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INTRODUCTION
Currently, the evaluation of intracranial atherosclerotic arte-
rial stenosis relies on luminal measurements using luminal 
imaging techniques, including digital subtraction catheter 
angiography (DSA), CT angiography (CTA), and MR angi-
ography (MRA). While DSA is the gold standard in assessing 
luminal stenosis, most angiographic runs are performed as a 
2D imaging acquisition and accurate assessment of stenosis 
may be difficult due to overlapping structures.1,2 In addi-
tion, DSA is an invasive technique with a small risk of stroke. 
Patients frequently undergo both CTA and MRI/MRA, and at 
some institutions, high- resolution vessel wall (IVW) imaging. 
While CTA provides good spatial resolution and assessment 
of luminal stenosis, this technique also exposes the patient 
to radiation as well as iodinated contrast, which has a risk of 
contrast- induced nephropathy and allergic reactions. Non- 
contrast time- of- flight MRA is the most frequently utilized 

MR angiographic technique and provides good contrast 
resolution for luminal evaluation. In the setting of slow flow 
or high- grade stenosis, however, the degree of stenosis will 
frequently be overestimated due to flow dephasing artifacts 
and mild stenosis may also be underestimated due to bleeding 
effects of the vascular lumen.3,4 IVW is an increasingly 
utilized and reliable technique that allows for assessment of 
vessel wall pathology,5,6 including atherosclerosis,7,8 and has 
shown value in disease characterization9–11 and differentia-
tion.12,13 We hypothesize that luminal measurements on IVW 
are more accurate than those on 3D- TOF- MRA, relative to 
CTA.

METHODS AND MATERIALS
Patient population
After institutional review board approval, the radiology 
database was retrospectively queried for patients with 
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Objective: To assess whether intracranial vessel wall 
(IVW) MRI luminal measurements are more accurate 
than non- contrast 3D- TOF- MRA measurements for 
intracranial atherosclerotic stenosis, relative to CTA.
Methods: Consecutive patients with non- calcified 
intracranial atherosclerotic stenosis seen on CTA, who 
had non- contrast 3D- TOF- MRA and IVW performed 
between 1 January 2013 and 20 April 2014 were selected, 
and images with stenosis were pre- selected by a single 
independent rater. The pre- selected CTA, MRA, and 
IVW (T1- weighted) images were then reviewed by two 
independent raters blinded to the other measurements 
in random order. Measurements were made in a plane 
perpendicular to the lumen on each modality. MRA and 
IVW measurements were compared to CTA, to deter-
mine which more accurately matched the degree of 
stenosis.

Results: 18 patients with 33 intracranial atherosclerotic 
stenoses were included. Relative to CTA, IVW had 40% 
less variance than MRA (p = .004). IVW had a signifi-
cantly higher concordance correlation coefficient (CCC) 
relative to CTA than MRA (.87 vs .68, p = .002). IVW 
and MRA did not have significant bias relative to CTA, 
however, 8/33 lesions showed >20% overestimation of 
the degree of stenosis on MRA, compared to 1/33 for 
IVW. CCC between raters were 0.84 (95% CI 0.67–0.93) 
for CTA, 0.83 (0.67–0.93) for TOF- MRA, and 0.85 (0.71–
0.94) for IVW. For stenosis >50% sensitivity was 82% 
for IVW and 64% for MRA, while specificity was 73% for 
both.
Conclusion: IVW provides more accurate stenosis meas-
urements than MRA when compared to CTA.
Advances in knowledge: Considering higher stenosis 
measurement accuracy of IVW, it can be more reliably 
used for quantitative evaluation relative to MRA.
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intracranial arterial stenosis on CTA between the dates of 1 
January 2013 and 20 April 2014. Inclusion criteria were: (1) 
CTA, TOF- MRA and pre- and post- contrast T1 IVW performed 
within 2 weeks of one another and available for review; (2) non- 
calcified intracranial arterial stenosis on CTA head; and 3) ≥2 
vascular risk factors. Exclusion criteria were: (1) Lack of coverage 
of the target lesions on any of the imaging comparisons; (2) Lack 
of IVW acquisition in a plane perpendicular to the target lumen; 
(3) lack of post- contrast IVW sequences; and (4) any clinical or 
imaging evidence of other non- atherosclerotic vascular diseases 
(vasculitis, dissection, moyamoya disease, vasospasm, or revers-
ible cerebral vasoconstriction syndrome).

