
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5197  | https://doi.org/10.1038/s41598-021-84295-6

www.nature.com/scientificreports

Automation of surgical skill 
assessment using a three‑stage 
machine learning algorithm
Joël L. Lavanchy1, Joel Zindel1, Kadir Kirtac2, Isabell Twick2, Enes Hosgor2, 
Daniel Candinas1 & Guido Beldi1*

Surgical skills are associated with clinical outcomes. To improve surgical skills and thereby reduce 
adverse outcomes, continuous surgical training and feedback is required. Currently, assessment of 
surgical skills is a manual and time-consuming process which is prone to subjective interpretation. 
This study aims to automate surgical skill assessment in laparoscopic cholecystectomy videos using 
machine learning algorithms. To address this, a three-stage machine learning method is proposed: 
first, a Convolutional Neural Network was trained to identify and localize surgical instruments. 
Second, motion features were extracted from the detected instrument localizations throughout time. 
Third, a linear regression model was trained based on the extracted motion features to predict surgical 
skills. This three-stage modeling approach achieved an accuracy of 87 ± 0.2% in distinguishing good 
versus poor surgical skill. While the technique cannot reliably quantify the degree of surgical skill yet it 
represents an important advance towards automation of surgical skill assessment.

Intraoperative and postoperative complications remain a clinical challenge in surgical practice. Not only 
patient and procedure related factors increase the risk of adverse surgical outcomes so do poor technical skills 
of surgeons1,2. A recent study suggests that the disparity in surgical skill among practicing surgeons accounts 
for more than 25% of the variation in patient outcomes3. To improve patient outcomes, it is therefore necessary 
to train surgeons’ technical performance by continuously providing objective feedback on their surgical skills.

Assessing surgical skills objectively remains a matter of debate4. Traditionally, the skills of surgical trainees 
have been assessed using in vitro model trainers5,6. However, these approaches have been criticized for lacking 
reality and do not translate into reduced mortality or morbidity7. Common practice in vivo skill assessment is 
either based on direct observation of surgical trainees8,9 or on retrospective analysis of operation videos10,11. 
Skills of surgical trainees are rated by experts according to predefined criteria8,12. While these approaches are a 
much better reflection of reality and can be blinded, they are limited by reproducibility and rater availability13.

With recent advances in machine learning, the attention has shifted to automated surgical skill assessment, 
particularly in robotic interventions. Robotic surgeries have the advantage that kinematic data of instruments 
and video recordings are readily available from the console14–18. Most of the previous studies have solely focused 
on robotic kinematics data to compute automated performance metrics or predict skill levels14–17,19,20. One study 
has combined motion features extracted from video and kinematic signals18. Another one exclusively relied on 
surgical videos and utilized a 3D convolutional neural network (CNN) to capture both spatial and temporal 
information for surgical skill prediction21. Methodologies have ranged from hidden markov chains20 and tra-
ditional machine learning classifiers14, over time series feature extraction17,18 to CNNs15,16,21,22. Although these 
works provide an important contribution to the field their applicability in real-world clinical setting are limited 
as robotic surgeries are still rare and kinematics data therefore frequently not available.

To apply automated surgical skill assessment to surgical practice it is necessary that machine learning models 
are based on data commonly recorded in surgery such as laparoscopic videos. Numerous studies have shown that 
CNNs can be successfully applied to real-world laparoscopic videos23. Examples include procedural phase and 
instrument presence detection24 as well as surgical instrument segmentation25. So far only one previous study 
analyzed surgical skill based on laparoscopic videos26. Jin et al. used a region-based CNN to localize and identify 
seven surgical instruments in videos of laparoscopic cholecystectomies. They performed a descriptive analysis of 
five videos showing differences in instrument utilization times, instrument path length and instrument movement 
ranges between varying surgical skill levels. While being based on a small dataset these findings were promising 
and inspired us to suggest an extended modeling approach for surgical skill assessment.
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Continuing the work of previous studies, we aimed to automatically assess surgical skill using laparoscopic 
cholecystectomy videos. As performed by Jin et al. we extracted instrument locations from laparoscopic videos. 
We then computed motion features from the instrument trajectories throughout time with the aim to capture 
a surgeon’s instrument handling skills. Finally, the calculated motion features were fed into a machine learning 
model to predict surgical skill. To simplify the problem, we focused on video segments of clip application at the 
end of the hepatocystic dissection, a surgical gesture that requires careful handling of the clip applier and thus 
displays a good proxy to rate surgical skill.

