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Abstract

Background: Somatosensory deficits are prevalent after stroke, but effective interventions are
limited. Brain stimulation of the contralesional primary somatosensory cortex (S1) is a promising
adjunct to peripherally administered rehabilitation therapies.

Objective: To assess short term effects of repetitive Transcranial Magnetic Stimulation (rTMS)
targeting contralesional (S1) of the upper extremity.

Methods: Using a single session randomized cross-over design, stroke survivors with upper
extremity somatosensory loss participated in 3 rTMS treatments targeting contralesional S1:
Sham, 5 Hz and 1 Hz. rTMS was delivered concurrently with peripheral of sensory electrical
stimulation and vibration of the affected hand. Outcomes included 2-point discrimination (2PD),
proprioception, vibration perception threshold, monofilament threshold(size) and Somatosensory
Evoked Potential (SEP). Measures were collected before, immediately after- and 1 hour after-
treatment. Mixed models were fit to analyze the effects of the three interventions.

Results: Subjects were 59.8+8.1 years old and 45+39 months post-stroke. There was
improvement in 2PD after 5Hz rTMS for the stroke-affected (F(2, 76.163)=3.5, p = .035) and
unaffected arm (A2, 192.786)=10.6, p<0.0001). Peak-to-peak SEP amplitudes were greater after
5Hz rTMS for N33-P45 (A2, 133.027)=3.518, p=0.032) and N45-P60 (A2, 67.353)=3.212,
p=0.047). Latencies shortened after 5Hz rTMS for N20 (A2, 69.64)=3.37, p=0.04), N60 (A2,
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47.343)=4.375, p=0.018) and P100(A2, 37.608)=3.537, p=0.039) peaks. There were no
differences between changes immediately after the intervention and an hour later.

Conclusions: Short-term application of facilitatory high frequency rTMS (5Hz) to
contralesional S1 combined with peripheral somatosensory stimulation may promote
somatosensory function. This intervention may serve as a useful adjunct in somatosensory
rehabilitation after stroke.

Keywords

Stroke; Sensory deficits; Somatosensory deficits; repetitive Transcranial Magnetic Stimulation
(rTMS); two-point discrimination; Sensory Evoked Potentials

INTRODUCTION

Loss of somatosensation is present in upwards of 90% of stroke survivorsl=3. Impairment of
proprioception, perception of touch, or pain limits an individual’s ability to avoid injury and
impacts how they experience the world around them. Furthermore, somatosensory deficits
significantly impair motor control, impede functional performance?#-7 and negatively
impact quality of life8. Though somatosensation has an important role in the functioning of
the upper limb’ and is routinely assessed clinically’, interventions that address
somatosensory deficits are lacking.

Peripherally directed therapies®19 (such as electrical stimulation, vibration and others) can
produce some improvement in upper limb somatosensory function, but restoration is
typically not realized. One limitation of these methods is that they target the periphery (e.g.
upper limbs)11:12 rather than the brain which is the source of the deficit and the key area for
targeting therapies to promote upper limb functional recovery and re-organizationl3.

Recovery after stroke is driven by functional and structural brain re-organization14-16,
Several possible neuroplastic patterns have been observed during rehabilitation, e.g.
functional re-mapping of surviving pathways or shift of function to homologous and
functionally related regions!317. It may be possible to promote changes in motor
performance by stimulating the brain with electrical currents'8-19. Non-invasive methods
using repetitive TMS (rTMS) have been shown to induce brain changes and enhance
functional recovery by directly modulating brain activity2?. Most non-invasive brain
stimulation studies have focused on movement-related rehabilitation interventions targeting
the primary motor area (M1). After stroke, there is functional interhemispheric imbalance
between the right and left motor regions. A diminished activity of the ipsilesional M1 by
stroke is further suppressed by overactivity of the contralesional M12%. rTMS has been used
to correct this imbalance. A common approach involves facilitating activity of ipsilesional
M1 and/or inhibiting activity of contralesional M1 (believed to have strong inter-
hemispheric inhibitory effects)20. Although facilitatory (5Hz) rTMS of the ipsilesional S1
paired with motor therapy showed improvement of both motor abilities and somatosensory
discrimination abilities?? , the role of rTMS in post-stroke somatosensory recovery has not
been fully tested. Promisingly, it has been shown that rTMS can affect sensory perception in
healthy subjects?3.
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Targeting primary somatosensory cortex (S1) to restore somatosensory function may be a
logical corollary of the approaches adopted in the area of motor recovery. Contralesional S1
may be a more reasonable target than its ipsilesional counterpart for many reasons. First,
modulating structurally intact brain may produce a more reliable and consistent effect across
patients given the lack of confounding influence of differing lesion sizes, locations and
geometry24, Second, although the majority of sensory processing is in the contralateral
hemisphere, it is believed that there is a bihemispheric involvement in sensory processing as
demonstrated by functional Magnetic Resonance imaging (FMRI1)25:26 and
electroencephalography (EEG) studies?” and because unilateral infarct may result in
bilateral somatosensory deficits1:28,

