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Abstract
Nonalcoholic fatty liver disease (NAFLD) is a broad-spectrum disease, ranging 
from simple hepatic steatosis to nonalcoholic steatohepatitis, which can progress 
to cirrhosis and liver cancer. Abnormal hepatic lipid accumulation is the major 
manifestation of this disease, and lipotoxicity promotes NAFLD progression. In 
addition, intermediate metabolites such as succinate can stimulate the activation 
of hepatic stellate cells to produce extracellular matrix proteins, resulting in 
progression of NAFLD to fibrosis and even cirrhosis. G protein-coupled receptors 
(GPCRs) have been shown to play essential roles in metabolic disorders, such as 
NAFLD and obesity, through their function as receptors for bile acids and free 
fatty acids. In addition, GPCRs link gut microbiota-mediated connections in a 
variety of diseases, such as intestinal diseases, hepatic steatosis, diabetes, and 
cardiovascular diseases. The latest findings show that gut microbiota-derived 
acetate contributes to liver lipogenesis by converting dietary fructose into hepatic 
acetyl-CoA and fatty acids. GPCR agonists, including peptides and natural 
products like docosahexaenoic acid, have been applied to investigate their role in 
liver diseases. Therapies such as probiotics and GPCR agonists may be applied to 
modulate GPCR function to ameliorate liver metabolism syndrome. This review 
summarizes the current findings regarding the role of GPCRs in the development 
and progression of NAFLD and describes some preclinical and clinical studies of 
GPCR-mediated treatment. Overall, understanding GPCR-mediated signaling in 
liver disease may provide new therapeutic options for NAFLD.

Key Words: Nonalcoholic fatty liver disease; G protein-coupled receptors; Metabolism; 
Bile acids; Short-chain fatty acids; Gut microbiota

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v27.i8.677
http://orcid.org/0000-0002-4895-5864
http://orcid.org/0000-0002-4895-5864
http://orcid.org/0000-0002-4895-5864
http://orcid.org/0000-0003-2567-029X
http://orcid.org/0000-0003-2567-029X
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
mailto:yangmin@health.missouri.edu


Yang M et al. GPCR-mediated NAFLD treatment

WJG https://www.wjgnet.com 678 February 28, 2021 Volume 27 Issue 8

and hepatology

Country/Territory of origin: United 
States

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: November 11, 2020 
Peer-review started: November 11, 
2020 
First decision: December 17, 2020 
Revised: December 24, 2020 
Accepted: January 21, 2021 
Article in press: January 21, 2021 
Published online: February 28, 2021

P-Reviewer: Chen Y 
S-Editor: Zhang L 
L-Editor: Filipodia 
P-Editor: Ma YJ

Core Tip: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver 
disease. Without effective treatment, NAFLD can progress to fibrosis, cirrhosis, and 
liver cancer. Currently, there is no effective treatment option. G protein-coupled 
receptors (GPCRs) have been shown to play essential roles in metabolic disorders, such 
as NAFLD, through their function as receptors for bile acids and free fatty acids. 
Therapies such as probiotics and GPCR agonists could be applied to modulate GPCR 
function to ameliorate liver metabolism syndrome. Herein, this review summarizes the 
current findings regarding the role of GPCRs in the development and progression of 
NAFLD.
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is a broad-spectrum disease characterized by 
pathological severity ranging from simple hepatic steatosis to nonalcoholic 
steatohepatitis (NASH)[1]. NAFLD patients with progressive liver fibrosis have a high 
incidence of developing cirrhosis and hepatocellular carcinoma (HCC)[2]. NAFLD is 
often associated with other metabolic disorders, including obesity, diabetes, and 
insulin resistance[3]. Abnormal accumulation of hepatic lipids is the main manifestation 
of NAFLD. Lipotoxicity caused by toxic free fatty acids, such as palmitic acid, 
cholesterol, and ceramides, contributes to early-stage NAFLD progression to advanced 
NASH and advanced liver disease[4]. However, there is still no approved treatment for 
NAFLD[5]. G protein-coupled receptors (GPCRs) play important roles in metabolic 
disorders and can respond to various extracellular signals, including fatty acids 
(FAs)[6,7]. Data are increasingly showing that GPCRs and their signaling pathways are 
promising targets for NAFLD treatment.

