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Abstract

Due to the current lack of innovative and effective therapeutic approaches, tissue engineering (TE) has attracted much
attention during the last decades providing new hopes for the treatment of several degenerative disorders. Tissue
engineering is a complex procedure, which includes processes of decellularization and recellularization of biological
tissues or functionalization of artificial scaffolds by active cells. In this review, we have first discussed those conventional
steps, which have led to great advancements during the last several years. Moreover, we have paid special attention
to the new methods of post-decellularization that can significantly ameliorate the efficiency of decellularized cartilage
extracellular matrix (ECM) for the treatment of osteoarthritis (OA). We propose a series of post-decellularization
procedures to overcome the current shortcomings such as low mechanical strength and poor bioactivity to improve
decellularized ECM scaffold towards much more efficient and higher integration.
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unique mechanical properties.* Due to the absence of
blood vessels and nerves, healthy adult joints cartilage
does not have the ability to self-repair leading to degen-
erative joint disorders like OA. In this setting, because of

Introduction

Extracellular matrix (ECM) is the non-cellular component
present within all tissues and organs. It provides the
essential physical scaffold for the cellular constituents
and initiates crucial biochemical and biomechanical sig-
nals that are required for tissue morphogenesis, differen-
tiation and homeostasis.! Cartilage is a hyalin and an
avascular tissue that consists of an extensive ECM (about
95% such as proteoglycans, glycoproteins, enzymes,
communication peptides, and water) that is produced and
maintained by chondrocytes (about 5%).! Cartilage matrix
is composed predominantly of proteoglycans, which are
made of a core protein bound to multiple chains of gly-
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cosaminoglycans (GAG), such as chondroitin sulfate (CS)
and keratan sulfate (KS).? The large aggregating proteo-
glycan, aggrecan (ACAN), can bind or aggregate to a
backbone of hyaluronic acid (HA) forming larger macro-
molecules.’> Together, these components help to retain
water within the ECM, which is critical to maintain its
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the concurrent changes in matrix composition with
increasing calcification, the cartilage progressive destruc-
tion happens.® Unfortunately, there is no current consen-
sus regarding the ideal treatment to stop gradual loss of
articular cartilage resulting in osteoarthritis (OA).’
However, several treatment methods have been proposed
with the aims of pain relief and improvement of patients’
movement abilities. Current treatments are pharmacologi-
cal methods such as oral, intra-articular injections based
on HA and CS and non-pharmacological treatments such
as immunotherapy, gene therapy, cellular therapy and
eventually surgical interventions. As cartilage ECM is
maintained specifically by chondrocytes, their low cell
density and avascular properties leads to low cartilage
regeneration capacity. Therefore, tissue engineering is
considered a promising approach for effective repair of
damaged cartilage tissue.®’” Most often, the procedure
used in cartilage tissue engineering involves a suitable
combination of seeded cells, a biocompatible scaffold,
and biological factors that support cartilage formation.®
The excised tissue must first be decellularized, a process
in which the ECM is depleted from its native cells and
genetic materials (such as DNA and RNA found in the
nucleus, mitochondria, and cytoplasm) to produce a natu-
ral scaffold. The ECM, that ideally retains its indispensa-
ble structural, biochemical and biomechanical cues, can
then be recellularized to produce a functional tissue or
organ.

Even though many articles on decellularization of carti-
lage for tissue engineering purposes have been already pub-
lished, this is the first comprehensive review that particularly
focuses on cartilage post-decellularization methods. In this
review, the methods of decellularization have been sorted
into three categories: biological, chemical, and physical. In
addition, a summary of cartilage decellularzation protocols
progressed during several years is also presented. We have
summarized different materials and methods concerning the
post-decellularization methods that can significantly
improve the efficiency of decellularized cartilage ECM.
Recellularization is the final step, in which the role of differ-
ent cell types including stem cells in order to repopulate the
acellular ECM scaffolds of cartilage has been discussed.
Moreover, a summary of cartilage recellularzation proto-
coles evolved during the last years has been provided.

Tissue engineering

Tissue engineering aims at replacing or regenerating
human tissues or organs in order to renovate or re-establish
their normal function. There are three principle axes in the
process of tissue engineering: (1) a scaffold that provides
structure and substrate for tissue growth and development,
(2) cells to improve required tissue formation, (3) growth
factors (GFs) or biophysical stimuli to direct the growth
and differentiation of cells within the scaffold. Together,

these components create what is known as the tissue engi-
neering triad. Although these factors are separately impor-
tant, understanding their interactions is also crucial for
successful tissue engineering.

Here, we focus on natural ECM as a scaffold that main-
tains its original 3D architecture for culturing cells or as a
mold for organs. To produce ECM scaffolds, tissue must
first be decellularized which is obtained by removing the
cells and their genetic materials. Therefore, decellularized
ECM (dECM) is expected to be an effective scaffold that
has suitable components for the construction of tissues.
Compared to other methods that completely destroy the
ECM, using it as a natural scaffold maintaining most of its
original ECM architecture would be a great advantage. In
order to improve the decellularization efficiency, several
recent studies suggest a complementary post-decellulari-
zation process which will be further discussed in detail.
These steps will be finalized via recellularization methods.
A summarized procedure is depicted in Figure 1.

