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Abstract 

Compared with traditional tumor therapy strategies, hydrogel as a drug reservoir system can realize on-demand drug 
release and deep tissue penetration ability. It also exhibits great tumor-site retention to enhance the permeability 
and retention effect of tumor treatment. This can significantly overcome the drug’s resistance and severe side effects. 
Inorganic/organic composite hydrogel has attracted wide attention due to its combined effects, enhancing therapeu-
tic effects against various kinds of tumors. In situ injectable hydrogel can securely restrict the drugs in the lesion sites 
without leakage and guarantee better biosafety. Moreover, hydrogel possesses interconnected macropores which can 
provide enough space for nutrient transport, cellular activity, and cell–cell interactions. Thermal therapy is an effec-
tive strategy for tumor therapy due to its minimal invasiveness and high selectivity. Because the location temperature 
can be precisely controlled and helps avoid the risks of destroying the body’s immune system and ablate normal 
cells, thermal therapy exhibits significant treatment outcomes. Nonetheless, when the cellular temperature reaches 
approximately 43 °C, it causes long-term cell inactivation. Based on these merits, thermosensitive hydrogel formula-
tion with adaptive functions shows excellent efficacy, unlimited tissue penetration capacity, and few deleterious side 
effects. Furthermore, the thermosensitive hydrogel has unique physical properties under the external stimuli, which 
is the ideal drug delivery system for on-demand release in tumor treatment. This article will review the state of the 
thermosensitive hydrogel in clinic application for cancer therapy.
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Introduction
Over the past years, researchers have focused their atten-
tion on 3D biomaterials since the cross-linked macropo-
res provide enough space for nutrient transport, cell 
activity, and cell–cell interactions [1]. As the ideal drug 
carriers, the hydrogel has minimal invasiveness. It can 
form desired shapes to meet the requirement of irregu-
lar lesion sites in cancer therapy [2]. The traditional 
hydrogel is usually fabricated through physical interac-
tion or chemical binding of constituting polymer, which 
has minimal effects on their function [3]. Hydrogel as a 
drug delivery system should respond to endogenous/

exogenous stimuli, thereby ensuring the drug on-demand 
release in the lesion sites and reducing unnecessary side 
effects on normal tissues [4]. Functional inorganic nano-
material incorporated into the hydrogel can significantly 
overcome the intrinsic limits, which has other fascinating 
properties and remarkably improves stimuli-responsive 
therapeutic efficacy [5–7].

Thermal therapy has the advantages of local tempera-
ture controlling and minimal invasiveness, which became 
a novel therapy approach after chemotherapy, radiother-
apy, and surgical intervention in current tumor treatment 
[8]. Based on hydrogel inorganic material mediated ther-
motherapy with the unique physical feature under certain 
stimuli, it is the ideal agent delivery platform for on-
demand drug dose therapy in lesion sites [9–11]. Com-
pared with traditional synergistic therapeutic approaches 
(chemo/radiotherapy, chemo/photodynamic therapy, and 
photodynamic/photothermal therapy), thermosensitive 
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hydrogel loaded with antitumor drugs. This can help pen-
etrate drugs into deep tissues, form desired shapes to fill 
the irregular tissues, and promote wounds healing [12]. 
Also, mild temperature heating can enhance chemother-
apy outcomes by improving cytomembrane’s permeabil-
ity to increase cellular uptake of drugs and control drug 
release from the hydrogel. When the cellular tempera-
ture exceeds 41  °C, protein denaturation and temporary 
cell inactivation occur, and this lasts for several hours. 
When the temperature reaches approximately 43  °C, it 
causes long-term cell inactivation [13]. Moreover, inject-
ing thermosensitive hydrogel in situ into the lesion sites 
can avoid the risk of drug accumulation at the liver and 
spleen to improve therapy outcomes and guarantee bet-
ter biosafety in vivo [14].

The benefit of the thermosensitive hydrogel in the clinic 
can facilitate administration, improve therapeutic effi-
cacy in the lesion region, and reduce unnecessary damage 
to normal tissues, thereby improving patient compliance. 
This article will summarize some thermosensitive hydro-
gels to improve disease treatment and make the current 
state of the hydrogel in clinic application.

