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INTRODUCTION
Rib fractures are the most common type of chest injury 
in blunt chest trauma patients, with an estimated inci-
dence of 10–38.7%.1–3 The number and pattern of rib 
fractures are indicative for trauma severity and can 
predict complications and mortality rates.4,5 CT is the 
main imaging modality for polytrauma patients and 
is considered appropriate for observing rib fractures 
caused by high-energy impact, suspected rib fractures 
after cardiopulmonary resuscitation,6 or circumstances 
requiring legal documentation of the injury.5 CT not only 
provides a detailed assessment of rib fractures but also a 
comprehensive and accurate assessment of thoracic and 

abdominal injuries in patients with multiple trauma.7,8 
Ribs are long flat bones with curved shapes, and rib frac-
tures can present with various patterns, some of which 
may not be apparent on axial CT views.9 Furthermore, 
numerous CT images must be evaluated sequentially to 
count the ribs and detect rib fractures, which is meticu-
lous and time-consuming work.

Deep learning (DL) is a powerful technology that can 
learn multiple-level representations of medical images10 
that can overcome several limitations of traditional 
machine learning.11 Several studies demonstrated great 
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Objectives: To investigate the impact of deep learning 
(DL) on radiologists’ detection accuracy and reading 
efficiency of rib fractures on CT.
Methods: Blunt chest trauma patients (n = 198) under-
going thin-slice CT were enrolled. Images were read by 
two radiologists (R1, R2) in three sessions: S1, unassisted 
reading; S2, assisted by DL as the concurrent reader; S3, 
DL as the second reader. The fractures detected by the 
readers and total reading time were documented. The 
reference standard for rib fractures was established by 
an expert panel. The sensitivity and false-positives per 
scan were calculated and compared among S1, S2, and 
S3.
Results: The reference standard identified 865 fractures 
on 713 ribs (102 patients) The sensitivity of S1, S2, and 

S3 was 82.8, 88.9, and 88.7% for R1, and 83.9, 88.7, and 
88.8% for R2, respectively. The sensitivity of S2 and S3 
was significantly higher compared to S1 for both readers 
(all p < 0.05). The sensitivity between S2 and S3 did 
not differ significantly (both p > 0.9). The false-positive 
per scan had no difference between sessions for R1 (p = 
0.24) but was lower for S2 and S3 than S1 for R2 (both 
p < 0.05). Reading time decreased by 36% (R1) and 34% 
(R2) in S2 compared to S1.
Conclusions: Using DL as a concurrent reader can 
improve the detection accuracy and reading efficiency 
for rib fracture.
Advances in knowledge: DL can be integrated into the 
radiology workflow to improve the accuracy and reading 
efficiency of CT rib fracture detection.
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potential for DL-based solutions in the detection of a variety of 
lesions, such as diabetic retinopathy,12 lung cancer,13 and colon 
polyps.14

A DL-based automatic rib fracture detection algorithm was 
developed recently.15 The integration of such a system into the 
workflow to assist human readers in detecting rib fractures may 
have a direct impact on the detection accuracy and reading 
efficiency of CT images. However, this effect has not been fully 
investigated. Therefore, we examined the rib fracture detection 
accuracy and reading efficiency of human readers on chest CT 
without DL and with DL as a concurrent or second reader.

METHODS AND MATERIALS
Patients
From January 2019 to June 2019, 208 blunt chest trauma patients 
who underwent CT examinations were enrolled in this retro-
spective study. The inclusion criterion was: patients undergoing 
CT examination for a suspected severe chest injury that occurred 
within the last month. Patients were excluded if they had internal 
rib fixation (n = 2) or had received surgical treatment (n = 2), or 
if the image had severe respiratory or motion artifacts(n = 6). 
The study design is summarised in Figure 1. The final analysis 
included 198 patients (115 males and 83 females; mean age 52.7 
± 13.2 years; range, 18–81 years). The enrollment was retrospec-
tive in nature, without any change in the patient management or 
imaging protocols. The institutional review board approved the 
study, and the need for informed consent was waived.