Data abstraction
Electronic medical records were reviewed for patient data, 
specifically patient age, ethnicity, gender, vascular risk factors 
(dyslipidemia, hypertension, smoking, diabetes mellitus, age >50 
for males and >55 for females, and obesity), and stroke history.

CTA protocol
CTA head/neck scanning protocol for stroke evaluation was 
performed on the 128- channel Siemens Somatom AS + scanner 
(Siemens Healthineers; Erlangen, Germany). 100 ml Omnipaque 
350 i.v. contrast is injected at 5 ml/s followed by 30 ml normal 
saline flush injected at 5 ml/s via 18- gauge cannula placed in 
the antecubital vein. After contrast injection, SmartPrep was 
used for bolus timing with monitoring at the aortic arch with a 
7 s scanning delay. Scanning is performed from the aortic arch 
through the vertex. Scanning parameters are: 250 mAs, 120 
kVp, 0.9 pitch, 0.5 rotation, 128×0.6 mm acquisition with 1 mm 
reconstructed slice thickness. Multiplanar reconstructions were 
performed with 1.0 mm thick slices.

Intracranial vessel wall imaging protocol
MRI was performed on a 3T Siemens Trio MRI system (Siemens 
Healthineers; Erglangen, Germany) with standard head coil. 
IVW MRI protocol consisted of 3D TOF- MRA, 2D T2- weighted, 
2D T1- weighted pre- and post- contrast IVW performed in 
multiple planes, including axial planes and planes perpendic-
ular to the course of the target lumen. For this study, the TOF- 
MRA and T1- weighted IVW pre- and post- contrast sequences 
were used. TOF- MRA parameters are: in- plane resolution, 
0.53×0.47 mm; slice thickness, 0.53 mm; repetition time/echo 
time, 20/3.69 ms; flip angle, 18; field of view, 205×184 mm; time, 
5:40 min. T1- weighted IVW parameters are: in- plane resolution, 
0.4 × 0.35 mm; slice thickness, 2 mm; repetition time/echo time, 
1000/10 ms; averages, 4; matrix, 448×448 pixels; field of view, 
180×158 mm; GRAPPA factor, 2; turbo factor, 18; time, 36 s per 
slice.

Data analysis
An independent board- certified radiologist rater with 2 years of 
experience reviewed all CTA studies independent of clinical data 
or other imaging studies, to determine the location of intracra-
nial arterial stenosis or irregularity, compatible with intracranial 
atherosclerotic disease. The rater identified and labeled images 
with stenosis, with the selected images being perpendicular to the 
plane of the targeted lumen. After the CTA images were selected, 

CTA, TOF- MRA and T1- weighted pre- and post- contrast IVW 
sequences were registered at the selected images using the auto-
mated registration tool in RadiAnt Dicom viewer (Medixant Co, 
Poznan, Poland). Users could manually modify the registration 
if the automated registration did not align correctly. The selected 
images in addition to one image on each side- of the selected 
image were included.

Two separate board- certified radiologist raters with 6 and 8 
years of experience, respectively, independently reviewed the 
selected images for each set (MRA, IVW or CTA) while blinded 
to the other imaging modalities for the patient and patient clin-
ical information. The raters measured the maximum degree of 
stenosis for each stenosis selected on each modality. The stenosis 
measurement was calculated based on the following formula: 
{1-[D(stenosis)/D(normal)]} × 100 = stenosis.14 D(stenosis) is 
the maximal point of stenosis, while D(normal) represents the 
normal arterial segment proximal to the stenosis, without any 
branching points between the normal segment and the stenosed 
segment. If there was no normal segment proximal to the stenosis 
on the ipsilateral side, the contralateral segment of the same 
artery was assessed. If none of these normal segment measure-
ments could be made or stenosis involved the basilar artery, a 
normal segment distal to the stenosis was measured. Imaging 
modalities were reviewed in a random order and separate from 
the other imaging performed. All imaging studies were evalu-
ated and reviewed on Radiant Dicom viewer (Medixant; Poznan, 
Poland). Luminal measurements were averaged between the two 
raters.