The objective of this proof-of-principle study was to explore the effect of rTMS targeting
contralesional S1. Using a single-session randomized crossover design, participants received
high frequency rTMS (5-Hz, H-rTMS), low frequency rTMS (1Hz, L-rTMS) and sham
r'TMS (S-rTMS) targeting contralesional S1. High frequency rTMS increases cortical
excitability and thus is facilitatory while low frequency rTMS decreases cortical excitability
and is inhibitory2°. Both high and low rTMS frequencies were tested because it is unclear
whether facilitating or inhibiting contralesional S1 is beneficial for somatosensory
function30, and because effects of inhibiting contralesional M1 have been equivocal in
studies of post-stroke motor recovery?%:31, Somatosensory processing of the various
somatosensory modalities take different paths in the brain32 and the response of different
somatosensory modalities to rehabilitation intervention can vary?33. Therefore, we included
a range of somatosensory outcomes probing both primary somatosensation and
discriminatory abilities as well as testing both posterior column and the spinothalamic
pathways. Immediate and delayed effects of rTMS on clinical somatosensory measures and
neurophysiologic indices characterizing somatosensory cortical processing, i.e.
Somatosensory Evoked Potentials (SEPs) were studied.

METHODS

Participants.

Subjects were recruited by word of mouth and through use of flyers from the local
population. Sixteen patients with upper extremity somatosensory deficits following first-ever
stroke (>6 months post) were enrolled. Subjects were screened for study entry and deemed
eligible to enroll if they had a detectable difference between the affected and unaffected
upper limb in =1 study measure of somatosensation. The inclusion criteria were intentionally
broad because of the nature of the study and therefore some individuals with the most severe
deficits did not perceive all the sensory modalities. Exclusion criteria were contraindications
for TMS such as metal implants, history of seizures, or use of substances that lower seizure
threshold34. A description of limbs in the text is as follows: affected side — contralateral to
the stroke lesions and unaffected side — ipsilateral to the stroke lesions.

Overview of Study Design.

In a randomized, crossover experiment, participants underwent single-sessions of three
different types of rTMS at intervals 21wk: (1) facilitatory H-rTMS, (2) inhibitory L-rTMS
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and (3) sham. H-rTMS involved application of 5Hz rTMS while L-rTMS involved 1Hz
rTMS to contralesional S1. Sham rTMS was delivered using a placebo coil. In every session,
rTMS was delivered concurrently while participants received peripheral sensory stimulation
of the affected hand. Measurements were performed before (Pre), immediately after- (Post
1) and one hour after- (Post 2) each session. Figure 1 depicts an overview of the study
design. The rationale for the timing of data collection was based on prior reports of rTMS
effects lasting up to one hour3. Participants underwent a baseline session to familiarize
them with the testing protocol. A randomized-block design using the 6 order permutations
within the block was used to randomize the order of the different rTMS sessions. The rTMS
protocols were delivered =1 week apart to allow for a washout period36. The study enrolled
patients from two hospitals in Cleveland, Ohio: the Louis Stokes Cleveland Veterans Affairs
Medical Center (LSCVAMC) and the Cleveland Clinic (CC). The protocol at both sites was
identical unless otherwise noted. Local IRBs of each hospital approved the study.
Participants provided written informed consent before participating.