CT and image processing
All patients underwent CT scans based on our department’s 
standard-of-care protocol using one of three multidetector CT 
scanners with the following parameters: Force (Siemens Health-
ineers, Forheim, Germany) with rotation time 0.5 s, pitch 1.0, 
tube voltage 120 kVp, tube current 80–350 mAs with automatic 
modulation; Definition AS+ (Siemens Healthineers, Forheim, 
Germany) with rotation time 0.5 s, pitch 1.0, tube voltage 120 
kVp, tube current 100–350 mAs with automatic modulation; 

Optima660 (GE Healthcare, Milwaukee) rotation time 0.5 s, 
pitch 0.992, tube voltage 120 kVp, tube current 100–350 mAs 
with automatic modulation. Scanning was performed from the 
level of the thoracic inlet to the level of the upper portion of the 
kidneys. All images were reconstructed with a slice thickness of 
0.625 mm and I50/B50f or bone kernel.

All images were transferred to an independent workstation 
installed with the prototype DL-based rib fracture evaluation 
software (Release 2019.01, United Imaging Healthcare, Shanghai, 
China). For simplicity, we will refer to the detection software as 
DL for the rest of the manuscript. The calculation time was about 
2 min per patient using the current hardware configuration (CPU: 
Intel Xeon E5 with 24 GB RAM, GPU: Nvidia GTX1060 with 
6 GB memory). The results of the rib fractures were presented in 
the axial view, with the automatically generated curved-planar 
reformation (CPR) and volume rendering (VR) views, and rib 
labeling to aid the human reader who checked the rib fractures 
detected by DL (Supplementary Material 1).

The architecture of automatic rib fracture detection is composed 
of two cascaded convolutional neural networks (CNN) models 
that are based on the Foveal network16 and Faster R-CNN.17 The 
first model acquires a segmentation mask for the ribs, which feed 
the mask into the second model in which the candidates of rib 
fractures are proposed. The details of the model development 
and training are provided in Supplementary Material 1.

Rib fracture evaluation by human readers
Two radiologists (R1 and R2) with 6 and 7 years of experi-
ence, respectively, on thoracic CT evaluated the rib fractures 
independently. The readers went through each case over three 
reading sessions (S1, S2, and S3): S1 included reading the CT 
images to identify the rib fractures in routine manner without 
DL assistance using a commercial medical image workstation 
(uWS-CT R004, United Imaging Healthcare, Shanghai, China); 
S2 included reading the CT images with rib fractures marked by 
DL, i.e. using DL as a concurrent reader; and S3 included reading 

Figure 1. The summary of the study. DL, deep learning
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all slices initially without DL, and subsequently checking the DL 
marked rib fractures to make adjustments to their initial detec-
tion results, i.e. using DL as a second reader. The readers used the 
axial, coronal, and sagittal views to assess the rib fracture in all 
sessions. The multiplanar reconstruction (MPR), CPR, and VR 
views were also used to confirm the fracture whenever needed. 
The readers were unaware of the performance characteristics of 
DL but were informed that DL may or may not identify the frac-
tures correctly, and the final diagnosis should be based on their 
own discretion.

The location and category of each fracture were documented on 
a schematic diagram of the ribs for each patient (Figure 2). Each 

reader marked the fractured ribs on the diagram. To facilitate the 
marking process, two ancillary lines were drawn at the level of 
the anterior axillary line and the inferior scapula point to divide 
rib 2 to 10 into the anterior, lateral, and posterior regions.18 Rib 
fractures were classified into four categories: dislocated, non-
displaced, buckle fracture, and callus formation (Figure 3). Frac-
tures with a displacement greater than 2 mm were classified as 
displaced fractures. A non-displaced fracture was characterized 
by the disruption of the cortex without significant displacement, 
including simple, transverse, oblique, or butterfly fractures.18 A 
fracture with partial disruption or “wrinkles” was classified as a 
buckle fracture.9 The fracture was classified as a callus if it was in 
the stage of callus formation and fracture healing, irrespective of 
cortical displacement or disruption.

We implemented a minimum 1 month interval between each 
reading session to reduce recall bias. During the reading, the 
readers were blinded to patient information, and the order of the 
data was randomized in each session. A digital timer was used to 
measure the image evaluation time for each session. The reader 
started and stopped the timer at the beginning and end of the 
case interpretation session. All readers underwent training to 
familiarize themselves with the presentation and operation of the 
DL software before the reading session.