Decellularization. Different kinds of ECM sources such as
tissue, whole organ and cell-culture derived ECM have
been investigated in research works. Besides, macromo-
lecular crowding (MMC) which is the addition of inert
polydispersed macromolecules has been shown effective
for the amplification of ECM deposition in vitro and the
production of ECM-rich alternatives.”'® Decellularization
is the procedure to maximally remove all cellular and
genetic materials from a desired ECM while maintaining
its physical structural, biochemical and biomechanical
properties including thickness, stiffness, density and 3D
configuration.!" During the past decade different human
and animal organs and tissues have been utilized as dECM
scaffolds, proving their potential application in tissue engi-
neering (Table 1). The progression of decellularization
techniques has been advancing for different tissue and
organs like heart,'>”!* liver,'*!7 lung,'®?! kidney,?>* cor-
nea,?*?* skin,?%?’ brain,? adipose tissue.?’
Decellularization has been performed through chemical,
physical, and enzymatic techniques.*’ The chemical decel-
lularization methods function by immersing the tissue in a
solution containing an acid, alkaline base, alcohol, chelat-
ing agent, or detergents. Common acids include peracetic
acid and acetic acid which has been shown to disrupt
mainly nucleic acids,” sodium, calcium, and ammonium
hydroxide that destroy cellular and nuclear components
and induce cellular lysis.’'* Alcohols such as methanol
and ethanol are suggested to use for removal of lipids.*>
In addition, it has been reported that alcohols disrupt the
actin cytoskeleton network which further contributes to cell
detachment by breaking interactions with focal adhesions.>®
Chelating agents like Ethylenediaminetetraacetic acid
(EDTA) and Egtazic acid (EGTA) are used with enzymes
or detergents to improve cell nuclei removal.>>*” However,
these agents can inhibit DNase activity which would reduce
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Figure |. Summary of ECM based tissue engineering procedure. This figure depicts the succession of different steps including the
origin of ECM, decellularization methods, and their efficacy assessment; post-decellularization methods, and finally recellularization
factor that are essential in an appropriate ECM-based tissue engineering procedure.

the digestion of nucleic acids that is an important step in
decellularization process.*® On the other hand, EDTA appli-
cation promotes cell detachment by reducing cell-matrix
and cell-cell adhesion through the chelation of extracellular
Ca2™" ions that are necessary for the activation of Ca2™
dependent cell adhesion molecules such as integrins and
cadherins.>® Detergents such as sodium deoxycholate (SD)
and sodium dodecyl sulfate (SDS) are used to lyse cell
membrane, to solubilize membrane proteins and lipids and
also to remove cytosolic and genomic material.!'®
Enzymatic methods are mainly based on the use of pro-
teases (trypsin, collagenase, thermolysin, and dispase) in
addition to other enzymes such as lipase acting mostly by
cleaving adhesive proteins like collagens and fibronectin,
and cell edhesion molecules like integrins and cadher-
ins!161:62 while others like nucleases (DNase and RNase)
digest nucleic acids.*>>°

Decellularization protocols also often include a physi-
cal decellularization step such as mechanical agitation, ¢4
freeze/thaw cycles,>% hydrostatic pressure,®’ osmotic
pressure,®® perfusion/ pressure gradients or exposure to
supercritical carbon dioxide (CO,). A summary of various
decellularization techniques with their advantages and
drawbacks is listed in Table 2.

Chemical and mechanical decellularization factors can
be used to decellularize different kind of tissues, such as
small intestine, urinary bladder and dermis, to create pla-
nar ECM sheets that can be further processed into ECM
hydrogels.”>!'® Whole organs can be decellularized for the
bioengineering of transplantable organs.!'$>!17 Perfusion
of decellularization agents could be performed through the

native vasculature of organs such as the kidney,® liver,''®
and lung'"? which results in a 3D ECM scaffold that can be
repopulated with patient-derived cells to engineer trans-
plantable human organs.

Assessment of decellularization. In order to assess the
decellularization process several criteria must be taken
into account which among them evaluation of the immu-
nogenicity and the mechanical property of dECM are the
most essential. In the next section we discuss these points
in detail.

Immunogenicity. One of the most important require-
ments of decellularization is evaluation of scaffold
immunocompatibility and eventually reducing their
immunogenicity. The immunological concerns have been
a halting point for widespread use of dECM as scaffold
in clinical applications. Xenogeneic scaffolds might be
ideally the first choice to come into mind since they are
abundant and easily obtained.'*® However, xenogenic
options might provoke the host immune reaction and if
their immunogenicity is not sufficiently controlled, they
may be finally rejected, leading to functional failure and
the need for immediate replacement or removal. The two
main components capable of inducing an immunogenic
response include residual genetic materials such as DNA
and RNA and antigenic peptides.'?! In this respect, it has
been suggested by Crapo et al, and Wendel Q et al, that the
dECM containing less than 50ng dsDNA per mg of ECM
and less than 200bp of DNA in length elicits no signifi-
cant inflammatory reaction.'!:1??
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Detergents including SDS and Triton X-100 are able to
remove more than 90% of residual DNA.'?* However, sol-
vent/detergent and 3-cholamidopropyl dimethylammonio
1-propanesulfonate (CHAPS), have been shown less suc-
cessful in this regard.® In order to ameliorate this process,
endonucleases including DNase and RNase have been
used to break down nucleic acid fragments. Although these
two enzymes effectively decrease the length of fragments
and then prevent significant immunogenic responses, they
are not very efficient in separating the fragments from the
ECM.>

Native antigens are the other critical remnants that must
also be reduced in the scaffolds to prevent immune rejec-
tion. Hyper-acute rejection of scaffolds, occurring shortly
after implantation and caused mostly by host circulating
antibodies, and acute rejection, occurring days to weeks
after implantation, are of particular concern.'** Specific
components that may be measured are alpha-Gal epitopes,
which could potentially activate the immune response and
major histocompatibility complexes (MHC) present on the
cell membrane, which can consequently lead to T cell and
natural killer (NK) cell responses.'?* It has been demon-
strated that other ECM structural proteins like collagen VI
could also cause immunogenic reactions.'?’

On the contrary, there are some research studies that
report lowered immunogenicity of decellularized tissues
such as in pericardium implantation of human into mice
models,?*'?7 dermal substitute from human placentas for
full-thickness wound healing'?® and decellularized human
tendons.'?’ Besides, several other studies have shown that
xenogeneic tissues show residual immunogenicity'*° and
may be contaminated with biological agents like prions
and retroviruses that are difficult to detect and elimi-
nate.®*"3! The existence of these limitations associated
with the use of decellularization and scaffold acellularity
as the only standard measurement for the generation of
xenogeneic scaffolds proves that further immunological
verifications are extremely necessary. This clarifies the
primordial need for improving strategies to remove anti-
gens from xenogeneic tissues and organs, and assess the
resultant scaffold residual antigenicity as a more specific
immunocompatibility measurement. The antigen removal
step avoids inaccurate simplification of the immunogenic
issue, as observed with decellularization methods that
merely target cell removal as a substitute for antigens
removal.'*