rTMS.—Patients were seated in a chair with a headrest and arms resting on a table. rTMS
was applied using a biphasic stimulator [Magstim Super Rapid 2002 magnetic stimulator
(Magstim Company Ltd., Wales, UK) at LSCDVAMC site and MagPro R30 (Dantec,
Denmark) at CC site]. Coil targeting was guided by frameless stereotactic navigation
(Brainsight2, Rogue Research, Inc., Montreal, QC). At the beginning of each session,
evoked response to single pulses of TMS, called motor evoked potentials (MEPS), were
collected from contralateral first dorsal interosseus muscle (FDI). Surface electromyography
was acquired via silver-silver chloride 8 mm bipolar electrodes [Powerlab 4/25T (AD
Instruments Inc. Colorado Springs, CO)] with a reference electrode over the lateral
epicondyle (CC) or with Brainsight2 EMG pod via 10mm surface gel adhesive electrodes
with reference electrode over the lateral forearm (LSCDVAMC). Hotspot for FDI was
identified as the site that evoked =50uV MEPs at the lowest TMS intensity (motor threshold,
MT) reliably in 6 out of 10 trials3’. Motor hotspot for FDI served as a guide to identify the
anatomic location of S1 and MT intensity served as a means to establish rTMS intensities.

The site for S1 stimulation was identified 2 cm posterior to the FDI hotspot in M123:30, The
intensity of rTMS application was subthreshold, applied at 90% of the resting MT required
to elicit FDI responses in accordance with safety guidelines34. The H-rTMS protocol
consisted of 5Hz rTMS at 90% resting MT for a total of 1250 pulses as follows: 5 blocks of
250 pulses with an inter-block interval of 60 s; each block consisted of five 50-pulse trains
with an inter-train interval of 2 5.23:38 This protocol showed effect on sensory function in
healthy controls.23:38 The L-rTMS protocol involved continuous 1Hz rTMS of 1200 pulses
which is the most commonly used inhibitory rTMS paradigm. S-rTMS was provided using a
sham coil and 5Hz protocol. At LSCDVAMC, the active coil was a flat 70 mm figure-of-
eight magnetic air-cooled coil with a maximum magnetic field strength of 1.5 T (Tesla) and
an average inductance of 15.5 pH; the sham coil was identical in appearance to the active
coil but had a maximum magnetic field of 0.2T and an average inductance of 2.8 uH. At CC,
both sham and active rTMS were provided with the dual-sided active/sham 70mm figure-
eight MagVenture A/P coil that has an inductance of 11.3-12.0 mH (for both active and

Neurorehabil Neural Repair. Author manuscript; available in PMC 2021 March 05.



1duosnuep Joyiny vA 1duosnue Joyiny vA

1duosnue Joyiny vA

Page 5

sham) and a maximum magnetic field of 1.4 T on the active side and 0.07 T on the sham
side. The outputs of both sham coils are well below stimulus threshold while producing
similar tactile and auditory effects.

Peripheral sensory stimulation.

During rTMS, peripheral sensory stimulation consisting of 5 minutes of sensory level
electrical stimulation and 5 minutes of vibratory stimulation to the affected hand was
administered. Sensory-level electrical stimulation was delivered by an EMPI 300 PV
Neuromuscular Stimulator at a frequency of 50 Hz at sub-motor intensity with an Electro-
Mesh glove (Prizm Medical, Modesto, CA); 1 sec ramp on/off; 20secs on and 5 seconds off.
For vibratory stimulation, the subject’s hand was positioned with the palmar surface in
contact with the handle of a mini massager (Homedics, Commerce Township, MlI) and
fingers gently curled over the handle (Figure 1). Subjects were asked to not actively grasp
the massager, rather to rest their hand in this position.

Outcome measures

Clinical measures—Somatosensory modalities included two-point, proprioception,
monofilament size and vibratory discrimination (Figure 1). Subjects were blindfolded during
testing and skin temperature was maintained at a constant level. Both the clinical assessor
and the study participant were blinded to the order of rTMS protocol delivery and the same
assessor tested a given subject for each of the three rTMS sessions.