The fractures detected by the DL software were reviewed by a 
study coordinator who did not take part as a reader, and the 
location of the fracture was documented using the same above-
mentioned schematic diagram of the ribs.

Standard of reference for rib fractures
Two radiologists with 12 and 15 years of experience in thoracic 
CT established the reference standard that included the exact 
location and type of rib fracture in a panel reading session by 
first reviewing all CT images to determine the rib fractures. They 

Figure 2. The readers drew a mark on the schematic diagram to show the location of the rib fracture. The dot lines divided the 2nd 
to 10th rib into anterior, lateral, and posterior arcs. The fracture category was documented by writing the acronym for dislocated, 
non-displaced, buckle fracture, and callus next to the fracture mark.

Figure 3. Example images of four fracture categories: (a) Dis-
located fracture (b) non-displaced fracture (c) buckle fracture 
(d) callus.

http://birpublications.org/bjr
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subsequently reviewed the schematic diagrams that documented 
the findings of DL, R1, and R2 to reach the final decision. The 
location and the type of fracture of the panel review were docu-
mented with the same schematic chart used by R1 and R2.

Data analysis
All rib fractures detected by the readers and the DL were 
compared to the reference standard by an independent data 
scientist who did not act as a reader. A fracture was counted as a 
true positive if a fracture was documented at the same location 
by the reference standard. Otherwise, the fracture was counted 
as a false positive.

The sensitivity was calculated by dividing the number of true 
positives by the total number of fractures in the reference 
standard. The false-positive per scan (FPS) was calculated by 
dividing the number of false positives by the total number of the 
cases. Since the DL did not provide the information on the frac-
ture types, the calculation of overall sensitivity and FPS for DL, 
R1, and R2 only included the location irrespective of the fracture 
classification. However, in the analysis of the sensitivity for each 
fracture type for R1 and R2, the rib fracture had to match both 
location and fracture type to be counted as a true positive. If the 
location or the type did not match, the fracture was counted as a 
false positive for that fracture category.

Data were processed using Microsoft Excel 2013 (v. 15.0) and 
R Statistical Package (R v. 3.5.2, R Foundation). The sensitivity 
and FPS of the fracture detection by R1 and R2 were compared 
between S1, S2, and S3 sessions using the χ2 test. If a significant 
difference was found among the three sessions, a pairwise χ2 
test with Holm correction was performed to test the difference 
between each pair. The 95% confidence intervals were calculated 
using Wilson procedure with continuity correction. A p-value 
<0.05 was considered statistically significant.

RESULTS
The reference standard analysis found 865 true fractures in 713 
ribs (102 patients) among a total of 4752 ribs, including 262 
(30.3%) dislocated fractures, 254 (29.4%) non-displaced frac-
tures, 236 (27.3%) buckle fractures, and 113 (13.1%) calluses. 
The remaining 96 patients did not have fractures.

Sensitivity and FPS of DL
DL detected 687 (79.4%) of the 865 true fractures with 86 false-
positive findings, i.e. 0.43 FPS. According to the fracture type 
assigned by the reference standard, DL detected 92.4% dislocated 
fractures, 78.3% non-displaced fractures, 58.1% buckle fractures, 
and 96.5% calluses. Moreover, DL found 75 and 66 fractures that 
were unidentified by R1 and R2 during S1, respectively, without 
DL assistance but were confirmed as true fractures by the refer-
ence standard (Figure 4). The FPS of DL was higher than that of 
R1 and R2 (0.43 vs 0.16 vs 0.19, p < 0.001). The misinterpreta-
tion of normal rib morphology as fracture (68 out of 86) was the 
major cause of false-positive findings.

Sensitivity and FPS of human readers
The sensitivity and FPS for R1 and R2 in S1, S2, and S3 are listed 
in Table 1. The sensitivity of R1 and R2 significantly increased by 
4.8–6.1% in S2 and S3 compared to S1 (all p < 0.05). The differ-
ence in the sensitivity between S2 and S3 was not significant for 
both readers (both p > 0.93). The FPS was 0.16, 0.21, and 0.22 
for R1 and 0.19, 0.13, and 0.091 for R2 in S1, S2, and S3 respec-
tively. The FPS of R1 increased over the three sessions but was 
not statistically significant (p = 0.24). In contrast, the FPS of R2 
was significantly lower in S3 than S1 (p < 0.05), but not different 
between S1 and S2 (p = 0.13), and between S2 and S3 (p = 0.26). 
Moreover, R1 and R2 scored 3 and 2 false positives in S1, respec-
tively, in 96 patients without the fractures. The false-positive 
rates remained unchanged for S2 and S3, where DL suggested 
18 candidates.