Magnetic Hyperthermia Hydrogel
It is well known that the doping concentration of inor-
ganic nanoparticles into the hydrogel can inevitably 
affect the intrinsic hydrogel properties, which usually 
shows dose-dependence [15]. The high concentration of 

agents would enhance the therapeutic efficacy. However, 
unnecessarily it deteriorates the rheological properties 
of the hydrogel, resulting in burst release, uncontrolled 
treatment, and severe side effects on normal tissues [16].

It is challenging to fabricate high-performance nano-
particle hydrogel, which should balance hydrogel’s intrin-
sic properties and associate the functions associated with 
the inorganic nanoparticle loading process. This con-
tradiction is very obvious in designing magnetic hydro-
gel in the synergistic thermos-chemotherapy for highly 
efficient postsurgical treatment [17]. This shortcoming 
would be effectively overcome, providing good rheo-
logical properties and sufficient heating efficiency. This 
is based on glycol-chitosan, difunctional telechelic poly 
(ethylene glycol) (DT-PEG), and ferromagnetic vortex-
domain iron oxide (FVIOs) as the raw materials (Fig. 1) 
[18]. Compared with traditional magnetic hydrogel, the 
obtained magnetic hydrogel overcomes the side effects 
and exhibits remarkable rheological properties and 
high heating convert ability in an alternating magnetic 
field [19]. Further, this self-adapting magnetic hydrogel 
regulates the drug in a long-term sustainable manner. 
It directly targets the lesion sites. Magnetic hyperther-
mia can promote the internalization of a drug, eventu-
ally causes cancer cells apoptosis and reducing tumor 
size. The FVIO-incorporated hydrogel has the features 
of self-healing, fast gelation, and self-confirming ability, 
which can satisfy synergistic thermos-chemotherapy and 

Fig. 1  Illustrates FVIO-functionalized magnetic hydrogel with optimal adaptive functions for breast cancer postoperative recurrence prevention 
[18]. Copyright 2019 Adv. Healthcare Mater
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provide an alternative strategy for addressing the unmet 
clinical need. This work underlines the potential prom-
ise for the precision of the injection sites. It enhances the 
magnetic hyperthermia efficiency for xenograft tumor 
treatment.

Near‑Infrared Light Absorption Hydrogel
Photothermal therapy (PTT) has attracted wide attention 
due to its unbeatable advantages in cancer treatment, 
including control treatment and satisfactory cancer erad-
ication outcomes [20–22]. However, conventional PTT 
has poor penetration into the site of the deep lesions, 
bring harmful effects on therapy. Chemotherapy and 
PTT synergistic strategy might be a well-pleasing candi-
date to enhance the tumor therapeutic efficacy [23].

Various photothermal materials have been widely 
exploited as drug delivery carriers or coupling reagents 
for cancer therapy, including metal–organic frameworks 
and carbon dots [24–27]. Among these materials, conju-
gated polymer dots (Pdots) are biocompatible, degrada-
ble, and nontoxic biomaterial with easy functionalization. 
These are small in size and extraordinary photophysical 
properties [28–31]. More importantly, Pdots with strong 
optical absorption properties and photostabilities in the 
near-infrared (NIR) light window are satisfying agents for 
PTT and photoacoustic imaging (PAI) [32–34]. Iohexol is 
an efficient and safe contrast agent approved by U.S. Food 
and Drug Administration for body computed tomogra-
phy (CT) imaging [35]. However, the time of Iohexol for 
CT imaging is very short, and this inevitable shortcom-
ing limits Iohexol widely used in the clinic [26]. Grating 
iohexol into Pdots-DOX-based thermosensitive hydrogel 
can successfully overcome this disadvantage of iohexol 
for enhanced CT imaging ability. This makes hydrogel an 
excellent candidate used in cancer theranostics.

Based on these merits, Men et al. introduced a multi-
function Pdots@hydrogel drug delivery platform with 
good biodegradability, strong NIR absorption ability, high 
photothermal conversion efficiency, and controlling drug 
release, well-pleased CT/PA/fluorescence imaging ability, 
and enhanced tumor therapeutic outcomes (Fig. 2) [36]. 
The obtained NIR light-mediated Pdots-DOX-iohexol@
hydrogel system exhibits strong photothermal effects. 
It achieved dose-control chemotherapy by interval NIR 
light irradiation, superior tissue penetration, and mini-
mal invasion in cancer treatment, thus inhibiting tumor 
growth. More importantly, the nanoengineering modality 
for the Pdots-DOX-iohexol@hydrogel possesses excellent 
CT/FL/PA imaging ability and high biocompatibility for 
cancer detection. Therefore, the concept of integrating 
various diagnostic/therapeutic agents into one system 
can be potentially applied to various perspectives of dis-
ease therapy in the clinic.