Two-point discrimination was measured with Disk-Criminator disks (Baltimore, MD) by
determining the subjects’ ability to perceive two points on the disk as two separate points
rather than as a single point39. The distances between the two points ranged between 2 and
15 mm. One and two sensory points were presented in a pseudo-random order to subjects’
4t digit volar fingertip surface. A threshold is determined when seventy percent accuracy is
exhibited for identifying the difference between single versus double point stimulation3°.
Accuracy of threshold was confirmed by retesting the level above and below the determined
threshold level. A score of 16mm was assigned when the subject could not accurately
differentiate one versus two points at the maximum distance (15mm). Mean average for
healthy controls has been reported to be 3.2 (+.9) for the 4t digit of the dominant hand°.
The volar surface of the 4™ digit was assessed due to the high incidence of median nerve
entrapment common in this population which could confound the findings*L.

For proprioception, an examiner held the subjects’ 2"d digit at the medial and lateral surfaces
of the proximal interphalangeal joint (forearm pronated) and flexed or extended the subject’s
2"d metacarpophalangeal joint in a random sequence of approximately 20° flexion and
extension. Subjects were asked whether the joint was moved upwards (extension) or
downwards (flexion). Proprioception accuracy was expressed as a percent of correct
responses*? and a chance score for the testing as was conducted was 50%.

The monofilament test assessed the threshold for perceiving tactile stimulation at the 4t
digit volar fingertip with Tactile Semmes-Weinstein Monofilaments*3. Monofilaments of
varying sizes (2.83, 3.61, 4.31, 4.56, 6.65) were presented in random time intervals
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achieving filament bent into “C” or blanched skin underneath for 6.65. We report the
smallest filament reliably detected using standard clinical testing procedures. For individuals
who could not sense the thickest filament, a score of 7.6 was recorded. Filaments were
presented in descending order thickest to finest. Normal monofilament score is <2.8343,

Vibration perception threshold was determined using the Biothesiometer (Bio-Medical
Instrument Co, Newbury, OH). The Biothesiometer pestle, which vibrates at a frequency of
120 Hz, was placed at the second metacarpophalangeal joint4. Vibration amplitude was
gradually increased. Test score corresponded to device units (vibration amplitude) at which
subjects detected vibration averaged across three trials*. A normal score is <7V,

Somatosensory Evoked Potentials (SEP).—SEPs were recorded with a Cadwell
Sierra Wave (Cadwell, Kennewick, WA) (LSCDVAMC) or with Powerlab 4/25T (AD
Instruments Inc. Colorado Springs, CO) and a Grass Stimulator (Natus Neurology,
Middleton, WI) (CC)*. The recording electrodes (1 cm diameter, gold cup electrodes filled
with conductive paste) were placed 2 cm posterior to C3 & C4 (10-20 international system
of EEG electrode placement) and the reference electrode at Fz (Figure 1). Electrode
impedance was kept below 5 kQ. Stimulus was applied to the median nerve at the wrist
(anode at the wrist crease and cathode 2cm proximal). Ground electrodes were placed at the
lateral epicondyle of the stimulated arm. Square wave stimulus of 200 psec pulse width and
frequency of 5.1 Hz was applied with sufficient amplitude to cause 1-2 cm of thumb
movement. The evoked response from 500 stimuli were recorded and averaged for a single
trial. Three SEP trials were recorded then analyzed. Latencies (in milliseconds) were
determined for N20, P25, N33, P45, N60, P100, and N120. Peak-to-peak amplitudes (in uV)
were extracted for N20-P25, P25-N33, N33-P45, P45-N60, N60-P100, P100-N12046.

Statistical analysis.

Descriptive statistics were applied to determine the shape of data distributions. Baseline
scores (Pre) were compared using non-parametric Friedman test for repeated measurements
and Wilcoxon signed rank test for paired comparisons. Linear mixed models were fit to
analyze the response of both clinical and SEP outcome measures to the three intervention
protocols. We included subject-level random intercept, as well as compound symmetry
repeated covariance type structure, to reflect within-subject and serial correlation. The
outcome (dependent) variables in the mixed models were the difference in respective
outcome measure score from Pre to Post 1 and Pre to Post 2 (for example, change in 2-point
discrimination at Post1 and at Post2). The two explanatory variables were: 1) a categorical
variable denoted as rTMS session type: either S-rTMS, L-rTMS or H-rTMS, and 2) a
categorical time variable - indicating whether the outcome value is a difference from Pre to
Post 1 or Pre to Post 2. Note that statistically significant treatment variable association
indicates that the change over time differs by rTMS type. We also conducted pairwise
analysis of the treatment effects, to ascertain directionality. Pairwise comparison based on
estimated marginal means included Sidak’s method for correction for multiple comparisons.
The reported p-values were adjusted for multiple comparisons.
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RESULTS