In the following we will describe our proposed modeling approach (Fig. 1a) in three stages: In the first stage, 
a Convolutional Neural Network (CNN) based classifier was trained to both identify and localize instruments in 
video frames. In the second stage, the instrument location predictions were transformed to time-series motion 
features. Finally, in the third stage, a linear regression model was trained utilizing the extracted motion features 
as input to predict surgical skill.

Methods
Ethical approval.  The institutional review board—the ethics committee of the Canton of Bern—approved 
the study design, the use of laparoscopic videos, and waived the need to obtain informed consent (KEK 2018-
01964). All methods were performed in accordance with the relevant guidelines and regulations.

Dataset.  Video storage and annotation.  The institutional video archive was screened for video recordings 
of laparoscopic cholecystectomies performed between January 2014 and May 2019. A total of 242 videos were 
identified. The videos were stored in Movie Pictures Experts Group (MPEG) format on a secured internet-based 
platform (https://​ala.​surge​ry) for further processing. The videos were segmented into procedural phases of the 
intervention. The dissection of the hepatocystic triangle was labeled beginning with the first use of a dissection 
instrument in the region of the hepatocystic triangle until the cystic duct and artery were cut. Within the dis-
section of the heptatocystic triangle applications of surgical clips (B. Braun Aesculap Challenger Ti, Tuttlingen, 
Germany and Teleflex Hem-o-lok, Belp, Switzerland) were annotated. In total, 949 segments of clip applications 
were labeled.

Figure 1.   (a) Schematic presentation of the three-staged machine learning algorithm. First, instruments 
were automatically detected by a CNN in the laparoscopic videos and second, motion features were extracted. 
Finally the extracted motion features were used to automatically predict surgical skill using a linear regression 
model. (b) Screenshots of instrument detection algorithm (full video in the Supplementary Material Video S1). 
Green bounding boxes with corresponding class labels (grasper and clipper) and detection confidence. (c) Four 
random examples of relative displacement of the clipper as tracked by the instrument detection algorithm, ID01 
and ID03 show a narrow range of movement, whereas ID02 and ID04 show a wide range of movement.

https://ala.surgery
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Skill rating.  Surgical skills can be assessed globally per intervention or specifically on the level of procedural 
phases or surgical gestures. In this study clip application at the end of the hepatocystic dissection phase served 
as the surgical gesture used as a proxy for surgical skill. A total of 949 clip applications in 242 video recordings of 
laparoscopic cholecystectomy were rated by four board certified surgeons (Table 1). Skill ratings were based on a 
Likert scale from 1 (minimum score) to 5 (maximum score) (definitions see Supplementary Table S1).

The distribution of human skill ratings is illustrated in Supplementary Fig. S1.
To assess the extent of consensus between two or more experts that independently rated the same clipping 

gesture inter-rater reliability was calculated using a one-way random single measure intraclass correlation coef-
ficient (ICC)27. Expert skill ratings exhibited an inter-rater reliability of 79% (95% CI 72–85%), a value that is 
considered excellent28.

Modeling stage 1: instrument detection model.  Dataset and instrument labeling.  101 out of the 949 
clip applications from the 242 videos of laparoscopic cholecystectomies were randomly selected. Selected clip-
ping segments were randomly partitioned into a training, a validation and a testing split, with corresponding 
ratios of 60%, 20% and 20%, respectively. The partitioning was performed based on video segments, i.e., frames 
from a segment are not distributed across multiple sets.

Frames were extracted from the selected clipping segments at 5 frames per second. The total set was composed 
of 13,823 individual frames (6950 in training, 3985 in validation and 2888 in testing set). In each frame, grasper 
and clipper instruments were annotated with a bounding box and a class label. The distribution of frames and 
object instances are shown in Table 2.