Photothermal Effects Bifunctional Hydrogel
At present, the treatment of bone tumors mainly depends 
on surgical intervention and chemo/radiotherapy syner-
getic approaches, which significantly improves patients’ 
survival rate [37]. However, surgical intervention always 
causes bone defects. It incompletely removes tumor 
cells, making bone tissues hard to heal by themselves, 
and residual cancer cells proliferate within several days. 
Therefore, it is significant to develop a biomaterial with 
tumor therapy and simultaneously promote bone regen-
eration after surgery.

Injectable hydrogel as a promising alternative approach 
can form desired shapes to fill defects tissues. Its com-
ponents are very similar to bone tissues for improving 
osteogenic ability [38]. The injectable hydrogel applied in 
bone tissue engineering should be slow enough to meet 
surgical handing and simultaneously be fast enough to 
realize stability and function after injection in vivo [39]. 
In order to solve these issues, Luo and his co-works 
provided a novel bifunctional injectable hydrogel. This 
hydrogel used polydopamine (PDA) to modify nano-
hydroxyapatite (n-HA) and immobilize cisplatin (DDP) 
to fabricate PHA-DDP particles. It was then introduced 
PHA-DDP particles into the Schiff based on the reac-
tion system between chitosan (CS) and oxidized sodium 
alginate (OSA) (Fig. 3) [40]. Nano-hydroxyapatite (n-HA) 
played an important role in bone formation, which is 
the major inorganic material in bone tissues and com-
posed of calcium and phosphorus elements [41]. Mussel-
inspired PDA as the ideal candidate for photothermal 
agents has good biocompatibility and biodegradability 
and has abundant functional groups. Mussel-inspired 
PDA easily deposits on various substances, such as load-
ing antitumor drugs (cisplatin, DDP) through hydro-
gen bonding or other interactions [42–44]. Additionally, 
n-HA was modified into PDA to obtain PDA decorated 
n-HA (PHA), improving cell adhesion and proliferation 
[45].

The successfully obtained OSA-CS-PHA-DDP inject-
able hydrogel has excellent PDA photothermal effects of 
inhibiting tumor growth via local hyperthermia under 
laser irradiation. Further, mild photothermal effects can 
improve the permeability of cytomembrance to increase 
the cellular uptake of antitumor drugs. They can destroy 
hydrogen bond interactions between DDP and PDA 
to improve drug release and enhance tumor treatment 
effects. More importantly, PDA’s abundant functional 
group can promote bone mesenchymal stem cell prolifer-
ation and adhesion and further facilitate new bone tissue 
formation. This bifunctional hydrogel integrates tumor 
treatment with bone regeneration based on these prop-
erties. It shows a promising approach for tumor-related 
bone defects in the clinic.
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PTT/PDT‑Responsive Agarose Hydrogel
Tumor vascularity has poor integrity of structure, 
resulting in insufficient oxygen supply in tumor regions. 
Hypoxia condition causing an acidic tumor microen-
vironment by increasing production of lactic acid via 
anaerobic glycolysis [46]. Thus, hypoxia and low pH 
are the common features of tumor microenvironment 
severely compromising therapeutic efficacy.

Photothermal therapy destructs tumor tissues based 
on local hyperthermia mediated by photothermal 
agents under laser irradiation [47]. Thus, various kinds 
of photothermal agents have been developed to satisfy 
PTT performance [48]. However, most of them still 
have some drawbacks in clinical application, such as 

non-degradability, low biosafety and complex synthe-
sis progress. Humic acid (HA) has excellent photother-
mal conversion ability and photoacoustic (PA) imaging, 
which is extracted from biochemical humification of 
animal and plants matter and it has attracted increas-
ing attention in PTT [49]. Meanwhile, photodynamic 
therapy (PDT) is another effective strategy for tumor 
therapy by utilizing the oxygen reactive species (ROS) 
generated from oxygen molecules in the presence of 
photosensitizers (PS) under laser excitation [50]. Chlo-
rin e6 has high ROS production yield and low dark 
toxicity, which has been widely used in PDT [51]. But, 
intrinsic hypoxia microenvironment can compromise 
therapeutic effects during PDT progress.