Subject characteristics are in Table 1. Mean differences between the stroke-affected and
unaffected hand were statistically significant for 2-point discrimination, monofilament
threshold, proprioception and vibration detection (p<0.05) (Table 2). The un-affected hand
had diminished somatosensation with frequency of 94% compared with the normative values
(Table 2).

Baseline Stability of Measures.

For the stroke affected arm, pre-intervention somatosensory measurements were similar at
all three rTMS sessions for 2-point discrimination, monofilament threshold and vibration
threshold (Table 3). However, for proprioception, there was a slight decrease in
proprioception accuracy over the three sessions (Friedman test p=0.03). For the unaffected
arm, there were no differences among pre-intervention somatosensory test scores. There
were no differences in baseline values for any SEP components (Table 3). The average
duration between session 1 and 2 was 16.7(10.4) (mean(SD)) days and between sessions 2
and 3, 16.4(18.5) days.

Effects of rTMS on Clinical Somatosensory Function.
Two-point discrimination.

Affected arm.: Based on the mixed model analysis, we found for the primary outcome
measure, 2-point discrimination, a statistically significant treatment effect for session type
(A2, 76.163)=3.5, p = .035). The pairwise analysis demonstrated an improvement of 2-point
discrimination of the affected arm in response to H-rTMS compared to S-rTMS (estimated
mean difference of —1.187mm, SE=0.459; p = 0.011). There was a trend toward greater
improvement after H-rTMS compared with L-rTMS responses (estimated mean difference =
-0.773mm, SE=0.459, p =.096) but no difference between L-rTMS and S-rTMS. Figure 2A
and Table 4 depict a change in 2-point discrimination ability in response to different rTMS
interventions.

Unaffected arm.: Mixed model analysis showed a statistically significant improvement of
2-point discrimination of the unaffected arm following H-rTMS intervention (A2,
192.786)=10.6, p<0.0001). Based on the pairwise analysis, H-rTMS produced greater
improvement compared with S-rTMS (estimated mean difference =-.710mm, SE=0.173;
p<0.0001) and greater improvement compared with L-rTMS (estimated mean difference =
—-.663mm, SE=0.173; p <0.0001). Table 5 and Figure 2A depict a change in 2-point
discrimination ability in response to different rTMS.

Proprioception and monofilament threshold.—For both affected and unaffected
arms, mixed model analysis did not show a statistically significant difference between
responses to the three types of rTMS for proprioception ( Figure 2B;Tables 4 and 5) or
monofilament threshold (Figure 2C; Tables 4 and 5). However results for monofilament
threshold were trending toward significance affected: A2, 75.303)=2.769, p=0.069;
unaffected: (A2, 74.34)=2.737, p=0.071).
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Vibration.

Affected arm.: There were no statistically significant mixed model results for vibration for
the affected arm (A2, 75.545)=2.026, p=0.139). (Table 4 and Figure 2D).

Unaffected arm.: Mixed model analysis demonstrated a statistically significant reduction in
vibration perception at Post 1 compared with Post 2 (A2, 153.350)=7.843, p=0.006). There
was no effect of session type (p=0.928). These transient changes in vibration perception
were similar following all treatment types (Table 5, Figure 2D).

Effect of rTMS on Somatosensory Evoked Potential (SEP).