Model architecture.  Recently methods based on deep CNNs have been the top performers in object detection 
benchmarks29. A recent CNN architecture named Feature Pyramid Networks30 (FPN) showed top results for 
generic object detection when combined with Faster R-CNN system31, hence, being the basic motivation for 
our instrument detection model in this work. The original study presented the performance of a 101-layer and 
50-layer Resnet (Residual Network) as backbone30. We employed the 50-layer Resnet, namely Resnet50-FPN, 
due to overfitting concerns. The input to the network is an image of arbitrary size. The final output is a bound-
ing box for each detected instrument and a class label (grasper or clipper) with its confidence score. The whole 
architecture, which is illustrated in Fig. 2, was trained end-to-end.

Model training.  To initialize the network weights we used transfer learning similar to a previous study26. To do 
so, an instance that had been pre-trained on the 2017 training split of the Microsoft Common Objects in Con-
text (COCO) object detection task (https://​cocod​ataset.​org/#​detec​tion-​2017) was used. The pre-trained model 
was initially trained on 91 categories. Since we only required two categories (grasper and clipper) the final fully 
connected classification layer of the pre-trained model was replaced with a new layer that had two outputs and 
then all layers were retrained.

The network was trained for 15 cycles, using a training batch size of 2. A stochastic gradient descent optimizer 
was used with an initial learning rate of 0.005, a momentum of 0.9 and a weight decay of 0.0005. Throughout 
the optimization, the learning rate was halved every 5 cycles. Random horizontal flipping was used to augment 
our training dataset.

Model evaluation.  Average precision (AP) and average recall (AR), which have become the standard metrics to 
evaluate object detection methods29, were also used in this work.

To compute AP, predicted bounding boxes are sorted according to their confidence score in descending order. 
Then, a precision-recall curve is obtained by varying a confidence threshold from 1.0 (highest precision) to 0 
(highest recall). AP is computed as the area under the precision-recall curve (AUC). To compute AR, a recall-
Intersection over Union (IoU) curve is computed by varying an IoU threshold between 0.5 (highest recall) and 

Table 1.   Dataset statistics.

Min Max Mean Std dev Sum

# clips per video 1 9 3.92 1.75 949

Clip duration (s) 1 89 15.13 9.91 14,361

Average rating 1 5 3.7 1.02 3514

Table 2.   Distribution of frames and object instances for instrument detection.

Number of frames Number of grasper instances Number of clipper instances

Training 6950 4013 5618

Validation 3985 3027 3351

Testing 2888 2038 2054

https://cocodataset.org/#detection-2017
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1.0 (lowest recall) and recall is computed at each level of the threshold. AR is then computed similarly as the 
area under this curve (AUC).

Implementation details.  Our implementation is based on the torchvision library (https://​github.​com/​pytor​ch/​
vision) included in the PyTorch framework32. We follow best practices from the previous FPN work30 to use 
the same RPN anchor box sizes (5 scales and 3 aspect ratios) and same RPN foreground and background IoU 
thresholds as being 0.7 and 0.3, respectively. Our dataset had videos of two spatial resolutions, i.e., 720 × 576 and 
1280 × 720. Before feeding a video frame into the network it was resized such that its shorter side was 800 pixels.

To compute the evaluation metrics, an implementation provided by torchvision library was utilized which is 
based on the evaluation scripts provided by the COCO organization (https://​cocod​ataset.​org/#​detec​tion-​eval). 
In our evaluation experiments, we both set the detector IoU and confidence thresholds to 0.5.

Modeling stage 2: motion feature extraction.  Preprocessing of instrument locations.  The output 
from the instrument detection model contained the predicted instruments for every frame as well as the x and y 
coordinates of their associated bounding boxes. This data was initially pre-processed to facilitate the extraction 
of motion features, as explained in the following.

1.	 Bounding box coordinates were normalized according to the height and width of the image and the centre 
location of each bounding box was calculated.

2.	 Overlapping bounding boxes were removed if the IoU of two bounding boxes of the same class was larger 
than 0.1 or if one of the box areas was smaller than 1.5 times the intersection area of two bounding boxes. 
These cleaning steps reduced the number of detected instruments per frame and ensured that the same 
instrument was not detected several times.

3.	 The particle-tracking library trackpy (https://​github.​com/​soft-​matter/​track​py)33 was used to track the instru-
ment’s location from frame to frame. The most frequently predicted class label of each path was computed, 
and all instrument detections of the path were assigned to this class. In this way, some of the misclassification 
from the instrument localization model were cleaned up.