Studies on the gut–liver axis are rapidly contributing to mounting evidence that 
dysbiosis of gut microbiota contributes to NAFLD progression via multiple 
mechanisms, including the secondary bile acid-induced senescence-associated 
secretory phenotype of hepatic stellate cells (HSCs)[8], bacterial product-induced 
proinflammatory responses through Toll-like receptors and toxic products[9,10]. In 
addition, bile acids (BAs), primarily produced in the liver and metabolized by gut 
microbiota, have pleiotropic roles in metabolism, including glucose homeostasis, 
digestion and absorption of dietary lipids, intestinal bacterial growth, and liver 
regeneration[11]. One of the molecular mechanisms for this BA interaction is with 
Takeda GPCR 5 and G protein-coupled bile acid receptor-1 (TGR5/GPBAR1) to 
regulate lipid and glucose metabolism[12,13].

In this review, we focus on the role of GPCRs in NAFLD development and 
progression by regulating nutrient metabolism. First, we introduce the role of GPCRs 
in liver metabolism and discuss how GPCR-mediated signaling impacts lipid 
synthesis, lipid and glucose metabolism, and production of extracellular matrix (ECM) 
proteins. Then, we summarize the role of GPCRs in NAFLD and advanced liver 
disease, followed by further discussion on current GPCR-targeted treatments in 
cellular and animal models for liver disease. Finally, we look to the therapeutic 
potential of GPCR-mediated signaling in liver disease and current preclinical and 
clinical trials.

EFFECT OF GPCRS ON LIVER METABOLISM
GPCRs, the largest family of membrane proteins, mediate cellular responses to various 
stimuli and play essential roles in most patho/physiological processes[14]. Some GPCRs 
can be activated by energy metabolites, such as FAs, saccharides, lactates, and ketone 
bodies[15]. Increasing evidence indicates that GPCRs play pivotal roles in liver 
metabolism by modulating diverse signaling pathways[16,17], including the Hedgehog, 
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Wnt, Notch, and transforming growth factor-β pathways[18]. GPCRs are receptors of 
short-, medium-, and long-chain FAs and can regulate the secretion of gut hormones, 
lipid and glucose metabolism, and generation of ECM proteins (Figure 1). Herein, we 
discuss how GPCRs mediate liver metabolism via these ligands.

Medium-chain fatty acids and long-chain fatty acids
Long-chain fatty acids (LCFAs) with more than 16 carbons are the most common fatty 
acids in Western diets and are commonly associated with inflammation and lipid 
accumulation[19]. In contrast, consuming diets rich in medium-chain fatty acids with 8-
12 carbons can increase energy expenditure and decrease fatty acid accumulation. 
Oleate, an unsaturated (18:1) LCFA, can stimulate glucagon-like peptide 1 (GLP-1) 
secretion from an immortalized murine enteroendocrine cell line of GLUTag cells 
through their receptors via upregulating GPR40 (FFAR1) and GPR41 (FFAR3)[20]. 
Another study showed that GPR120 (FFA4) functions as a receptor for LCFA to 
regulate the secretion of GLP-1 from the gastrointestinal tract[21]. GLP-1 shows anti-
inflammatory activity, including suppression of inflammatory cytokine expression in 
macrophages[22]. Accumulating evidence indicates that GLP-1 receptor agonists, GLP-1, 
and glucagon receptor co-agonists are treatment options for NAFLD[23,24]. The GPR40 
agonist GW9508 decreased oleic acid-induced lipid accumulation in liver cancer cell 
line HepG2 cells via activating mitogen-activated protein kinase signaling, to 
downregulate the expression of sterol regulatory element-binding protein 1[25]. The 
effect of GW9508 on sterol regulatory element-binding protein 1 was diminished in 
GPR40-knockdown HepG2 cells. Moreover, GW9508 attenuated liver X receptor-
induced hepatic lipid accumulation via activating the mitogen-activated protein kinase 
signaling pathway[26]. Another report showed that GPR40-deficient mice were 
protected against conjugated linoleic acid-induced accumulation of triglycerides in the 
liver[27], which might be associated with the secretion of insulin from the pancreas[28]. 
GPR120, as a receptor for unsaturated LCFAs, plays an essential role in liver 
metabolism. Ichimura et al[29] reported that GPR120-deficient mice showed a marked 
increase in hepatic lipids with a 10% greater bodyweight increase than wild-type 
mice[29]. Gpr43−/− mice were obese compared to wild-type mice with an increase in 
short-chain fatty acid (SCFA)-producing bacteria in the gut and increased 
concentrations of fecal SCFA and plasma acetate[30]. In addition, a specific deficiency of 
GPR43 in the adipose tissue attenuated high-fat diet (HFD)-induced liver steatosis.