Affected arm SEP.: We used mixed model analysis to evaluate changes in SEP component
measures in response to the three types of rTMS. Table 4 shows data for SEP at baseline and
changes observed at Post 1 and Post 2. There were statistically significant findings for
session type in models where independent variables were peak to peak amplitude changes
for N33-P45 (A2, 133.027)=3.518, p=0.032) and P45-N60 (A2, 67.353)=3.212, p=0.047) as
well as changes in N20 latency (A2, 69.64)=3.37, p=0.04), N60 latency (A2,
47.343)=4.375, p=0.018) and P100 latency (A2, 37.608)=3.537, p=0.039). For N33-P45
amplitude change, margin of mean test demonstrated that an amplitude change following H-
rTMS was greater compared to L-rTMS (estimated marginal mean difference = 0.291uV,
SE=0.113 p=0.032). For P45-N60, there was a trend toward H-rTMS producing greater
response compared to L-rTMS (estimated marginal mean difference =0.611puV, SE=0.253,
p=0.054). For N20 latency change, H-rTMS resulted in a shorter latency for N20 compared
to change following S-rTMS (estimated marginal means difference = —2.049msec, SE=0.8,
p=0.037). For N60 latency change, H-rTMS also resulted in a shorter latency for N60
compared to change following S-rTMS (estimated marginal means difference =
-10.288msec, SE=3.7, p=0.025). Similarly, for P100 latency change, H-rTMS resulted in a
shorter latency compared to change following S-rTMS (estimated marginal means difference
=-16.215msec, SE=6.1, p=0.035).

Unaffected arm SEP.: Table 5 demonstrates both baseline SEP components values and
changes in these measures in response to each of the rTMS interventions. Based on mixed
model analysis, N60 latency showed a statistically significant result for session type (A2,
64.76)=3.875, p=0.026). Marginal mean estimate tests showed that following H-rTMS, there
was a shortening of latency for N60 peak compared with S-rTMS (estimated marginal means
= -3.56pV, SE=1.29, p=0.022).

DISCUSSION

This proof-of-principle study evaluates for the first time whether facilitation or inhibition of
contralesional S1 using rTMS paired with peripheral sensory stimulation can elicit
improvement in somatosensory function in chronic stroke. Our results suggest that
facilitatory H-rTMS (5 Hz) plus simultaneous peripheral sensory stimulation to the affected
arm improves 2-point discrimination. In addition, our exploratory analysis of SEP indicates
enhancement of somatosensory evoked responses following H-rTMS. Both clinical and
physiological effects lasted at least an hour as suggested by the lack of differences between
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the changes found immediately after and one hour following the interventions. There were
no differences among the pre-intervention testing for all sessions.

Somatosensory modality specific response.

A statistically significant response to facilitatory H-rTMS (5 Hz) plus simultaneous
peripheral sensory stimulation of the affected arm was observed for 2-point discrimination
ability on the stroke-affected side. Other somatosensory modalities (proprioception,
vibration and monofilament) did not demonstrate a statistically significant change. This
modality-specific response maybe due to differences in somatosensory signal processing, i.e.
proprioceptive vs. tactile, primary somatosensory perception (monofilament) vs. associative
(2-point discrimination). It is possible that discriminative somatosensory function is more
likely to be impacted by an ipsilateral intervention due to a bilateral processing of
somatosensory discrimination compared to the processing of primary somatosensory input.
In other words, tactile sensing is involved in monofilament test vs. 2-point discrimination.
Others have also reported a modality-specific response to brain stimulation following 10Hz
rTMS of the primary motor region where facilitatory stimulation reduced painful perception
of thermal stimuli but did not alter ability to sense non-painful tactile stimulation4’. Another
factor that may be influencing the modality specific response is the choice of the peripheral
stimulus paired with brain stimulation. For example, a modality specific response in healthy
controls receiving rTMS over M1 paired with passive joint movement resulted in a
significant change of corticospinal excitability while stimulation with rTMS alone did not*S.
In our study, we used sensory level electrical stimulation and vibration. Perhaps, other
combinations of peripheral somatosensory therapy and brain treatment protocols need to be
evaluated to determine if they have a specific effect on other somatosensory modalities.
Somatosensation is complex, and thus an array of measures was employed to assess various
aspects of somatosensation. At baseline, 2-point discrimination had the largest difference
between affected and unaffected hand and thus the tool may have been sensitive enough to
detect this change. It may be that the other measurement tools were not sensitive enough to
detect change in the other somatosensory modalities assessed. Indeed, available
somatosensory testing has many limitations that include a lack of sensitivity, poor
responsiveness, decreased validity and a lack of objectiveness?® and this may have
contributed to having only 1 out of 4 sensory measures demonstrating a statistically
significant response to the intervention. Additionally, the study employed impairment level
measures and no measurement of function was directly assessed. Therefore, the impact of
this observed change in 2-point discrimination on overall function was not studied. However,
the fact that we found an effect on 2-pt discrimination in a small sample using standard
clinical tests is intriguing and suggests future study is warranted with measures that more
finely assess somatosensory function.