Sensitivity of four fracture categories for human 
readers
We found various degrees of improvement in the sensitivity 
for detecting four fracture categories for R1 and R2 in S2 or S3 
compared to S1 (Table 2). The sensitivity of R1/R2 for detecting 
dislocated fracture ranged from 92.4–94.3% in S1, which 
increased to 95.8–98.1% in S2/S3. The sensitivity of callus detec-
tion increased from 93.8–94.7% to 94.7–98.2%. The sensitivity 
for detecting non-displaced fractures, however, increased from 
75.2–85.4% to 86.6–89.0%. Similarly, the detection of buckle frac-
tures increased from 67.8–72.9% to 77.1–78.0%. Statistical anal-
ysis revealed that the sensitivity of R1 in detecting non-displaced 

Figure 4. An example of using the DL model to assist radi-
ologists in detecting rib fractures that may be missed. (a) A 
CT scan of a 78-year-old patient with multiple rib fractures 
showing a cortical disruption on the anterior segment of the 
sixth left rib in the axial view, and (b) a magnified image sug-
gesting a buckle fracture. (c) The curved-planar reformation 
view prepared using the DL model that also revealed a dent 
on the inner cortex (arrow). (d) The volume rendering view 
of the isolated left rib cage observed from right side further 
depicted notches in the vicinity of the costochondral junc-
tions on the fifth and sixth rib (triangles). DL, deep learning.

http://birpublications.org/bjr
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fractures was significantly greater in S2 and S3 than in S1 (both 
p < 0.01). The sensitivity of R2 was significantly higher for the 
detection of dislocated fracture in S2 than in S1 (p < 0.05) and 
nearly significant for buckle fractures between S3 and S1 (p = 
0.052). No other improvements over the three sessions were 
significant (all p > 0.25).

Reading efficiency
R1 spent 1193, 765, and 1326 min (6.0, 3.9, and 6.7 min per case) 
for reviewing all CT images during S1, S2, and S3, respectively. 
R2 spent 1069, 701 and 1198 min in S1, S2, and S3, respectively 
(5.4, 3.5, and 6.1 min per case). The evaluation time was 36% 
(R1) and 34% (R2) shorter for the two readers in S2 compared 
to S1 (p < 0.001). The evaluation time was noticeably longer in 
S3 compared to S1.

DISCUSSION
In our study, we investigated the detection accuracy and reading 
efficiency of rib fractures on CT images by radiologists with and 
without DL as an assistant. The results showed that 4.8–6.1% 
more rib fractures were found by the readers with the assistance 
of DL than without DL. Furthermore, the false-positive rate 
remained the same or decreased. Moreover, compared to the 
session without DL, the reading time was significantly shorter in 
the session using DL as a concurrent reader, while the sensitivity 
was improved without affecting the FPS.

The rib fracture is considered an indicator of severe trauma.4,5 
Hospitalization is suggested for patients with three or more 
isolated fractured ribs, and intensive care should be given to 
elderly patients with six or more fractured ribs due to the elevated 
risks of complications and mortality.2 The importance of identi-
fying flail chest and non-flail fractures involving more than three 
ribs was highlighted by a recent epidemiology study that found 
these conditions were associated with 15- to 107-fold higher risk 
of surgical fixation in the rib fracture patients.19 Furthermore, 
the number of rib fractures and the magnitude of displacement 
can predict opioid requirements, providing information for 
pain management.20 The increased sensitivity of fracture detec-
tion with DL-assisted reading may influence other algorithms 
of evidence-based patient stratification, such as “RibScore.”21 
Thus, it may be used as an indicator for further studies, such as 
contrast-enhanced CT.6 Therefore, although our study focused 
on the development and application of DL on rib fracture detec-
tion by CT, it may also potentially influence clinical decisions for 
patients with severe trauma.