SCFAs
SCFAs, including acetate, propionate, and butyrate, are the main metabolites of gut 
microbiota under an anaerobic microenvironment. SCFAs fuel intestinal cells and 
modulate the gut immune response via activating GPCRs (e.g., GPR41/FFAR3 and 
GPR43/FFAR2) and inhibiting histone deacetylase[31]. In addition, GPCRs modulate 
SCFA-mediated inflammatory responses. For example, an antagonist of GPR41 or 
GPR43 alone as well as in combination were able to recover the inhibiting effect of 
acetate on lipopolysaccharides/tumor necrosis factor alpha-induced interleukin (IL)-6 
and IL-8 production in human umbilical vein endothelial cells[32]. GPR41/43 are also 
involved in the effect of butyrate and propionate on IL-6 production but not IL-8 
production. A new finding showed that microbial acetate contributed to liver 
lipogenesis by converting dietary fructose into hepatic acetyl-CoA and fatty acids[33]. 
SCFAs are also associated with the ameliorating effect of fructo-oligosaccharides on 
steatohepatitis and chronic inflammation[34].

Bile acids
Toxic BAs can cause hepatocyte death by directly activating cell death receptors or 
inducing oxidative damage, resulting in mitochondrial dysfunction, endoplasmic 
reticulum stress, and cell death[35]. Conversely, BAs can activate nuclear farnesoid X 
receptor and GPCR signaling to protect against liver and gastrointestinal 
inflammation[36,37]. TGR5 is widely expressed in different nonparenchymal liver cells, 
altering expression in response to BAs like lithocholic acid. TGR5 deletion increased 
the sensitivity of cholic acid feeding and bile duct ligation-induced liver injury in the 
endothelin-1 associated signaling pathway[38]. Administration of parenteral nutrition 
increased liver weight, the infiltration of macrophages, and inflammatory cytokine IL-
6 expression[39] in TGR5-/- mice compared to wild-type mice. Meanwhile, unconjugated 
primary BAs and secondary BAs were increased due to the elevated abundance of 
Bacteroides and Parabacteriodes in the gut. Another study showed that BA-activated 
Mas-related GPCR4 played a critical role in cholestatic itch[40].
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Figure 1 The role of G protein-coupled receptors in liver metabolism and the generation of extracellular matrix proteins. G protein-coupled 
receptors are receptors of diverse molecules, such as fatty acids, bile acids, and other agonists (e.g., GW9508). They can regulate hepatic lipid and glucose 
metabolism and extracellular matrix (ECM) production via directly modulating hepatic cells (hepatocytes and hepatic stellate cells), and indirectly regulating gut 
hormones (e.g., glucagon-like peptide-1, GLP-1). α-SMA: α-smooth muscle actin; Col-I: Collagen type I; LCFA: Long-chain fatty acid; LXR: Liver X receptor; MAPK: 
Mitogen-activated protein kinase; MCFA: Medium-chain fatty acid; SREBP1-c: Sterol regulatory element-binding protein 1.

Gut hormones
Gut hormones, such as peptide-YY and GLP-1, can be modulated through GPCRs to 
regulate insulin secretion in obese subjects[21,41]. For instance, SCFAs can stimulate 
incretin hormone GLP-1 secretion via GPR43 in the intestinal L cells to impact insulin 
sensitivity and appetite[42]. GLP-1 can regulate hepatic steatosis by preventing HFD-
induced very-low-density lipoprotein overproduction and insulin resistance[43], 
accompanying the reduction in the mRNA and protein expression of sterol regulatory 
element-binding protein 1c, stearoyl-CoA desaturase-1, and fatty acid synthase.

Others
Conditional deletion of GPRC6a in hepatocytes by cross-breeding Alb-Cre and 
Gprc6aflox/flox mice resulted in abundant liver fat accumulation and glycogen 
depletion[44]. In addition, GPRC6a depletion altered the production of FGF-21 and its 
release, which controlled systemic energy homeostasis. Exposure of succinate 
upregulated the expression of GPR91 in primary and immortalized HSCs 
accompanying the increased expression of ECM proteins. Inhibiting GPR91 expression 
by lentivirus harboring shRNA reduced succinate-mediated HSC activation[45].

EFFECT OF GPCRS IN NAFLD, NASH, AND HCC
GPCRs
To date, some GPCRs have been shown to play critical roles in liver diseases (Table 1). 
Herein, we summarize some crucial GPCRs with potential clinical value at different 
stages of liver diseases, ranging from NAFLD to HCC. For instance, GPR120 is a 
functional receptor for ω-3 fatty acids that show strong anti-inflammatory and anti-
insulin resistance effects. Oh et al[46] reported that GPR120 agonist cpdA treatment 
increased insulin sensitivity and glucose tolerance and decreased hepatic steatosis in 
HFD-induced obese mice[46].