Mechanical properties. One of the most important
aspects of tissue or organ regeneration via decellulari-
zation techniques is maintaining the mechanical integ-
rity and characteristics of the natural tissue to ensure
its proper functionality. Essential properties of interest
are elastic modulus, viscous modulus, tensile strength,
and yield strength; however, the most crucial properties
ultimately depend on the nature of the tissue or organ’s

desired function.'3? These properties are principally con-
trolled by the ECM structural proteins such as collagen,
laminin, elastin and fibronectin.'>* ECM proteins regu-
late cell adhesion and differentiation through integrin
(adhesion receptor heterodimers) mediated signal trans-
duction.’** Chondrocytes express several members of
the integrin family including a581, which is the primary
chondrocyte receptor for fibronectin.!'3%!3¢

Each decellularization strategy has a distinct impact on
these proteins. It has been revealed that the mechanical
properties of scaffolds can be used to modulate the impor-
tant aspects of cellular development like adhesion, growth,
morphology, signaling, motility, and survival,'33137:138

Decellularizion of cartilage. OA is a progressive degenera-
tive joint disease affecting articular cartilage, bone and
supporting ligaments leading to pain and loss of mobil-
ity.!3? Several treatment methods have been used with the
aim of pain relief and improvement of patients’ functional
abilities. These treatments could be divided into two sub-
categories: (1) non-pharmacological methods such as
physiotherapy, occupational therapy, weight loss and
exercise, and (2) pharmacological and innovative meth-
ods with a particular aim of cartilage repair like oral and
intra-articular administrations, immunotherapy, gene
therapy, and cellular therapy including stem cell-based
therapies.'*’ Nevertheless, current best evidence does not
support any of these treatments superior to surgical inter-
ventions to repair initial cartilage lesions. Some of the
surgical methods are microfracture (MF) (a marrow stim-
ulation technique), autologous and allogeneic chondro-
cyte implantation (ACI), matrix-associated chondrocyte
implantation (MACI), autologous matrix-induced chon-
drogenesis (AMIC), osteochondral autograft transplanta-
tion (OAT), osteochondral allograft transplantation
(OCA) and direct cartilage suture repair. In general, MF
and OAT are the best choices for smaller lesions (<2 cm?),
OAT or ACI treatment options have been shown to be
more effective for the intermediate lesions (2-4 cm?) and
ACI or OCA were proven to be the better choices for
larger lesions (>4 cm?)."*! Due to the limitation of current
treatments including complexity and high expenses of
surgical interventions, lesions size, patients’ age and etc,
the repair of cartilage lesions using tissue-engineering
approaches is being extensively explored. To this goal,
cartilage ECM could be one of the main candidates pro-
viding a natural scaffold for further applications. In order
to use its potentials, cartilage ECM should be first decul-
lularized (Figure 2). The presence of cells and cellular
components such as antigens within the ECM that are
derived from allogenic and xenogenic sources might
induce the host inflammatory response leading to abnor-
mal tissue remodeling and eventually graft failure.'*? Fur-
ther non-biological advantages of ECM decellularization
are (a) decreased difficulties triggered by the living nature
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Figure 2. Summary of extracellular matrix decellularization procedures. Articular cartilage obtained from the animal knee is first
decellularized. Acellular ECM maintains the structural and chemical integrity of the original tissue. Afterwards, the acquired dECM

is used as a scaffold to reproduce a functional articular cartilage tissue by introducing different cell types, notably mesenchymal stem
cells. The final engineered tissue can be transplanted into the knee joint of the OA patient.

of the grafts, (b) elevated potential to be industrialized
and commercialized and to achieve a ready to use product,
and (c) potentially increased storage time that all together
expand the operation maneuver for patients. 4314
Nevertheless, no standard method for cartilage decel-
lularization is yet proposed. Previous studies demonstrated
that the decellularization process itself could affect the
residual matrix components, micro-architecture and
micromechanical properties.'* Among them, decrease in
sulfated GAGs,'#%!*7 Joss of inherent collagen content'*®,
as well as reduced biomechanical properties'*® of dECMs
have been reported. Optimal decellularization methods
that can effectively remove cellular components with only
minimal disruption to other components, such as collagen,
GAGs, and GFs, can help maintain ECM ultra-structure
and micromechanical properties (Figure 2). For instance,
chondrocytes grown in collagen microspheres produce
GAG-rich ECM leading to promoted chondrogenic differ-
entiation of MSCs upon decellularization.'*’ Furthermore,
it was reported that dECM derived from chondrocytes
plays a crucial role during the chondrogenic differentiation

of human MSCs.">® Since harvesting chondrocytes from
the healthy cartilage is a narrow procedure, other cellular
sources including synovial derived stem cells (SDSCs),
MSCs and co-culture of chondrocytes and MSCs were also
largely studied.'*"!3? It has been shown that dECM derived
from human MSCs maintain stem cell niche and enhance
the MSC proliferation capacity.*? Others studies showed
that MSC-derived dECM increases cell adhesion, matrix
secretion, and chondrogenesis of marrow clots after micro-
fracture.'*>15% In addition, Guo et al.'*® and Jingting Li
et al.'’*” reported that dECM derived from SDSCs increases
MSC proliferation and chondrogenic differentiation lead-
ing to a better cartilage repair.

As we have already mentioned, elimination of cells,
preservation of ECM components, removal of genetic
material and maintenance of mechanical properties are the
main goals of decellularization procedure which are
achieved by a wide variety of techniques such as physical
(freeze/thaw cycles), chemical (detergents notably SDS
and Triton X-100) and enzymatic treatments (trypsin,
DNAse) (Table 2). Cartilage ECM represents more than
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90% of the tissue volume and chondrocytes are the only
cell type in the cartilage, therefore, for the most efficient
preservation of ECM components and optimal cell
removal, the most commonly used methods for cartilage
decellularization are based on a combination of all those
three techniques, which are evaluated and summarized in
Table 3.