4.	 Since the focus laid on clipper movements grasper detections were removed. For each frame the clipper 
detection with the highest confidence was selected as only a single clipper was visible in our videos at any 
given time.

5.	 The clipper locations were further smoothed using exponentially moving average.

Calculation of motion features.  Motion features calculated from the pre-processed instrument locations were 
aimed to capture the characteristics of good/poor surgical skill. Skilled surgeons are known to handle instru-
ments in a narrow and focused area within their operative field. Poor surgical skill, on the other hand, is indi-
cated by slow, shaky movements with frequent direction changes and larger areas of motion.

To describe the area of motion of the clipper movements the centroid of all clipper locations was calculated 
as well as the radius from the centroid to all clipper locations throughout the video snippet. The centroid clipper 
position (with coordinates x and y) is an indication of whether the surgeon’s operative field lies within the centre 
of the visual field (or image), the radius describes the extent of the movement range of the clipper handling.

Figure 2.   The Feature Pyramid Network (FPN) based Faster R-CNN fine-tuned with surgical instrument 
locations. The network receives an input of an image of arbitrary size. The backbone network is a Resnet50-FPN 
CNN which is connected to a Region Proposal Network (RPN) that shares its convolutional layers with the 
detection network. The RPN is a fully convolutional network which generates region proposals which are highly 
likely to contain an object. The detection network pools features out of these region proposals and sends them 
to the final classification and bounding box regression networks. The final output is a bounding box for each 
detected instrument and a class label (grasper or clipper) with its confidence score.

https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://cocodataset.org/#detection-eval
https://github.com/soft-matter/trackpy
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To identify whether the surgeon performs directed movements the feature clipper ‘direction change’ was com-
puted which constitutes the percentage of direction changes of at least 45° or more throughout the video snippet. 
Clipper ‘longest constant direction (LCD)’ refers to the longest consecutive path without direction changes of 
more than 45°. To further describe the clipper movement magnitude and to identify frequent hesitation clipper 
‘position change 1%’ and clipper ‘position change 10%’ were computed which constitute the percentage of clipper 
location changes of 1 and 10% with respect to the image width/heights.

Additionally, the number of detected clippers per video snippet (clipper count) was computed, a metric 
correlated to the length of the video snippet, as well as the summed distance of clipper movements throughout 
the video snippet. A description and visualization of the extracted motion features is given in Supplementary 
Table S2 and Supplementary Fig. S2.

Modeling stage 3: skill prediction model.  Data set and model training.  The dataset consisted of ten 
motion features calculated for each of 949 clipping video segments as well as the associated average skill rating. 
Prior to training the skill prediction model, five out of the 949 clipping videos were removed due to showing 
other surgical gestures. Most of clipping segments were rated by more than one expert therefore the average skill 
rating was calculated.

A linear regression model was trained using the sklearn library (https://​github.​com/​scikit-​learn/​scikit-​learn) 
based on the ten motion features as input and the average skill rating as the dependent variable.

Model evaluation.  Model performance was assessed using Monte Carlo cross validation with ten random splits 
of 70% training and 30% testing data.

Two performance metrics were used for evaluation: Accuracy 1/0 and accuracy + 1/− 1. Accuracy 1/0 was 
used to assess whether the model was able to distinguish good and poor surgical skill. It was calculated by trans-
ferring both human skill ratings and automated predictions to binary (a value of 3 or higher from the human 
expert’s skills rating was considered ‘good’) and computing the percentage of correct cases. The accuracy + 1/− 1 
score allowed for a ± 1 deviation from the actual skill rating (e.g. if the human rating is 3 predictions of 4 and 2 
are still acceptable).

Results
To assess surgical skill based on the surgeon’s ability to handle surgical instruments a three-stage modelling 
approach was developed. The methodology is based on detecting and localizing instruments in surgical videos 
(stage 1), tracking these instruments over time and calculating relevant motion metrics (stage 2) and predicting 
surgical skill based on the calculated motion metrics (stage 3). In the following, we will present the results of 
each of these stages.