GPR49, an orphan GPCR with unknown ligands, is highly expressed in human 
HCC cell lines PLC/PRF/5 and HepG2[47]. In addition, overexpression of GPR49 has 
been shown in HCC tissue with a mutation of beta-catenin exon three. Another orphan 
GPCR receptor, GPR137, is also broadly expressed in human liver cancer cell lines, 
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Table 1 The role of G protein-coupled receptors in nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and hepatocellular 
carcinoma

Liver disease GPCRs Expression Ref.

NAFLD/Steatosis GPR120 GPR120 agonist cpdA treatment increased insulin sensitivity and glucose tolerance and decreased hepatic steatosis 
in HFD-induced obese mice

[46]

HCC GPR49 GPR49 is highly expressed in human HCC cell lines PLC/PRF/5 and HepG2; overexpression of GPR49 in HCC 
tissue with a mutation of beta-catenin exon 3 was also shown

[47]

HCC GPR137 Knockdown of GPR137 in HepG2 cells induced cell cycle arrest and cell apoptosis. Additionally, low expression of 
GPR137 indicated the progression of human HCC and a low survival rate

[49]

NAFLD/Steatosis GPR132 GPR132 was involved in hepatic lipid metabolism and gallstone formation in mice because GPR132-deficient mice 
fed a lithogenic diet quickly developed gallstones and had a high cholesterol saturation index

[51]

NAFLD/Steatosis GPR55 GPR55-deficient (GPR55-/-) mice showed impaired insulin signaling and had a significant increase in total body fat 
and liver fatty acid synthase, resulting in the development of hepatic steatosis

[53]

NASH/Fibrosis GPR91 Succinate in the fatty liver can activate HSC via GPR91 receptor, resulting in NASH progression [45]

Liver 
injury/Fibrosis

GPBAR1 GPBAR1 is an upstream regulator of the axis expression of chemokine CCL2 and its receptor CCR2 in the interface 
of liver sinusoidal cells

[54]

GPCRs: G protein-coupled receptors; HCC: Hepatocellular carcinoma; HFD: High-fat diet; HSC: Hepatic stellate cell; NAFLD: Nonalcoholic fatty liver 
disease; NASH: Nonalcoholic steatohepatitis.

such as HepG2 and Bel7404. The depletion of GPR137 by lentivirus-mediated RNA 
interference in these two cell lines remarkably inhibited the proliferation and colony 
formation capacity[48]. Knockdown of GPR137 in HepG2 cells resulted in cell cycle 
arrest and cell apoptosis, suggesting that targeting GPR137 can inhibit cancer growth. 
Moreover, low expression of GPR137 indicated the progression of human HCC and 
low survival rates[49].

GPR132 or G2A receptor is a proton-sensing GPCR and plays an important role in 
cell cycle and proliferation, oncogenesis, and the immune response[50]. GPR132 is also 
involved in hepatic lipid metabolism and gallstone formation in mice because GPR132-
deficient mice fed a lithogenic diet quickly developed gallstones and had a high 
cholesterol saturation index[51].

Not all GPCRs have a protective effect against liver disease. Succinate was increased 
in fatty liver cells of high fat/calorie diet plus high fructose and glucose in drinking 
water-fed mice[45]. Exposure of succinate upregulated the expression of GPR91 in 
primary and immortalized HSCs and increased the expression of ECM proteins of 
these cells. Inhibiting GPR91 expression by lentivirus harboring shRNA reduced 
succinate-mediated HSC activation. Meanwhile, the expression of GPR91 was 
correlated with the severity of fibrosis in human NASH biopsy specimens[45]. GPR55 
and its endogenous ligand, l-α-lysophosphatidylinositol are positively correlated with 
obesity and type 2 diabetes (T2D)[52]. Moreover, GPR55-deficient (GPR55-/-) mice 
showed impaired insulin signaling evidenced by reduced phosphorylation of protein 
kinase B and its downstream targets and had a significant increase in total body fat 
and liver fatty acid synthase, which can result in the development of hepatic 
steatosis[53]. In the same study, the author also found that lysophosphatidylinositol 
activated rat H4IIE liver cells and human HepG2 liver cells via GPR55 to enhance 
insulin-dependent protein kinase B phosphorylation. Deletion of GPBAR1, a GPCR for 
secondary BAs, accelerated the severity of liver injury caused by acetaminophen[54]. 
Further, GPBAR1 agonism mediated the axis expression of chemokine CCL2 and its 
receptor CCR2 in the interface of liver sinusoidal cells.