Unilateral stimulation, bilateral effect.

Importantly, our findings suggest that contralesional S1 is playing a role in processing of
tactile discrimination in individuals in the chronic stage after stroke. This finding might
contradict the classic functional sensory anatomy teaching stating that peripheral signals
evoke contralateral activity and, therefore, are processed in the contralateral hemisphere0.
Indeed, recent functional imaging studies describe bihemispheric activation following
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unilateral somatosensory stimulation as seen with both fMRI and somatosensory evoked
potential tests®1:52. The pathways of sensory signal transfer to bilateral hemispheres may
involve transcallosal connections and possibly direct ipsilateral uncrossed afferent
pathways?7:53-55, Therefore, it is reasonable to expect that after stroke, these secondary
contralesional somatosensory processing regions play a role in restoring the lost function.

The concept of focal rTMS influencing function of bilateral somatosensory networks and
bilateral somatosensory abilities has been previously evaluated in healthy adults and in pain-
related research. In healthy adults, Premji et. al®® demonstrated that unilateral facilitatory
stimulation using an intermittent theta-burst stimulation (iTBS) protocol increased
somatosensory evoked potential amplitude at the site of stimulation and also on the non-
stimulated hemisphere. Another study of healthy adults showed that five-pulse 10Hz TMS
burst targeting right parietal region when paired with same side peripheral median nerve
stimulation increased fMRI activation®’. In pain therapy, unilateral 10 Hz rTMS targeting
primary motor area (M1) reduced thermal pain threshold in both hands*’. Overall, our
findings and those of others support contralesional somatosensory cortex modulation as a
reasonable brain stimulation target to enhance post-stroke somatosensory restoration.

Facilitatory, not Inhibitory, rTMS targeting contralesional S1.

Brain reorganization may take several paths to support recovery of somatosensory function
after stroke. If we consider a paradigm of interhemispheric balance that is disturbed after
stroke, one pattern of plasticity may be toward rebalance of interhemispheric interactions?!.
Indeed, in motor control studies using rTMS, inhibition of the contralesional hemisphere has
been shown to enhance motor function of the stroke affected upper limb presumably by
correcting imbalance??. Interhemispheric interactions have been demonstrated for healthy
controls where inhibition of somatosensory pathways on one side resulted in enhanced
excitability of SEP on the opposite side30:58 and improved somatosensory function®8-60,
After stroke, anesthesia of the unaffected upper limb improved somatosensory perception on
the affected side®1. However, these were peripherally administered inhibitory interventions
of the un-affected limb and we cannot expect the same response for modulation of the brain
somatosensory networks. In fact, contralesional S1 may be supporting the lost function of
the opposite hemisphere since somatosensory signal processing is bilateral. It is possible the
mechanism of somatosensory improvement following contralesional S1 facilitation is
tapping into pathways not related to transcallosal inhibition. These mechanisms may involve
facilitation of alternative somatosensory processing centers. Therefore, it is quite reasonable
to find that the facilitation of contralesional S1 and not its inhibition benefits recovery of
somatosensory function after stroke.

Unaffected upper limb response to stimulation supports protocol feasibility.

We observed a statistically significant improvement of 2-point discrimination of the
unaffected-by-stroke arm. This finding is an important confirmation that our protocol
achieves modulation of somatosensory function. H-rTMS, which is known to enhance
cortical activity, improved 2-point discrimination of the unaffected hand, contralaterally to
stimulated cortex. The positive changes in response to H-rTMS were contrasted with both S-
rTMS and L-rTMS. Others demonstrated in healthy adults that two types of facilitatory TMS
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(5Hz rTMS and iTBS) can transiently increase 2-point discrimination®%-60, Notably, in our
cohort of stroke survivors we observed changes in 2-point discrimination even though we
did not use a more sensitive 2-point discrimination set up with inter-point distances less than
2mm as was applied in studies with healthy controls. Perhaps, the response is more robust in
individuals with stroke deficits compared with healthy controls.