In several studies, scaffolds were prepared from carti-
lage which was shattered prior to decellularization.'®” The
first step of decellularization consists in cell lysis followed
by the extraction of various cellular debris by using deter-
gents like SDS and SD, which can solubilize membrane
proteins and lipids and also control protein crystalliza-
tion.'®® Some research works utilized Triton X-100 as a
type of non-ionic detergents, which are able to denaturate
protein-protein interactions. Similarly, it can break up
lipid-lipid and lipid-protein association.”>'®® J. Antons
et al.'? used supercritical CO, technique to decellularize
high density of articular cartilage. They showed that most
of the cellular material was removed, while the tissue
structure and biocompatibility was preserved. Furthermore,
the DNA content was reduced in cartilage in comparison to
the native tissue.

Other studies have tried to use decellularized cartilage
tissue in the form of small particles rather than whole tis-
sue to enhance chondrogenesis referred to as cartilage
extracellular matrix-derived particles (CEDPs). They used
decellularized cartilage microparticles with an average
diameter of 263 um to evaluate their in vitro and in vivo
chondrogenic potential using BM-MSCs. They showed
those MSCs were differentiated into mature chondrocytes
after 21 days of culture without the use of exogenous GFs.
Further, induction of hyaline-like articular cartilage repair
was performed by the direct use of functional cartilage
microtissue of MSC-laden CEDP aggregates for cartilage
repair in vivo.'*® Likewise, others developed CEDPs, for
cell proliferation of articular chondrocytes (ACs) and adi-
pose-derived stem cells (AD-MSCs), which improved the
maintenance of chondrogenic phenotype of ACs, and
induced chondrogenesis of AD-MSCs. Moreover, the
functional microtissue aggregates of AC- or AD-MSCs-
laden CEDPs induced equal levels of hyaline cartilage
repair in a rabbit model.'®

Cartilage tissue engineering, involving the combina-
tion of stem/progenitor cells with scaffolds, which serve
as artificial ECMs, provides another promising strategy
for cartilage regeneration. Recently, thermosensitive
hydrogels due to their unique injectable property, no
organic solvent, good biocompatibility, and biodegrada-
bility analogous to the native ECM have attracted much
attention as scaffolds for cartilage tissue engineering.

Several advantages of thermosensitive hydrogels in
cartilage tissue engineering have been reported. For
instance, (1) seed cells can be easily embedded in the gel;
(2) thermosensitive hydrogels could fill the irregular carti-
lage defects and prevent undesirable diffusion of precursor

solutions; (3) their gelation can be simply triggered under
mild physiological conditions, which avoid any organic
solvents and harsh environment compared to other inject-
able hydrogels.!”!7! In this setting, He Liu et al.,'”> dem-
onstrated that the introduction of phenylalanine which is a
hydrophobic amino acid, into polyalanine-based thermo-
sensitive hydrogel leads to the enhanced gelation behav-
iors and upregulated mechanical properties. Moreover,
this process led to the enlarged pore size and enhanced
mechanical strength of thermogel, followed by the regen-
eration of hyaline-like cartilage with reduced fibrous tis-
sue formation. More recently, Chenyu Wang et al.,'”
reported that the addition of injectable cholesterol to ther-
mogel results in an elevated cartilage repair function such
as lower gelation temperature, higher mechanical strength,
larger pore size, better chondrocyte adhesion, and slower
degradation.

Based on the promising outcomes of these tissue engi-
neering methods, many different devices, scaffolds and
injectable solutions has been developed for OA treatment
during the last years in which some of them have already
received the FDA approval. Table 4 summarizes these
devises and their advantages and disadvantages in OA
treatment.

Recellularization of cartilage. Recellularization of the
dECM must be performed in order to produce a functional
tissue or organ before their administration (Figure 2). The
cell type used to repopulate the matrix and recellulariza-
tion methods are largely dependent on the complexity of
the cell sheet, tissue, or organ. Stem/progenitor cells for
this aspect can be generally classified as fetal cells, adult-
derived stem/progenitor cells, adult-derived inducible
pluripotent stem cells (iPSCs) and umbilical cord blood
cells. Non-stem/progenitor cells used for organ engineer-
ing are usually parenchymal and supportive cells such as
fibroblasts obtained from the organ of interest via biopsy
or surgical harvest. Other cell sources can include endothe-
lial cells (ECs) obtained from easily accessible sources
such as peripheral blood or bone marrow.** A summary of
cartilage recellularization methods is listed in Table 3.

Cellularization of cell sheets can be accomplished by
simply applying the cell suspension onto the monolayer
surface, and 3D constructs can be created through shifting
between the cell suspension and additional cell sheets as in
the “sandwich model” for cartilage construction.!®*!%
High numbers of cells are required for the recellularization
to produce a functional tissue or organ. In the joint carti-
lage, there are not enough resident cells available to invade
the cell-free scaffold and to colonize it homogencously.
Thus, the cells mostly used in cartilage tissue engineering
are MSCs which are multipotent and characterized by a
high proliferative activity.'*

BM-MSCs, AD-MSCs, infrapatellar fat pad stem cells
(FP-SCs) and synovium have been proposed for cartilage
tissue engineering in order to recellularize the cartilage
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dECM. AD-MSCs and BM-MSCs are easily and abun-
dantly accessible.®® BM-MSCs and AD-MSCs have been
seeded in a variety of 3D culture systems in an effort to gen-
erate cartilage-like tissue, including natural biopolymers
such as collagen,'* silk fibroin and chitosan,'®’ hydrogels
such as alginate, gelatin, agarose,'®® silk fibroin,'*® hyaluro-
nan,”® and hybrids of synthetic and natural materials.?!
It is important to mention that some of these culture systems
are composed of synthetic materials that have never
been exposed to a cellular environment. Therefore, the addi-
tion of cells will lead to neo-cellularization rather than re-
cellularization. Cartilage-like tissue formation can be
induced using these MSCs as evidenced by type II colla-
gen, ACAN expression and accumulation of both cartilage
markers in vitro and in vivo.?> Moreover, it has been
observed that chondrogenic differentiation and ECM dep-
osition are superior in BM-MSCs compared to expanded
and de-differentiated chondrocytes.?*> The addition of GFs
such as transforming growth factor beta 1 (TGF-f1) or
TGF-B3, fibroblast growth factors (FGFs) and Wnts super-
family members facilitates the expression of cartilaginous
ECM and chondrogenesis, mediated by the transcription
factor S0x9.204206 BM-MSCs have a high proliferative
activity, plasticity and release many trophic and bioactive
factors.?’’ In addition, they synthesize stimulatory ECM
components, which are critical for the use of in vitro pro-
duced MSC-derived cell- free ECM,?%2% mediating the
capacity to differentiate into connective tissue cells (chon-
drogenic, osteogenic, adipogenic, and tenogenic line-
age).2?219 Due to the lack of expression of co-stimulatory
molecules and the production of several anti-inflammatory
mediators, MSCs are immunoprivileged, immunosuppres-
sive and possess immunomodulatory properties.?!!-2!3
Both immunomodulatory capacity and low immunogenic-
ity are highly advantageous regarding MSCs as a cell
source for reseeding decellularized scaffolds. MSCs cul-
tured on the dECM scaffolds could enhance the biocom-
patibility of the constructs. In addition, the localized,
sustained GF release of MSCs should promote cell prolif-
eration, differentiation and ECM production in the scaf-
folds. The native cartilage ECM might still contain factors
and structural stimuli inducing them into a specific and
appropriate chondrogenic lineage.'**!*® Furthermore, they
can be harvested, enriched and seeded directly on the
implanted ECM in a one-step surgical procedure.?'*