As a first step, a frame-wise instrument detection and localization model which predicts the presence, type 
and location of an instrument in each frame was trained. The model reliably detected clipper and grasper pres-
ence and location as exemplified in Fig. 1b (full Video S1 in the Supplementary Information). Detections of the 
clipper had an average precision (AP) of 78% and an average recall (AR) of 82%. Grasper detections showed even 
higher AP and AR of 80% and 84% respectively (Differences of AP and AR in validation and test set are listed in 
Table 3). Further representative examples of challenging situations where the model succeeded (Supplementary 
Fig. S3) or failed (Supplementary Fig. S4) in detecting and localizing the correct instrument can be found in the 
Supplementary Information.

As a second step, the outputs from the detection and localization model were first pre-processed before 
motion metrics, which aimed to capture the characteristics of good/poor surgical skill, were calculated. Pre-
processing of the instrument localizations ensured that individual instruments could be tracked throughout the 
clipping video segment (see “Methods” section for details). The degree of clipper movements varied substantially 
between video segments (Fig. 1c). Based on the clipper’s movements descriptive motion features like the num-
ber of frames the clipper was detected in (clipper count) or the distance the clipper travelled over time (clipper 
distance) were calculated (see “Methods” section for details). In total, n = 10 motion features were derived.

Some of the clipper motion features showed correlation with human rated skill ratings (Fig. 3a,b, measured 
using Spearman’s rank correlation coefficient ρ with significance level α = 0.05). The motion features ‘Count’ 
(ρ =  − 0.40 p < 0.001), ‘Distance’ (ρ =  − 0.35 p < 0.001), ‘Radius 66%’ (ρ =  − 0.12 p < 0.001), ‘Radius 99%’ (ρ =  − 0.12 
p < 0.001) and ‘Longest constant direction’ (ρ =  − 0.23 p < 0.001) were all negatively correlated with surgical skill 
ratings. The motion feature ‘Position change 1%’ was positively correlated with surgical skill (ρ = 0.04 p < 0.001). 
‘Centroid x’, ‘Centroid y’, ‘Position change 10%’ and ‘Direction change’ showed no significant correlation with 
the human rated skill ratings.

As the third step, a linear regression model was trained to predict surgical skill based on the extracted motion 
metrics. The contribution of each feature towards the prediction is shown in Fig. 3c with the ‘clipper count’ being 
the most important. Predictions of the regression model were evaluated using accuracy 1/0 (binary, good vs. 

Table 3.   Instrument detection evaluation results.

Average precision grasper Average precision clipper Average recall grasper Average recall clipper

Validation 0.68 0.86 0.70 0.88

Testing 0.80 0.78 0.84 0.82

https://github.com/scikit-learn/scikit-learn
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poor surgical skill) and accuracy + 1/− 1 (skill level from 1 to 5, with ± 1 deviation). The linear regression model 
achieved a performance of 87 ± 0.2% (mean ± SD) in accuracy 1/0 and 70 ± 0.2% in accuracy + 1/− 1. Predictions 
versus expert rated skill ratings are displayed in Fig. 3d,e. As depicted by the figure, regression line predictions 
and ground truth labels show a positive correlation.

Discussion
The presented study aimed to predict surgical skill based on machine learning assisted instrument detection and 
motion feature extraction of laparoscopic cholecystectomy videos. Since surgical skill is largely determined by 
smooth and efficient instrument handling our approach is focused on instrument tracking. A three-step model-
ling approach was performed. An instrument location model was trained that predicts the presence, type and 
localization of grasper and clipper instruments in a video frame (stage 1). From the clipper localization motion, 
features that describe the handling of the clipper were derived (stage 2) and a linear regression model was trained 
to predict surgical skill (stage 3).

In modeling stage 1, the instrument detection and localization model achieved 78% average precision (AP) 
and 82% average recall (AR) for the clipper on the test set (86% AP and 88% AR for the validation set). Previously 
published results by Jin et al. reported a higher AP of 86% for clipper identification and bounding box localiza-
tion in their test set26. Visual inspection of Jin et al. dataset suggests that it only contains a single clipper type. 
Our dataset, in contrast, had two different types of clipper, namely B. Braun Aesculap Challenger and Teleflex 
Hem-o-lok. Variations in the physical appearance of these two clippers likely made it more challenging for the 
model to correctly identify clippers thus explaining the lower AP performance compared to Jin et al.

