10* and 1 x 103) of spheres derived from
the engineered Hs578T and 1 x 10° of spheres derived from
the engineered BT549 were subcutaneously inoculated into
4- to 6-week-old female nude mice (n =5 per group). Mice
were then treated with either bevacizumab (10 mg/kg every
3 days) to form a hypoxic tumor microenvironment or
vehicle PBS to form a non-hypoxic condition [67, 68]. The
tumor-initiation frequency was calculated. The longest
diameter and its widest vertical width of tumor were mea-
sured every 3 days with a dialcaliper, and tumor volume
was calculated by the equation (V = length x width® x 0.5).
At the end of animal experiments, xenografted mice were
sacrificed and the tumor tissues were surgically removed,
measured, and weighed. The acquired tumor tissues were
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subjected to qRT-PCR, western blotting or immunobhis-
tochemistry staining to detect HIF-la, IncRNA KB-
1980E6.3, c-Myc, and CD44 expressions.

Statistical analysis

Statistical analyses were conducted with the employment of
SPSS 20.0 statistical software and GraphPad Prism 7.0
(GraphPad Software, Inc., La Jolla, CA, USA). To assess
comparisons between multiple groups, ANOVA followed
by the Student—-Newman—Keuls multiple comparisons test
was performed. To assess comparisons between two groups,
the Student’s ¢ test was used. The correlation between
groups was analyzed by Pearson correlation. Each experi-
ment was performed thrice and data were shown as mean +
SD. Any value of P < 0.05 was considered to be statistically
significant.

Additional materials and method

The details of other materials and methods can been saw at
the Supplementary material.
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