Post-decellularization procedures to improve cartilage dECM
scaffold performance. Conventional cartilage tissue engi-
neering procedure consists of a scaffold decellularization
and recellularization steps. However, lack of mechanical
properties, load bearing capacity, rapid biodegradation,
and contraction of these scaffolds in culture limits further
applications.?!” In this review we propose a series of post-
decellularization procedures to overcome these shortcom-
ings of each biomaterial including low mechanical strength
and poor bioactivity to improve dECM scaffold towards

much more efficient and higher integration. To achieve
this aim, ECM-derived biomaterials can be crosslinked via
different factors such as: cross-linking agents, natural and
synthetic polymers, new synthetic polymers, cell-encapsu-
lating injectable hydrogel microparticles, and platelet-rich
plasma (PRP) (Figure 3).

Hybridization of dECM with cross-linking agents. One of
the approaches to ameliorate ECM-derived biomaterials
is crosslinking by physical and chemical methods (Fig-
ure 3(a)) which includes irradiation,?'® dehydrothermal
treatment (DHT),?!” and chemical crosslinkers such as
carbodiimide?'® and genipin.?!® Each of these methods
can provide different crosslinking density and protein
denaturation,”?® which affect scaffold contraction,!®
cell infiltration and cell-matrix interactions, mechanical
properties®?! and enzymatic degradation.’”> A common
method for cross-linking of proteins such as collagen and
also some polymeric materials such as polyvinyl alcohol
(PVA) is the DHT treatment.??’ In this techniques, water
molecules in polymer chains are removed by increasing
temperature under reduced pressure. However, denatura-
tion of biological components such as collagen chains
during heating process, that may induce immunogenic-
ity, is considered as an undesirable outcome in the DHT
treatment.?”> UV irradiation has also been performed to
crosslink PVA hydrogel?** and as well as ECM based
materials?®® to function as vitreous implants or scaffolds
for biomedical applications. To generate soft hydrogels;
physical cross-linking of PVA has been also obtained
by freezing and thawing cycles.??® Genipin is a natural
crosslinker with cytotoxicity about 10,000 times lower
than glutaraldehyde.??” Many studies explored the use of
genipin in biomedical applications such as a crosslinker
of tissue engineering scaffolds,?”® to decrease immuno-
genicity of the scaffolds previous to implantation,??® for
its anti-inflammatory properties,*’ and for controlled
release of GFs.?3! The crosslinking mechanism of geni-
pin is mediated via linking to primary amine groups of
hydroxylysine or lysine residues on the polypeptide or
proteoglycan chains, which results in the dark blue pig-
ments formed in the matrix.?3?

Some studies showed that genipin is able to decrease
Interleukin 1 beta (IL-1f) production in inflammatory dis-
eases.”?® Also, it has been demonstrated that genipin cross-
linked tracheae can reduce inflammatory reactions in the
xenograft models.?** Wang et al. reported that the natural
genipin crosslinking could lower the immunogenic poten-
tial of xenogeneic decellularized porcine whole-liver ECM
scaffolds by reducing the proliferation of lymphocytes and
their subsets, accompanied by a decreased release of both
Th1 and Th2 cytokines.?*

Hybridization of dECM with natural and synthetic poly-
mers. Biomaterials must be biocompatible, biodegradable,
and mechanically stable to be used for tissue engineering
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Figure 3. Cartilage tissue engineering process. In the first step, cartilage ECM is selected from different sources such as
cartilage tissue or cell-culture-derived ECM. Thereafter, the decellularization process is performed to remove cells and their
genetic materials. (a) dECM content is mixed with cross-linking agents, (b) polymers, (c) polymers via cross-linking agents, (d) cell
encapsulated injectable hydrogel microparticles, and (e) platelet-rich plasma. After the post-decellularization procedures, cells
are implanted into the final scaffold in a recellularization process. In the end, the cartilage tissue engineering product is ready for

application.

perposes.?*® Generally, synthetic and natural polymers are
used to engineer biomedical scaffolds (Figure 3(b)).%’
Synthetic polymers such as polyesters, polyglycolic acid,
polylactic acid, and polycaprolactone (PCL) provide a
wide range of benefits including high mechanical proper-
ties, controllable degradation, and high reproducibility.?*
However, lack of biological properties is a widely known
disadvantage of synthetic polymers.2** On the other hand,
natural polymers such as fibrin, collagen, alginate, hydro-
gels and gelatin provide proper biological features, but
their inadequate mechanical properties are recognized as
major shortcomings.?’

Based on the fact that the dECM provides outstanding
cellular activities, it has been widely applied in cell-acti-
vating components in hybrid scaffolds or biocomposites,?*
however, it lacks sufficient mechanical properties. In the
following paragraphs, we mention some research studies
that used biocomposite consisting of natural and synthetic

polymers, which can be combined to dECM, to enhance
post-decellularization techniques.