Statistics
All statistical calculations were conducted with the statistical 
computing language R (v. 2.14.1; R Foundation for Statistical 
Computing, Vienna, Austria). Throughout, two- tailed tests were 
used with p < 0.05 denoting statistical significance.

Mean stenosis and standard deviation of each imaging technique 
were calculated. Agreement between stenosis and lumen diam-
eter measurements by MRA or IVW with CTA was assessed 
qualitatively using Bland- Altman plots. Agreement was also 
summarized quantitatively by the mean difference, the SD of 
differences and the concordance correlation coefficient (CCC).15 
Generalized estimated equations (GEEs) were used to test for 
bias (mean difference not equal to zero). Sensitivity and speci-
ficity for >50% stenosis were estimated for MRA and IVW, using 
CTA as the reference. Inter- rater agreement was assessed using 
the CCC. The non- parametric bootstrap was used to compute 
95% CIs and to compare the agreement statistics for MRA and 
IVW measurements. To account for the clustering of lesions, 
resampling was done at the patient level.16

RESULTS
Patient demographics
Eighteen total patients with 33 atherosclerotic lesions were 
included in the study. Of the 18 patients, 13 were imaged 
within 3 months of stroke, while two additional patients had 
strokes greater than 6 months after an ischemic event. Three 
patients had no history of stroke or transient ischemic attack. 
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No patients presented with intracranial hemorrhage. Patients 
had 2–6 vascular risk factors (mean: 4.1, std. dev. 1.3). The most 
common vascular risk factors were hypertension (17), dyslipid-
emia (15), and diabetes mellitus (11). Mean patient age was 53.1 
years (std. dev. 10.4). Seven patients were white, 5 Hispanic, 4 
Asian, 1 black, and 1 Pacific Islander. There were 6 males and 12 
females in the cohort. Ten patients were receiving statin therapy, 
and nine patients were receiving anti- platelet agents. Only one 
patient had history of myocardial infarction

Segments of involvement
Arterial lesion distribution was: M1 middle cerebral artery 
(MCA) (14), supraclinoid internal carotid artery (ICA) (6), A1 
anterior cerebral artery (ACA) (4), V4 vertebral artery, basilar 
artery, P1 posterior cerebral artery (PCA), A2 ACA and P2 PCA 
(two each), and M2 MCA (1), for a total of 33 stenotic athero-
sclerotic lesions.

Inter-rater agreement
The CCC between the stenosis measurements made by the 
2 raters was 0.84 [95% CI (0.67–0.93)] for CTA, 0.83 [95% CI 
(0.67–0.93)] for TOF- MRA, and 0.85 [95% CI (0.71–0.94)] for 
IVW.

Comparison of stenosis measurements
Neither IVW nor MRA had any significant bias relative to CTA 
for stenosis and lumen diameter measurements (Table 1). IVW 
stenosis measurements were found to have nearly 40% lower 
variability (p = 0.004) and a significantly higher CCC (0.87 vs 
0.68; p = 0.002) than MRA measurements with respect to the 
standard used, CTA (Figures 1 and 2, Table 1). Figures 3 and 4 
demonstrate the corresponding Bland- Altman plots for MRA- 
CTA and IVW MRI- CTA stenosis comparisons, respectively, 
indicating a distinctly superior agreement of IVW with CTA, 
when compared to MRA. IVW lumen diameter measurements 
also had significantly higher agreement with CTA than MRA 

Table 1. Comparison of stenosis and lumen diameter measurements by MRA and IVW MRI with CTA (reference) (n = 33 lesions)

Modalitya Difference
Stenosis MRI CTA Mean SD p valueb CCC (95% CI)

MRA, % 49 ± 25 45 ± 21 4.4 18 0.19 0.68 (0.57, 0.76)

IVW, % 45 ± 22 45 ± 21 0.1 11 0.94 0.87 (0.81, 0.92)

p valuec 0.24 0.004 0.002

  Difference

Lumen Diameter MRI CTA Mean SD p valueb CCC (95% CI)