GPCR signaling and regulatory proteins
Generally, GPCRs are linked to distinct families of G proteins, including Gs, Gi, and 
Gq[55]. For example, the glucagon receptor most highly expressed in hepatocytes is 
linked to the stimulatory G proteins, Gs. Heterotrimeric G proteins are involved in the 
signaling of approximately 800 GPCR family members[56]. Some of these signaling 
pathways play an important role in liver metabolism. For instance, Gα12 protein (Gα12) 
ablation significantly increases fasting-induced fat accumulation in the liver of mice, 
and Gα12 expression is also decreased in liver biopsies of NAFLD patients[16]. A 
mechanistic study showed that Gα12 regulated mitochondrial respiration through 
modulating sirtuin 1 and peroxisome proliferator-activated receptor alpha expression. 
Moreover, the expression of Gα12 has been associated with the overall survival of HCC 
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patients[57]. Understanding the role of G proteins in the liver also helps unlock the role 
of GPCRs in liver metabolism and disease progression.

Regulators of G protein signaling (RGS) proteins negatively regulate GPCR 
signaling. RGS5 can protect against NAFLD and NASH. In the liver, RGS5 is an 
essential molecule that protects against the progression of NAFLD. RGS5 directly 
binds to transforming growth factor beta-activated kinase 1 (TAK1) and inhibits its 
phosphorylation and the subsequent c-Jun N-terminal kinase/p38 pathways. RGS5 is 
a promising target molecule for fine-tuning the activity of transforming growth factor 
beta-activated kinase 1 and NAFLD treatment[58].

Activated HSCs are one of the major sources of myofibroblasts in many types of 
liver injury[59], which produce ECM proteins. GPCR-mediated signaling plays an 
important role in HSC contraction, migration, and activation. Bahrami et al[60] reported 
that RGS5 can regulate GPCR signaling in HSCs and modulate HSC activation and 
hepatic fibrogenesis[60]. RGS6−/− mice showed reduced alcohol consumption when 
given free access to alcohol. RGS6−/− mice were also protected from alcohol-induced 
hepatic steatosis, cardiac toxicity, dysfunction of the gut barrier, and endotoxemia 
when they were forced to consume alcohol[61]. Another study showed that 
overexpression of RGS16, specifically in the liver, displayed fatty liver after overnight 
fasting but low blood glucose levels compared with wild-type mice[62]. In contrast, 
RGS16-knockout mice showed a higher rate of fatty acid oxidation in liver extracts 
compared with wild-type mice, suggesting that RGS16 inhibits GPCR-mediated fatty 
acid oxidation. Therefore, RGS is a group of therapeutic candidates for modulating 
GPCRs to treat liver disease.

The signaling of most GPCRs via G proteins is regulated by GPCR kinases 
(GRKs)[63], which also function in the pathogenesis of liver injury. For instance, GRK2 
hemizygous (GRK2+/-) mice showed a reduced level of triglycerides and a reduced 
liver-to-body weight ratio compared to wild-type mice when fed a methionine and 
choline-deficient diet[64]. Increased GRK2 protein and mRNA levels were also detected 
in human liver biopsies of steatosis and NASH patients. Moreover, high GRK2 
expression exaggerated palmitic acid-triggered lipid accumulation in human 
hepatocytes[64].

Gut microbiota-mediated GPCR expression
The gut–liver axis plays a critical role in the development of liver diseases[65,66]. Gut 
microbiota-derived metabolites and their associated signaling pathways play 
important roles in NAFLD development[67]. Rau et al[68] reported that SCFA-producing 
bacteria were dominant in the fecal bacteria of NAFLD patients, accompanying high 
acetate and propionate in fecal metabolites[68]. These metabolites are associated with 
immunological features in NAFLD progression. Manipulation of gut microbiota is a 
promising preventive and therapeutic strategy for NAFLD. For instance, 
administration of a bacterial cocktail, consisting of three strains of Bifidobacterium 
adolescentis and three strains of Lactobacillus rhamnosus, alleviated a high-fat, high-
cholesterol diet-induced NAFLD symptom in mice by increasing the concentration of 
intestinal SCFAs[69]. Similar findings have also been achieved in clinical trials for 
human patients[70,71]. Gut microbiota-derived metabolites contribute to the 
development of NAFLD, including SCFAs[68], endogenous alcohol[72,73], and BAs[74,75]. 
Gut microbiota in the colon is the main source of the production of SCFAs[76,77], which 
affect lipid and glucose metabolism. It has been demonstrated that both BAs[78] and 
SCFAs[79] can activate GPCRs to modulate immune responses. Hence, modulating gut 
microbiota is an attractive strategy to interfere with liver disease.