Collagen is known as the most abundant protein in
mammalian tissues, such as bone, cartilage, tendon, and
skin?*! and it has been broadly applied in tissue engineer-
ing because of its exceptional biocompatibility. However,
due to its low mechanical properties, collagen is not the
optimal choice for bone and cartilage tissue regeneration;
thus it has been a challenge to build a desired 3D porous
structure with appropriate mechanical strength. Unlike
collagen, silk fibroin (SF) has relatively high mechanical
properties. SF was shown to be highly biocompatible and
biodegradable.?*> However, it is difficult to process SF
solution due to its low viscosity. In recent, hybridization
(or composite) of two or more types of biomaterials has
been extensively studied to overcome the shortcomings of
each biomaterial including low mechanical strength and
poor bioactivity.?*}
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Lee et al. used a low temperature printing process to
create a 3D porous scaffold consisting of collagen, dECM
to induce high cellular activities, and SF to reach the
proper mechanical strength.?** O'Brien et al. developed a
porous collagen/ hydroxyapatite (HA) composite and
immersed it in SBF to increase the mechanical stiffness by
3.9-fold.*® Zhang et al. enhanced the mechanical strength
(3.7-fold) of the alginate scaffold by adding chitosan.?*
Furthermore, in order to provide cell friendly environment
to synthetic polymers, Cheng et al.?*’ and Sousa et al.>*
immobilized collagen on the surface of the hydrophobic
PCL surface.

Hye Sung Kim et al. showed that cartilaginous dECM-
decorated nanofibrils induced in vitro differentiation of
AD-MSCs into chondrogenic lineage even without any
additional exogenous GFs and cytokines.?*’ Another study
investigated 3D bioprinting scaffolds for cartilage tissue
by combining collagen type I or Agarose (AG) with
sodium alginate (SA) incorporated with chondrocytes.?>
The results showed that the addition of collagen or AG had
a little impact on the gelling behavior and can improve the
mechanical strength when compared to SA alone.
Furthermore, the presence of collagen facilitated cell adhe-
sion, accelerated cell proliferation, and enhanced the
expression of the cartilage specific genes, namely Acan,
Sox9, and Col2al.2%

Hydrogels are other natural biopolymers having a great
potential, due to their structural resemblance to the ECM
and their spongy framework, which enables cell transplan-
tation, adhesion, differentiation and proliferation.?!
Combination of hydrogels, dECM and other types of struc-
tures can therefore enhance their functionality and signifi-
cantly improve the overall features of a 3D system.?*

Gels of cytoskeletal proteins display particular mechani-
cal responses (stress stiffening) that until now have been
absent in synthetic polymeric and low-molar-mass gels. In
one study, synthetic gels mimic in nearly all aspects gels pre-
pared from intermediate filaments. They are prepared from
polyisocyanopeptides grafted with oligo (ethylene glycol)
side chains. These responsive polymers possess a stiff and
helical architecture, and show a tunable thermal transition
where the chains bundle together to generate transparent gels
at extremely low concentrations. Polyisocyanide polymers
are readily modified, giving a starting point for functional
biomimetic hydrogels with potentially a wide variety of
applications®? in particular in the biomedical field.

Kim et al. demonstrated that the surface-decorated poly-
meric nanofibrils with cartilage-derived dECM can render
a synergistic effect on mimicking cartilage-specific micro-
environment.?** They prepared polymeric electrospun
nanofibrils decorated with cartilage-derived dECM as a
chondro-inductive scaffold material for cartilage repair. To
introduce cartilage-derived dECM into synthetic scaffolds,
dECM powders or solutions were mixed with synthetic
polymers formed a scaffold. Furthermore, chondrocytes or

chondrogenically primed MSCs were seeded to prepare
scaffolds for deposition of the cartilage-related ECM and
then removed for cell reseeding or implantation.

Hybridization of dECM with new synthetic polymers using
cross- linking agents. Polymeric materials used to design
hybrid and composite scaffolds in cartilage tissue engi-
neering most frequently consist of poly (lactic-co-glycolic
acid) (PLGA), poly-L-lactic acid (PLA), PCL, polyethyl-
ene glycol (PEG), PVA and methacrylamide modification
(MA) (Figure 3(c)).>* Synthetic scaffolds are known to
display adequate mechanical properties to match those of
cartilage tissues, but their lack of appropriate biological
cues reflect a main drawback.?>> Accordingly, dECM-
new synthetic polymers using crosslinking agents could
improve this limitation of biological signals. For example,
Setayeshmehr et al. investigated the fabrication of novel
scaffolds based on devitalized costal cartilage matrix
(DCM) and PVA, using genipin as a natural crosslinker.
For this purpose, PVA was modified to expose amine
groups (PVA-A), which crosslinked with DCM powder via
the lowest genipin percentage of 0.04%. These findings
suggest that genipin-crosslinked DCM-PVA-A/fibrin can
be considered as an appealing hybrid scaffold for cartilage
tissue engineering applications.?!?

Hybridization of dECM with cell incapsulated injectable
hydrogel microparticles. A variety of biomaterials, both nat-
ural and synthetic, have been exploited to prepare inject-
able hydrogels; these biomaterials include chitosan,?*
collagen or gelatin,?” alginate,>* hyaluronic acid,?® hepa-
rin,?%® CS,?! PEG, and PVA (Figure 3(d)).?%

Hydrogel microparticles (HMPs) are promising tools
for biomedical applications, ranging from the therapeutic
delivery of cells and drugs to the production of scaffolds
for tissue repair and bioinks for 3D printing. Cells and
drugs can be encapsulated into HMPs of predefined
shapes and sizes. HMPs can be formulated in suspensions
to deliver therapeutics, as aggregates of particles (granu-
lar hydrogels) to form microporous scaffolds that promote
cell infiltration or embedded within a bulk hydrogel to
obtain multiscale behaviors. HMP suspensions and granu-
lar hydrogels can be injected for minimally invasive
delivery of active products, and they exhibit modular
properties when composed of mixtures of distinct HMP
populations. One major advantage of using HMPs for cell
delivery is that cells are protected during the delivery pro-
cess. Although bulk hydrogels may be injectable by
exploiting shear thinning (decreasing the viscosity to
increase shear rate), shear forces during injection may
impact cells viability.?> Owing to their high water content
and similarity to the native ECM, hydrogels are used as
substrates for cell culture,** biomaterials for tissue engi-
neering®® and vehicles for drug and protein delivery.?*®
Traditionally, hydrogels are crosslinked into continuous
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volumes (bulk hydrogels) with external dimensions at the
millimeter scale or larger and a mesh size at the nanome-
ter scale that permits molecule diffusion.?®’