MRA, mm 1.14 ± 0.65 1.05 ± 49 0.09 0.49 0.41 0.64 (0.49, 0.74)

IVW, mm 1.08 ± 0.54 1.05 ± 49 0.03 0.23 0.56 0.90 (0.81, 0.96)

p valuec 0.45 <0.001 – <0.001

CCC, Concordance correlation coefficient; CI, Confidence interval; CTA, CT angiography; IVW, Intracranial vessel wall MRI; MRA, MR angiography; 
SD, Standard deviation.
aValues are mean ± SD.
bTest of mean difference between MRI and CTA = 0.
cTest of difference between MRA and IVW, mean difference, SD of differences, and CCC.

Figure 1. 40- year- old female with right MCA territory stroke and infarct (not shown), with enhancing, eccentric atherosclerosis 
involving the right carotid terminus (Figure 1c, arrow). On sagittal CTA (a), there is narrowing of 60% of the right carotid terminus 
(arrow). On sagittal T1 IVW (b), the right carotid terminus has 58% narrowing (arrow). Sagittal T1 post- contrast IVW (c) shows 
an eccentric enhancing lesion with outer wall remodeling (arrow) consistent with atherosclerosis. On sagittal reconstructed 3D 
TOF MRA (d), there is no evidence of flow- related enhancement in the expected location of the right carotid terminus (arrow) 
corresponding to 100% stenosis.
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lumen diameter measurement (CCC: 0.64 vs 0.90, p < 0.001; 
Table 1).

There were 11 lesions with stenosis >50% on CTA. Sensitivity for 
>50% stenosis was 64% [7/11, 95% CI (39–83%)] on MRA and 
82% [9/11, 95% CI (53–95%)] on IVW. Specificity was the same 
for both sequences at 73% [16/22, 95% (CI 52–87%)).

DISCUSSION
Conventional luminal imaging techniques are the first- line 
approach to the evaluation and characterization of neurovascular 
disease, with TOF- MRA frequently used due to its non- invasive 

nature, lack of ionizing radiation and iodinated contrast injec-
tion. Questions exist about the accuracy of luminal measure-
ments on MRA, however. In the current study, we compared 
luminal measurements on TOF- MRA and IVW relative to the 
CTA reference standard and found significantly greater agree-
ment between IVW and CTA compared to MRA and CTA (CCC 
of 0.87 vs 0.68, p = .002) when evaluating continuous stenosis 
measurements. IVW had a sensitivity of 82% compared to the 
MRA value of 64% while both had 73% specificity.

CTA has previously shown strong agreement in luminal measure-
ments relative to DSA. Nguyen- Huynh et al17 compared CTA 

Figure 2. 53- year- old male with multiple vascular risk factors presenting with worsening dementia and multiple infarcts on CT 
of different stages of evolution (not shown), including right MCA territory acute infarct on MRI (not shown). CTA of the head (a) 
shows narrowing of the distal right M1 MCA, which measured 39% stenosis (arrow). TOF- MRA (b) showed narrowing at the same 
location (arrow), with 50% stenosis, while sagittal T1- weighted IVW (c) showed atherosclerotic plaque along the superior wall of 
the arterial segment which showed partial enhancement (arrow), resulting in 35% stenosis, which more closely approximated the 
degree of stenosis seen on CTA relative to MRA.

Figure 3. Bland- Altman plot of stenosis by MRA and CTA in 
33 lesions.

Figure 4. Bland- Altman plot of stenosis by IVW MRI and CTA 
in 33 lesions.

http://birpublications.org/bjr
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and DSA findings in 41 patients and 475 arterial segments. They 
found the stenosis intra- class correlation coefficient between 
CTA and DSA to be 0.98. CTA detected large arterial occlusion 
with 100% sensitivity and specificity and for detection of ≥50% 
stenosis, CTA had 97.1% sensitivity and 99.5% specificity. This, 
in addition to the easier access, increased utilization and first- 
line use of CTA for stenosis evaluation justified its implementa-
tion as the reference standard in our study.