Qualitative results presented in the Supplementary Information (Supplementary Figs. S3, S4) further display 
that our model performs well in difficult cases such as poor illumination, presence of multiple instruments as 
well as partial and heavy occlusion. When inspecting incorrect detections, however, it also becomes apparent 
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that difficult instrument angle, very poor illumination or heavy occlusion can prevent the model from correctly 
identifying and localizing an instrument. To more reliably detect instruments in such difficult situation more 
examples of occluded and dimly lit instruments will be required as well as specific data augmentation techniques 
during training.

In modeling stage 2, the calculated motion metrics were compared to expert skill ratings. The number of 
frames the clipper is present and the distance it travels through the image are negatively correlated with surgical 
skill rating (Fig. 3b). The motion feature, ‘Count’ is an indicator of duration of clip application. Higher surgi-
cal skill rating were associated with a shorter clip application phase. This is not surprising as skilled surgeons 
spent less time clipping than a less skilled surgeon who has to adjust the clipper position frequently to place the 
clip correctly. The radius of clipper locations around the centroid is smaller in videos with higher skill ratings 
(Fig. 3b) demonstrating a narrower movement range of skilled surgeons. Moreover, the largest constant move-
ment direction of the clipper is smaller in higher rated skills (Fig. 3b), indicating that skilled surgeons move their 
instruments smoothly without tremor or shaky movements.

In modeling stage 3, the accuracy of the machine learning algorithm to predict good or poor surgical skill 
was 87% and accuracy to predict the skill level ± 1 point was 70%. Of note, even human skill rating considered 
as gold standard has its limitations in terms of inter-rater reliability with an ICC of 79% in this study.

As shown in Fig. 3e, while there is a correlation between the automated skill ratings and the human rated 
ground truth values the model fails to predict low and high skill ratings correctly. Low skill was likely difficult 
to predict as low skill ratings constituted only a small percentage of the dataset (Supplementary Fig. S1), thus 
making it hard for the model to learn patterns associated with low skill. As the video recordings are from real-life 
surgery it is comprehensible that low surgical skill ratings are underrepresented in the dataset. A confounding 
factor for low skill predictions was further that dropping the clip was rated as poor surgical skill (Supplementary 
Table S1) independent of how well the instrument was handled before the clip was dropped. This poses a problem 
to our model as it solely relies on instrument movements and has no information on whether the clipper is still 
loaded with the clip or not.

When looking at instrument localization plots it further becomes apparent that the calculated features are 
strongly affected by camera movement and zoom. Figure 4 shows examples of instrument locations for low 
(Fig. 4a,b) and high skill ratings (Fig. 4c,d). In example a the localizations are dispersed, the clipper and grasper 
both have large movement range suggesting that the surgeon had problems finding the best position to apply 
the clip, thus justifying a low rating. Example b, an example of high skill, on the other hand shows a narrow 
movement range indicating clean instrument handling while the video received a low skill rating due to the clip 
being lost. Similarly, example c and d show quite different movement ranges suggesting different skill levels. 
However, in example c the camera was zoomed out so that the instrument movement appeared small while the 
camera was zoomed in further in example d, thus wrongly indicating a large movement range. To improve model 

Figure 4.   Examples on how camera movement and zoom affect instrument localizations (blue: grasper, green: 
clipper). (a) Low surgical skill rating and dispersed movement pattern. (b) Low surgical skill rating and precise 
movement pattern (clip lost). (c) High skill rating and precise movement pattern (camera zoomed out). (d) High 
skill rating and dispersed movement pattern (camera zoomed in).
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performance and render the calculated features more meaningful camera movement needs to be stabilized and 
zoom factor corrected.

Additionally, while instrument handling is an important factor to assess surgical skill, tissue handling and 
difficulty of the operation also influences surgical skill level, which is not considered in the current work.

Conclusion
Automated surgical skill assessment using the proposed three stage machine learning algorithm is effective to 
distinguish good and poor surgical skill with an accuracy of 87 ± 0.2%. The current algorithm, however, has limi-
tations to predict the exact surgical skill level. Therefore, a larger training database and refinement of algorithm 
is required to further improve automated surgical skill assessment.

Data availability
The data that support the findings of this study are under a non-published license and are not publicly available.
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