For example, farnesoid X receptor agonist fexaramine-induced lithocholic acid-
producing bacteria Acetatifactor and Bacteroides impact liver bile acid synthesis, which 
in turn can enhance the expression of intestinal farnesoid X receptor targeted genes[80]. 
In hepatocytes, palmitate can be metabolized to sphingosine 1-phosphate (S1P), which 
binds to different types of S1P receptors (S1PRs) like S1PR1-3 to activate HSCs to 
myofibroblasts[81]. In addition, S1P can increase the recruitment of bone marrow 
mesenchymal stem cells via activating S1PRs to produce proinflammatory cytokines 
IL-1β, tumor necrosis factor alpha, and IL-6, resulting in acceleration of the 
pathophysiological process of liver disease[82]. The S1P-S1PR1 axis is also associated 
with chronic intestinal inflammation and colitis-associated cancer by modulating IL-6 
and transcription factor STAT3[83].

In addition to liver disease, gut microbiota-associated products affect other diseases, 
such as inflammatory bowel disease, diabetes, autoimmune disease, and 
cardiovascular disease, through GPCRs[84-86]. For example, tryptamine, a tryptophan-
derived monoamine produced by gut bacteria like Bacteroides thetaiotaomicron can 
activate the serotonin 5-HT4 receptor, which is uniquely expressed in colonic epithelial 
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cells to increase ionic flux across colonic epithelium, altering the host gut transmit[87]. 
Increasing evidence shows that the microbiota plays a crucial role in influencing host 
appetite and eating-relative behavior[88]. Of note, the gut–liver axis is bidirectional[10,89] 
because the liver also impacts the components of gut microbiota (Figure 2) by primary 
BAs, which may result in a change of appetite[90].

GPCR-BASED THERAPIES FOR LIVER DISEASES
GPCRs are a promising therapy for NAFLD treatment (Table 2). Recently, Pi et al[44] 
reported that Gprc6aLiver-cko mice (a strain with conditional depletion of GPRC6A in 
mouse hepatocytes) on a normal diet had excessive liver fat accumulation and 
impaired glucose and pyruvate tolerance without insulin resistance[44]. Intraperitoneal 
or oral administration of a peptide hormone metabolitin that binds to GPRC6A 
significantly ameliorated NAFLD symptoms and inhibited gut triglyceride and 
cholesterol absorption and insulin resistance via activating the 5’ AMP-activated 
protein kinase signaling pathway[91]. Metabolitin treatment was able to stimulate the 
expression of GLP-1, which further validated the metabolitin-GPRC6A interaction 
because the GPRC6A receptor functions as an amino acid sensor mediating GLP-1 
secretion in the intestinal L cells[92].

Oral administration of a GPR39 agonist, TC-G1008, inhibited liver injury marker 
glutamic-pyruvic transaminase expression and reduced hepatic cell necrosis in 
concanavalin A-induced hepatitis liver in mice[93]. Another study showed that an acute 
dose of TC-G1008 reduced ethanol intake in mice without affecting total fluid 
intake[94]. GPR40 deficiency was associated with hepatic inflammation and steatosis in 
low-fat diet-fed mice[95]. Oral administration of a GPR40 full agonist, SCO-267, reduced 
liver weight, triglyceride and collagen production, and serum alanine amino-
transferase without affecting food intake or glucose levels in choline-deficient, L-
amino acid-defined, high-fat diet-fed mice[96]. Furthermore, SCO-267 improved 
mitochondrial function and beta-oxidation, while inhibiting lipogenesis, inflammation, 
and generation of reactive oxygen species in the liver.

GPR120 agonist III significantly suppressed macrophage infiltration and reactive 
oxygen species production and reversed hepatic inflammation, endoplasmic reticulum 
stress, and apoptosis in high-fat, high-cholesterol diet or methionine and choline-
deficient-induced steatohepatitis[97]. In addition, GPR120 agonist TUG-891 inhibited 
lipid accumulation in hepatocytes[98].