A transient decrease in vibration sense was observed immediately after each intervention.
This was not a lasting effect confirmed by the lack of differences among the testing at each
session’s baseline. It may be that adaptation of the cutaneous mechanoreceptors during the
vibratory stimulation of the hand was the cause for this temporary change 2. Although,
vibration was applied to the stroke-affected hand, the unaffected hand may have
inadvertently received vibratory stimulation while both arms were resting on a table where
the affected hand was placed on a vibrating device.

SEP changes in response to rTMS.

Our exploratory analysis suggests that H-rTMS may enhance the SEP signal induced by
peripheral stimulation of the median nerve. Specifically, for the stroke affected side there
was a reduction of N20, N60, P100 peak latencies and greater amplitudes of N25-P33 and
N33-P45 peaks following H-rTMS. The stroke-unaffected SEP pathway demonstrated
changes for the N60 peak latency following H-rTMS. Changes in both early and late SEP
components for both stroke-affected and -unaffected somatosensory tracts suggest unilateral
modulation of contralesional S1 may have an impact on the bilateral somatosensory
processing network. The earlier peaks (N20, P25, N33, P45) may reflect changes at the level
of thalamocortical projections to S1 cortex areas 3b and area1%3. Changes in the late SEP
components (N60 and P100) suggest involvement of SII and other higher-order sensory27:64
and sensory-motor® integration regions. SEP changes provide additional support of
potential therapeutic feasibility of our stimulation paradigm to evoke response in the
function of the somatosensory network.

After-effect duration.

Limitations.

There were no differences between Post 1 and Post 2 test results. Thus, when the changes
were achieved, they lasted at least 60 minutes. This finding is expected and suggests the
interventions induced an after-effect of up to 60 minutes (reviewed in24). Physiological
mechanisms of the after-effect are unclear but are thought to involve long-term potentiation
and long-term depression(reviewed in 246, In fact, analysis of SEP changes also
demonstrated lasting after-effects in both increased amplitude and decreased latencies, and
thus provide indirect evidence for functional brain changes remaining after stimulation for at
least an hour (reviewed in 2466, |t is expected that a single rehabilitation session would not
provide a permanent functional recovery and future multisession studies are needed to
evaluate a long-lasting of this intervention.

Three main limitations may have led to the limited response of different somatosensory
modalities. First, that we only demonstrated a significant change on 2-point discrimination
may be because for this measure there was the largest separation between the affected and
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unaffected sides. Therefore, it had the highest opportunity for improvement compared to the
other measures. Second, the outcome measures may have not been sensitive enough to detect
change. For instance, the proprioception measure may have been too subjective in nature to
detect change. Third, different forms of peripheral stimulation paired with NIBS may yield
better results. It should also be noted the study cohort was younger than average for the
stroke population and this may limit the generalizing study results to the greater stroke
population. Future research using more sensitive somatosensory measuring tools®’, testing a
population with a broader range of sensory deficits and multisession design of
complimentary peripherally directed stimulation paired with NIBS should overcome these
limitations.

Using a single session randomized cross-over design, we report preliminary evidence in
support of the effect of facilitatory contralesional rTMS on 2-point discrimination in chronic
stroke. This may be due to the higher incidence of 2-point discrimination deficit compared
with other sensory modalities in our patient cohort. In motor rehabilitation literature, a single
session crossover intervention paradigm has been widely used as a first step. In these
studies, different brain stimulation interventions were compared on the same patients with
the goal of identifying a therapy for application in multisession clinical trials. Further studies
are needed to explore the role of rTMS in rehabilitation of somatosensory function after
stroke.
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Figure2.
Changes in clinical test scores following the three interventions performed =1 week apart.

Mean changes for (A) two-point discrimination, (B) proprioception, (C) monofilament size
and (D) vibration perception threshold at Post 1 (immediately after rTMS; dark bar) and
Post 2 (1 hour after rTMS;light bar) are shown with error bar representing standard
deviation. Stroke-affected arm data is in the left-sided graphs and stroke-unaffected arm is
the right-sided graphs. * Brackets indicate statistically significant post-hoc paired
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comparisons in the mixed model analysis based on estimated marginal means. S- sham
rTMS, L-low frequency rTMS, H- high frequency rTMS.
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