Skip to main content
. 2021 Mar 4;11:5251. doi: 10.1038/s41598-021-84374-8

Table 1.

Comparison of different configurations of the pretraining methods.

Pretraining method Frame F1 F1n F1a F1o F1p
None (random weight initialization) .731 (± .019) .898 (± .005) .711 (± .027) .701 (± .017) .613 (± .062)
Beat classification 512 .769 (± .011) .911 (± .010) .760 (± .018) .758 (± .016) .647 (± .022)
2048 .779 (± .014) .915 (± .007) .777 (± .014) .763 (± .014) .661 (± .040)
4096 .768 (± .010) .908 (± .009) .764 (± .021) .754 (± .015) .646 (± .025)
Rhythm classification 512 .742 (± .017) .896 (± .007) .721 (± .026) .716 (± .032) .636 (± .045)
2048 .767 (± .012) .908 (± .004) .753 (± .020) .745 (± .018) .660 (± .026)
4096 .755 (± .005) .903 (± .008) .745 (± .022) .735 (± .012) .635 (± .017)
Heart rate classification 512 .766 (± .011) .915 (± .004) .759 (± .019) .756 (± .015) .635 (± .029)
2048 .753 (± .013) .910 (± .005) .743 (± .037) .738 (± .011) .619 (± .039)
4096 .751 (± .010) .909 (± .006) .744 (± .019) .739 (± .016) .611 (± .025)
Context ns Offset Frame
Future prediction 8 4 2 512 .756 (± .008) .903 (± .007) .742 (± .011) .730 (± .017) .649 (± .021)
16 8 2 512 .744 (± .016) .905 (± .005) .730 (± .027) .730 (± .009) .612 (± .041)
16 8 8 512 .758 (± .013) .908 (± .005) .753 (± .021) .745 (± .012) .627 (± .026)
16 16 8 512 .745 (± .013) .897 (± .006) .724 (± .024) .722 (± .009) .639 (± .034)

For each method, we report the average macro F1 score (and the standard deviation) on our test set for the PhysioNet/CinC Challenge 20177,8. Additionally, we report the average F1 score for each class: normal (F1n), AF (F1a), other (F1o) and noisy (F1p). Frame refers to the length of an ECG frame, context to the number of frames in the context, ns to the number of negative samples and offset to the distance between the context and the future frame measured in frames. All pretraining methods outperform random weight initialization in predicting every class.