Hybridization of dECM with Platelet-Rich Plasma. Platelet-
rich plasma (PRP) is a blood product, which contains a
high concentration of platelets?® with the ratio between
two and eight folds compared to normal platelet concentra-
tion in adult peripheral blood.?®® PRP was first introduced
in regenerative medicine in the 1980s and 1990s, with the
earliest documented uses for treatment of cardiac disease,
dental damage, and maxillofacial surgery.?’”® Since then,
it has also been used as a cell culture supplement for the
expansion of stem and progenitor cells for tissue engineer-
ing applications in the context of muscule,?”! bone,?"? car-
tilage,?”* skin,”’* and soft tissue repair.?’®

PRP contains a mix of different cytokines and GFs,
including platelet-derived growth factor (PDGF) which is
a protein that stimulates the proliferation and synthesis of
new collagen formation; TGFf-1 that counteracts the cata-
bolic effects of IL-1 on tissues such as cartilage, by increas-
ing chondrocyte synthesis as well as by increasing ECM
production; FGF that is able to promote tissue healing by
activating anabolic pathways; and finally hepatocyte
growth factor (HGF) which increases tissue repair by pro-
moting angiogenesis, as well as chemotaxis of MSCs,
along with subchondral progenitor cells to promote chon-
dral matrix formation and remodeling.?® Due to their high
GF's content in platelet, PRP has been shown to improve
cell growth in different research studies. Pham et al.
showed an increased AD-MSC proliferation treated with
PRP in standard medium after 24 h, compare to customary
medium alone.?’® In addition, Lucarelli et al.>”’ investi-
gated the ex vivo influence of 1% and 10% PRP as platelet
gel on BM-MSCs, showing a dose-dependent effect of
PRP on cell proliferation.

Moreover, PRP has been utilized for the delivery of
GFs and /or cells within tissue-engineered constructs,
often in combination with biomaterials. For example, in
bone tissue engineering, El Backly et al.?’? reported that
the combination of rabbit PRP with biodegradable freeze-
dried gelatin hydrogels had the potential to increase bone
repair in vivo.

Some studies have investigated the effect of PRP in
osteochondral and cartilage repair. In this setting, most
studies utilized PRP as a carrier for chondrocytes, progeni-
tor cells or stem cells such as MSCs. For instance, Xie
et al.?” published a testing PRP-delivered BM-MSCs and
AD-MSCs in terms of their regenerative potential for oste-
ochondral repair. PRP has been shown to induce MSCs to
specially differentiate into chondrocytes and osteocytes in
vitro via increasing chondrogenic (SOX9 and ACAN) and
osteogenic (type I and type II collagen) markers in syno-
vial tissue.?’® Injections of PRP over 3 months in one study
showed significant decreases in synovial fluid volume, as

well as pro-inflammatory markers including apolipopro-
tein Al (apo-Al), haptoglobin, immunoglobulin kappa
constant (IGKC), matrix metallopeptidases (MMPs), nota-
bly MMP-13, and transferrin in mild to moderate OA 2"
Besides, PRP has been shown to significantly reduce chon-
drocyte hypertrophy, a known step in the pathophysiologic
degeneration of cartilage in OA.?%° As part of its anti-
inflammatory effects, PRP-rich environments have been
shown to reduce IL-1B expression in chondrocytes, a
known inhibitor of type II collagen and ACAN gene
expression, as well as an inducer of MMP and nuclear fac-
tor kappa-light chain enhancer of activated B cells (NF-
kB), a major contributor to inflammation and the
pathogenesis of OA 28!

PRP has been also locally applied by means of scaf-
folds. Several pre-clinical evidences have shown a positive
effect of PRP in association with different materials.
Besides its application as an augmentation procedure, PRP
itself has been modified to become a scaffold with the pur-
pose of vehiculating cells and providing biological stimu-
lation at the same time. Low immunogenicity and optimal
biocompatibility, together with the clotting properties of
PRP, make this product an interesting carrier for tissue
engineering.?®? Qi et al. have tested autologous PRP vehic-
ulated by a collagen matrix for the treatment of patellar
groove osteochondral lesions in the rabbit knee; they
achieved better histological and mechanical results com-
pared to collagen matrix alone.”®® A further trial by Sun
et al. evaluated the contribution of PRP added to a micropo-
rous PLGA scaffold to treat osteochondral defects created
in the patellar groove in the rabbit model. This PRP-
augmented scaffold was tested against the scaffold alone
and results were quite significant.?%*

PRP can be utilized as an injection, or as a matrix
adhered to a scaffold which can be introduced directly to
damaged tissues.?® It has shown efficacy in treating many
knee conditions, but by far has been studied most exten-
sively in the treatment of OA of the knee. When compared
with hyaluronic acid®*® and CS,?” PRP shows improved
clinical effects as well as a longer duration of action,
potentially delaying the need for total joint replacement.

Post-decellularization procedures to improve dECM scaffold
performance in other tissues. The interesting advantages of
post-decellularization methods are not limited to cartilage
tissue and OA treatment. Several other studies have dem-
onstrated the promising impact of post-decellularization
procedures on other tissues that are briefly discussed in
this section.

In case of heart failure, individually alginate hydrogels
and myocardial matrix-based therapies have been shown
an interesting option for myocardial infarction (MI) treat-
ment. Clive J Curley et al.,?®® have successfully developed
a production method for hybridization of dECM with algi-
nate hydrogels. They demonstrated that the minimally
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invasive delivery of dual acting alginate-based hydrogels
to heart results in appropriate rheological and mechanical
properties.