Treatment with docosahexaenoic acid, an omega-3 fatty acid, inhibited lipid 
droplets by interacting with GPR40 in primary hepatocytes via reduced expression of 
lipogenic enzymes, such as fatty acid synthase, acetyl-CoA carboxylase, and stearoyl-
CoA desaturase-1[99]. PBI-4547, a fatty acid mimetic, is a GPR84 antagonist. In a mouse 
model of diet-induced obesity, PBI-4547 treatment ameliorated NAFLD-associated 
metabolic dysregulation and hepatic steatosis and ballooning, which was depleted in 
GPR84-/- mice[100]. PBI-4547 increased liver fatty acid oxidation and gene expression of 
mitochondrial uncoupling proteins. Another study showed that inhibition of GPR84 
with antagonists CpdA and CpdB significantly reduced myeloid cell infiltration and 
ameliorated inflammation and fibrosis in acute liver injury[101]. GPR43-deficient mice 
became obese when fed a normal diet. In contrast, mice with GPR43 overexpressed 
specifically in adipose tissue remained lean even on a high-fat diet[30]. Oral 
administration of compound probiotics ameliorated HFD-induced gut microbe 
dysbiosis and chronic metabolic inflammation in NAFLD rats via GPR43[102].

URGENT NEED FOR CLINICAL TRIALS
GPCRs, as the largest group of transmembrane receptors[103], play important roles in 
various diseases, including inflammatory bowel diseases[104,105], kidney diseases[106], 
l iver  diseases[107], bone disease[6], central  nervous system disorders[108], heart  
diseases[109], and respiratory diseases[110]. To date, about fifty GPCR targeting peptides 
have been approved to treat metabolic diseases and tumors[111]. With the analysis of 
public databases, Sriram and Insel[112] reported that about 35% of approved drugs 
target GPCRs[112]. GPCRs and GPCR-associated proteins consist of about 17% of all 
protein targets for approved drugs. The application of GPCRs has been tested in 
clinical trials for metabolic disorders[113,114], including obesity and diabetes.

For example, T2D patients aged 20 or older orally received 75 mg of GPR119 agonist 
DS-8500a daily for 4 wk, resulting in enhanced insulin secretory capacity compared to 
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Table 2 G protein-coupled receptor-mediated treatment in nonalcoholic fatty liver disease

GPCRs Treatment Study Effect Ref.

GPRC6A Metabolitin, a peptide 
hormone

Mice Specifically deleting Gprc6a in mouse hepatocytes caused hepatic fat accumulation. 
Metabolitin can significantly ameliorate NAFLD symptoms and inhibit gut triglyceride 
and cholesterol absorption and insulin resistance via GPRC6A-mediated activation of 
the 5’ AMP-activated protein kinase signaling pathway

[44,91]

GPR39 Agonist TC-G1008 Mice Oral administration of TC-G1008 inhibited hepatic cell necrosis in concanavalin A-
induced hepatitis liver in mice. In addition, acute administration of TC-G1008 reduced 
ethanol intake

[93,94]

GPR40 Agonist SCO-267 Mice GPR40 deficiency was associated with hepatic inflammation and steatosis in low-fat 
diet-fed mice. Oral administration of SCO-267 reduced HFD-induced increase in liver 
weight, triglyceride and collagen production, and serum alanine aminotransferase

[95,96]

GPR40 Docosahexaenoic acid Primary 
hepatocytes, 
HFD-fed mice

Treatment with DHA, an omega-3 fatty acid, inhibited lipid droplets by interacting 
with GPR40 in primary hepatocytes via reduced expression of lipogenic enzymes. In 
addition, it significantly reduced the HFD-induced liver steatosis score in mice

[99]

GPR43 Compound probiotics Rats Overexpressing GPR43 in adipose tissue kept mice lean on a HFD diet. Compound 
probiotics can modulate gut microbiota dysbiosis, SCFAs, and their receptors, like 
GPR43, in NAFLD rats

[30,
102]

GPR84 Antagonist PBI-
4547GPR84 Antagonists 
CpdA and CpdB

Gpr84-/- mice; 
Wild-type mice

PBI-4547 treatment ameliorated NAFLD-associated metabolic dysregulation, hepatic 
steatosis and ballooning, which was depleted in Gpr84-/- mice. Inhibition of GPR84 
with antagonists CpdA and CpdB significantly reduced myeloid cell infiltration and 
ameliorated inflammation and fibrosis in acute liver injury

[100,
101]

GPR120 TUG-891Agonist III Hepatocytes; Mice Agonist TUG-891 inhibited lipid accumulation in hepatocytes. Agonist III significantly 
suppressed macrophage infiltration, ROS production, hepatic inflammation, ER stress, 
and steatohepatitis

[97,98]

DHA: Docosahexaenoic acid; ER: endoplasmic reticulum; GPCRs: G protein-coupled receptors; HFD: High-fat diet; NAFLD: Nonalcoholic fatty liver 
disease; NASH: Nonalcoholic steatohepatitis; ROS: Reactive oxygen species; SCFA: Short-chain fatty acid.