Fig. 2  a Schematic of the fabrication of conjugated polymer IDT − BTzTD. b Schematic of the fabrication of IDT − BTzTD Pdots. b Schematic of the 
Pdots − DOX − iohexol@hydrogel for trimodal FL/PA/CT imaging-guided synergistic chemo-photothermal cancer therapy [36]. Copyright 2020 ACS 
Appl. Mater. Interfaces
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LMP agarose hydrogel melts at the temperature above 
65 °C and sol-to-gel transition begins at the temperature 
under 25  °C during the cooling process, which displays 
great potential for on-demand drug administration by 
precisely regulating various temperature [7, 52]. There-
fore, rational designed and functionalized LMP aga-
rose hydrogel is a promising approach to realizing high 
drug bioavailability and enhancing therapeutic outcome 
through one single injection. As Fig.  4 is shown, Hou 
et  al. provided a novel “co-trapped” approach by simul-
taneously incorporating SH, Ce6 and MnO2 nanopar-
ticles into low melting point (LMP) agarose, and the 
obtained agarose@SH/MnO2/Ce6 hybrid hydrogel was 
successfully used to improve PTT/PDT through amelio-
rate tumor hypoxia environment [53]. After, as-synthe-
sized hybrid hydrogel was injected into the tumor areas, 
exhibiting excellent biocompatibility and biodegradabil-
ity, especially when it was precisely introduced into the 
innermost. Further, MnO2 and Ce6 can be continuously 
permeated into the surrounding environment by soften-
ing and hydrolyzing hybrid hydrogel. More importantly, 
SH as light absorber converts light into thermal under 
laser irradiation, thus hydrogel itself can be applied 
in PTT. What’s more, MnO2 released from hydrogel 
can catalyze excessive H2O2 in tumor tissues to gener-
ate oxygen, which can enhance PDT outcomes upon 
being exposed under 660 nm laser and attenuate tumor 

hypoxia environment. This multifunction agarose@SH/
MnO2/Ce6 hybrid hydrogel was injected into the tumor 
sites without entering the circulatory system, which help 
avoid potential biohazard and being cleared by the body 
immune system. Therefore, it achieves “one injection, 
multiple therapies”, and inspires us to exploit suitable 
hydrogel-based approaches to various disease therapy in 
clinic.

Perspectives
Thermal therapy has the advantages of minimal inva-
siveness and high selectivity, which is an effective strat-
egy for tumor therapy in clinic [54, 55]. Compared with 
conventional approaches, thermal therapy can precisely 
control local temperature and effectively avoid unnec-
essary side effects such as damaging normal issues and 
destroying body immune system [56]. When the cell tem-
perature reaches 41 °C, cell becomes temporarily inactive 
and causes protein denaturation, and this condition lasts 
for several hours. As the temperature arrives at 43 °C, it 
may cause long-term cells inactivation. Although thermal 
therapy has achieved much exciting progress in the field 
of tumor therapy, there is still a lack of safe and effective 
photothermal agents or drug carriers with good biocom-
patibility and biodegradability.

Hydrogel is the ideal candidate for drugs carrier with 
good biocompatibility and biodegradability in current 

Fig. 3  Schematic illustration of the formation of bifunctional OSA-CS-PHA-DDP hydrogels and bioapplication [40]. Copyright 2019 Macromol. Biosci
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tumor treatment. Incorporating inorganic/organic into 
hydrogel has attracted widely attention due to their coop-
erative effects which can enhance therapy effects against 
tumor. Among various responsive hydrogel, thermosen-
sitive hydrogel can precisely and continuously control 
drug release through temperature stimulus in tumor 
tissues. Compared with percutaneous and intravenous 
injection methods, the accurate locate injected admin-
istration hydrogel within the agents has better biosafety 
in vivo [57].

Conclusions
Despite the significant merits of hydrogel, the clinical 
application has been limited due to unsatisfactory bio-
distribution, poor biocompatibility, and poor tumor pen-
etration ability. In this article, thermosensitive hydrogel 
has the advantages of better biocompatibility, excellent 
tumor inhibit ability, and no unnecessary side effects. 
These merits will further promote their application in 
clinic for various disease treatment.
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