In addition, in a model of tissue-engineered tracheal
replacement, Yi Zhong et al.,®* have shown that the tra-
chea of rabbit that was decellularized by detergent-enzy-
matic method (DEM) had better biocompatibility and
lower immunogenicity than that by Triton-X 100-pro-
cessed method, and the structural and mechanical charac-
teristics of the acellular matrix were effectively improved
after cross-linking by genipin. Furthermore, in a study
comparing the ECM derived from human umbilical cord,
crosslinked by genipin and N-(3-Dimethylaminopropyl)-
N-ethylcarbodiimide hydrochloride (EDC) for neural tis-
sue application, authors demonstrated that genipin, rather
than EDC, improved the bio-stability of injectable ECM
hydrogel in biocompatible concentration.?*

In another example, Yizhong Peng et al.,>®! established
an injectable genipin-crosslinked decellularized annulus
fibrosus (dAF) hydrogels and showed that they are better
in case of formability, biocompatibility, bioactivity, and
mechanical strength in comparison to non-crosslinked
dAF.

Amnion is another tissue with potentially interesting
properties to be used as scaffold.?®> While it has a high risk
of immunological rejection and infection, its decellularized
form showed better compatibility. Amnion scaffold post-
decellularization with PRP and calcium chloride composi-
tion has been shown to support better adherence to the
wound than amnion alone. They can release GFs including
VEGF, TGF, PDGF, and EGF, which increase the bioactive
properties of PRP and thus amnion scaffold. Hybridization
of amnion scaffold with PRP successfully interfered with
the immune barrier and decreased the chances of immune
rejection.”®> The same positive effect was reported for
decellularized bone matrix scaffolds (DBMs) showing that
its hybridization with PRP can serve as a promising bone
regeneration material such as improved cell adhesion and
the capacity of DBMs for osseointegration with reduced
immune rejection probability.2%*

Conclusion and perspective

In the absence of satisfying outcome by classical treat-
ments, tissue engineering has emerged as a very attractive
approach for cartilage repair utilizing natural and synthetic
biomaterial scaffolds as well as xenogenic, allogeneic and
autologous sources of cells and chondro-inductive GFs. In
this review, we have highlighted the important considera-
tions that have to be taken into account for a successful
application of these highly variable and challenging tech-
niques and products. Conventional procedures such as
decellularization and recellularization have been already
reported as standard methods for cartilage regeneration.
Decellularization employs detergents, salts, enzymes, and/

or physical means to remove cells from tissues or organs
while preserving the ECM composition, architecture, bio-
activity, and mechanics.

Here, we have mentioned in detail, specific roles,
advantages and adverse effects of many agents and phys-
ical methods for using in decellularization protocols
(Table 2).

These protocols are mostly a combination of several
agents and physical methods; therefore, their efficacy for
decellularization is severely dependent on the combina-
tions of materials and methods, duration of exposure, type
of tissue and organ, temperature and different other fac-
tors. Thus, we believe that it is more reliable to assess the
general effects of these protocols on the main and compre-
hensive results of decellularization such as ECM altera-
tion, cell removal, immunogenicity and ECM mechanical
properties, rather than proposing the best-established
method. It is also important to note that the optimal proce-
dure may be different for each organ due to their unique
anatomy.

In the case of cartilage tissue engineering, plenty of
decellularization methods exist for different applications.
The Supercritical CO, physical technique, however, is one
of the best methods for tissue decellularization. Because
CO, is diffusive, the commonly used solvents such as sur-
factants can be released quietly fast and does not remain in
ECM, preventing the need for extensive wash proce-
dures.” Supercritical CO, is even more efficient in cell
removal by addition of ethanol avoiding harsh detergents’
application. Hence, instead of using SDS as detergent
which can cause immense ECM damage and requires
extensive wash process, we suggest emplying other kind
of mild detergent such as SD and CHAPS to reduce the
elimination of GAGs, GFs, and ECM proteins and conse-
quently mechanical properties alteration. The key criteria
for comparing cartilage decellularization methods are the
efficiency of cell removal and the adequacy of ECM reten-
tion including its biochemical components and mechanical
properties (Table 3).

Nevertheless, lacking a complete satisfaction using
classical decellularization methods, we propose here, five
complementary approaches including the hybridization of
dECM with cross-linking agents, natural and synthetic
polymers, new synthetic polymers using cross-linking
agents, cell incapsulated injectable hydrogel microparti-
cles and finally PRP for post-decellularization of ECM
scaffolds that has been shown to have improving impact
on cartilage tissue engineering outcome.

The introduction of post-decellularization methods
including their hybridization with different agents turns
back to very recent research studies most of them in their
initial in vitro phases. Therefore, except for the hybridiza-
tion of dECM with cross-linking agents such as genipin
and some natural and synthetic polymers like hydrogel and
the hybridization of dECM with PRP, no further clinical



Nouri Barkestani et al.

17

studies with improved cartilage repair outcome have been
reported yet. Among the clinically assessed post-decellu-
larization methods, however, we believe that PRP has
much greater clinical potential since its administration was
shown to be very effective in cartilage repair and eventu-
ally the treatment of OA and other inflammatory joint dis-
orders. Due to its high concentration of platelets, PRP is a
saturated source of important GFs and cytokines including
but not limited to PDGF, TGFf, HGF, and FGF that coun-
teract the catabolic effects of IL-1 and other inflammatory
mediators that contribute to the OA progress and at the
same time increases chondrocyte synthesis. Besides, PRP
has been used as a natural scaffold for vehiculating cells
and providing biological stimulation at the same time. The
interesting point to use PRP in comparison to other post-
decellularization techniques is that PRP is considered as a
non-modified blood product that according to medical
regulatory authorities does not need many regulatory steps
and procedures before its administration to the patients.

In the end, PRP has been administered for various tis-
sue-engineering applications with encouraging outcomes.
We believe that according to different important PRP
effects such as anti-inflammatory properties, cell prolifera-
tion induction, differentiation induction, regeneration
potentials, protective effects on chondrocytes, delivery of
GFs, as well as in anabolic/ anti-catabolic pathways and
ability to have a positive effect with other biomaterials, it
will be an optimal choice to add to the dECM for future
cartilage tissue engineering.
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