placebo treatment[114]. In addition, DS-8500a significantly reduced total cholesterol, 
low-density lipoprotein cholesterol, and triglyceride concentrations and significantly 
increased high-density lipoprotein cholesterol concentrations compared to placebo 
treatment. No significant treatment-associated adverse events occurred in this trial. 
Another phase 2 clinical trial showed that daily treatment of GPR40 agonist Fasiglifam 
for 12 wk significantly improved glycemic control in T2D patients who were not 
responsible to diet or metformin treatment compared to placebo treatment, evidenced 
by the reduction of hemoglobin A(1c) from baseline[115]. In addition, Fasiglifam did not 
cause a higher risk of hypoglycemic events in patients.

However, our current knowledge about the function of GPCRs in liver metabolism 
disorders is still limited. When considering potential drugs for treatments, even fewer 
candidates have been tested in clinical trials. Some experimental trials in rodents have 
been investigated to explore the role of GPCRs in liver diseases, such as GPR40[99] and 
GPR43[102]. Some of the GPCRs, such as prostaglandin E2 receptors[116] and beta-2 
adrenergic receptor[117], have been investigated in preclinical studies using tissue 
biopsies of human patients. Meanwhile, the side effects of GPCR-targeted molecules 
need to be considered when designing new therapeutic agents. For example, 
Fasiglifam increased the ratio of liver enzymes aspartate aminotransferase/alanine 
transaminase in T2D patients compared to placebo treatment while being evaluated 
for cardiovascular safety in a phase 3 trial[118].

CONCLUSION
Many GPCRs have critical roles in metabolic disorders, including NAFLD, through 
their function as receptors for metabolites, such as SCFAs and BAs. GPCR-mediated 
signaling pathways are involved in hepatic lipid accumulation and fibrogenesis and 
can also modulate the secretion of gut hormones (e.g., GLP-1), which further impacts 
liver function, suggesting that GPCRs play a pivotal role in the gut–liver axis. 
Furthermore, GPCRs and their associated molecules are candidates as biomarkers for 
NAFLD diagnosis. Overall, GPCRs and their regulating factors provide potential 
pharmacological targets for NAFLD treatment.

There are several advantages to targeting GPCRs to treat NAFLD compared with 
other NAFLD therapeutics. First, therapeutic candidates or drugs can be easily found. 
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Figure 2 G protein-coupled receptor-mediated interaction of the gut and liver. Gut microbiota-derived metabolites or molecules (e.g., palmitate) 
impact liver function by being metabolized to sphingosine 1-phosphate in hepatocytes, which can stimulate the activation of hepatic stellate cells (HSCs) and 
proinflammation via sphingosine 1-phosphate receptor 1 (S1PR1). In turn, primary bile acids (BAs) are synthesized in the liver, which can also influence the 
components of gut microbiota. A high fat and high sugar diet can induce nonalcoholic fatty liver disease (NAFLD) and change gut microbiota. Gut microbiota has 
been shown to impact appetite, and the progression of NAFLD may also impact the appetite. GPCRs: G protein-coupled receptors.

The data from public databases (ChEMBL, Guide to PHARMACOLOGY/GtoPdb, and 
DrugBank) show that about 35% of approved drugs target GPCRs[112]. Second, 
functional selection of GPCR ligands helps minimize the potential side effects of 
selected treatment[119]. Third, GPCRs are implicated in the development and 
progression of NAFLD, including lipid metabolism, proinflammation, and fibrosis. 
Therefore, targeting GPCR can be applied to different stages of NAFLD therapy, 
ranging from simple steatosis to NASH. However, current GPCR-mediated treatments 
in hepatic steatosis, liver fibrosis, and liver cancer are mainly performed either in cells 
or animals. Few preclinical and clinical trials in humans have been carried out so far. 
More work is needed to unmask the role of GPCRs in the clinic.

The structures of GPCRs are critically important for de novo design of GPCR 
targeting drugs. However, only about 60 GPCR structures have been resolved with the 
advanced technologies like X-ray crystallography and cryo-electron microscopy[120]. A 
new protocol has optimized the precrystallization process for resolving GPCR 
structures via X-ray crystallography[121]. Some technologies such as cell-based electrical 
impedance also help identify GPCR-targeting molecules[122]. In addition, computer-
based design of GPCR allosteric receptors helps reveal the unknown GPCR signaling 
pathways and the relative molecular mechanism[123]. In conclusion, advanced 
technologies help unravel the clear role of each GPCR in both physiological and 
pathological environment to accelerate GPCR-mediated therapy.
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