While TOF- MRA has the advantage of not exposing patients 
to i.v. contrast or ionizing radiation, its lower spatial resolution 
as compared to CTA or DSA limits its utility in smaller arterial 
segments. Furthermore, as a result of dependence on vascular 
flow for the maintenance blood signal, high- grade stenosis, 
turbulent or in- plane flow lead to proton spin- dephasing and 
downstream flow signal intensity loss. Due to these limitations, 
TOF- MRA has lost favor as the primary neurovascular imaging 
modality. The SONIA study18 found that MRA has modest 
correlations with DSA and concluded that abnormal findings on 
MRA require confirmation with DSA.

There are a few published studies evaluating the accuracy of IVW 
for luminal measurement assessment relative to other luminal 
imaging modalities. Liu et al19 compared 2D T2- weighted black 
blood imaging with CTA against 2D DSA for the evaluation 
of MCA steno- occlusive disease in 28 patients. IVW- derived 
stenosis values correlated better with DSA (Spearman correla-
tion R = 0.68, p = 0.01) than CTA MIP or VR reconstructions 
(Spearman correlation R = 0.45, 0.22; p = 0.02, 0.24, respectively). 
In 10 patients with large vessel occlusion, Hui et al20 compared 
findings of pre- and post- contrast T1 IVW with 3D- TOF- MRA 
and 2D DSA. Apart from 10 occluded vessels in which there was 
full agreement among all imaging methods, IVW showed seven 
other stenotic vessel segments versus only two demonstrated by 
MRA and DSA. IVW showed a higher frequency of wall abnor-
malities (thickening and enhancement) compared with DSA and 
MRA (p = 0.016 and p = 0.008, respectively). Lee et al21 compared 
2D pre- and post- contrast IVW with 3D DSA in 37 patients, 
and found moderate- to- excellent agreement (interclass correla-
tion coefficient = 0.892–0.949; Κ = 0.548–0.614) and significant 
correlations (R = 0.766–892) between IVW and DSA on the 
degree of stenosis and minimal luminal diameter. The inter- 
observer diagnostic agreement was good for DSA (Κ = 0.643) 
and excellent for IVW (Κ = 0.818). Park et al22 also compared 
3D IVW with 2D DSA in 43 patients and found a similar degree 

of stenosis (p > .05) and higher luminal diameter (p < .05) on 
IVW compared to DSA. Kim et al23 evaluated 286 segments in 
17 patients with both IVW and MRA, for stenosis and athero-
sclerosis presence, with IVW as the reference standard for 
atherosclerosis presence and MRA as the reference standard for 
luminal stenosis. IVW had a 92.5% sensitivity and 82.1% speci-
ficity for stenosis relative to MRA, while MRA had a sensitivity 
of 59.4% and a specificity of 98.3%, respectively, relative to IVW. 
This study shows the value of IVW for stenosis measurements, 
however, the current and other studies demonstrate limitations 
of MRA in stenosis assessments. Bai et al24 developed a luminal 
imaging technique from IVW acquisitions and found this new 
technique showed significantly higher sensitivity for detection of 
severe stenosis (89.3% vs 64.3%, p = .039) relative to MRA and 
comparable to the sensitivity of IVW. The results of the present 
study are in line with the above- discussed literature suggesting 
superior correlation of IVW with the reference standard test for 
the evaluation of steno- occlusive disease; however, this study is 
the only one to compare stenosis measurements on IVW and 
MRA relative to the front- line imaging modality for intracranial 
stenotic disease, CTA.

There are several limitations with the current study, including 
retrospective study design and limited number of subjects. 
Studies with larger cohorts and lesion counts, additional 
readers and evaluating varied luminal techniques are needed to 
further validate these findings. The study also utilized 2D- IVW 
techniques, although only lesions involving arteries coursing 
perpendicular to the plane of imaging were included in order to 
minimize volume averaging and wall thickness overestimation 
effects. Further comparisons with additional IVW techniques 
is necessary to also confirm these findings, as these results may 
differ with technique differences.

CONCLUSION
IVW can more accurately assess atherosclerotic luminal measure-
ments relative to TOF- MRA, as compared to CTA. TOF- MRA is 
frequently performed as part of IVW protocols, for rapid iden-
tification of intracranial stenosis; however, these stenoses should 
be confirmed with IVW, and IVW can be used to quantify more 
accurately the degree of stenosis.
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