To detect all rib fractures, including minor fractures, consecutive 
slices of CT images over the entire rib cage should be carefully 
evaluated, which is not only time consuming but also prone to 
mistakes.22 Several approaches have been proposed to improve 
the performance of rib fracture detection and reading efficien-
cies, such as VR,23 MPR, CPR, and unfolding views for the ribs.24 

Table 2. Sensitivity for detecting the four fracture categories

R1 R2

S1 S2 S3 S1 S2 S3
Dislocated 94.3% 96.9% 96.6% 92.4% 98.1% 95.8%

Non-displaced 75.2% 87.8% 87.8% 85.4% 86.6% 89.0%

Buckle 72.9% 77.5% 77.1% 67.8% 75.8% 78.0%

Callus 93.8% 96.5% 96.5% 94.7% 98.2% 94.7%

DL, deep learning.
S1, S2, and S3 represent the reading session without DL, DL as a concurrent reader, and DL as a second reader, respectively.
R1 and R2 represent Reader 1 and Reader 2, respectively.

Table 1. Sensitivity and FPS for detecting rib fractures in the three sessions

S1 S2 S3
R1

 � Sensitivity 82.8% (716/865) [80.1%, 85.2%] 88.9% (769/865) [86.6%, 90.9%] 88.7% (767/865) [86.3%, 90.7%]

 � FPS 0.16 (31/198) [0.11, 0.22] 0.21 (42/198) [0.16, 0.28] 0.22 (43/198) [0.16, 0.28]

R2

 � Sensitivity 83.9% (726/865) [81.3%, 86.3%] 88.7% (767/865) [86.3%, 90.7%] 88.8% (768/865) [86.5%, 90.8%]

 � FPS 0.19 (38/198) [0.14, 0.26] 0.13 (26/198) [0.089, 0.19] 0.091 (18/198) [0.056, 0.14]

DL, deep learning; FPS, false-positive per scan.
The data in parentheses represent the detected fractures over the total number of fractures or false-positive over total scans for the sensitivity 
and FPS, respectively.
The data in brackets represent the 95% confidence intervals.
S1, S2, and S3 represent the reading session without DL, DL as a concurrent reader, and DL as a second reader, respectively.
R1 and R2 indicate reader 1 and reader 2, respectively.

http://birpublications.org/bjr
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These approaches function on the rationale of providing compre-
hensive views of the rib fractures to optimize the reading process. 
In contrast, the DL-based solution provides a list of candidates of 
the fractures. The CPR view, in addition to the axial view for the 
rib fractures, was automatically generated to facilitate checking 
the results of the DL. Therefore, the DL-based solution improved 
the detection rate of rib fractures by providing a second opinion 
and reduced the time required for checking DL findings by 
providing an advanced visualization tool.

Our results showed that DL found rib fractures that were not 
initially detected by human readers, explaining the improved 
sensitivity of detecting rib fractures in DL-assisted sessions. 
Using DL as a concurrent reader also improved the time effi-
ciency for detecting rib fractures, suggesting that the automatic 
CPR saved the radiologist time that would have been spent from 
the manual MPR preparation, because the axial view may not 
always be sufficient to detect a rib fracture.9

The adoption of deep learning may add value and efficiency to 
several components of the skeletal imaging workflow, including 
diagnostic accuracy and efficiency.25 The CNNs have been 
applied to plain radiographs,26 CT,27 and PET/CT28 to detect 
hip fractures, orbital blowout fractures, and multiple myeloma. 
Recently, Weikert et al29 found a ResNet-based algorithm 
achieve good performance on per-examination level, but with 
lower sensitivity than our study. Furthermore, Zhou et al30 also 
suggested that DL could support human readers and improve the 
sensitivity. Our study demonstrated a higher sensitivity with DL 
for the detection of rib fractures, consistent with previous find-
ings. More importantly, we investigated the potential application 
of inserting the DL algorithm into various points of the radiology 
workflow and the resultant impact on diagnostic performance. 
When using DL as a second reader in the S3 session, the risk of 
potential interference of DL with the human reader’s judgment 
was minimized, which was the chief distincition from the S2 
session using DL as a concurrent reader. However, we found that 
rib fracture detection was equivalent between the two reading 
sessions, and the reading time was significantly shorter when 
using DL as a concurrent reader, suggesting a potential role of 
DL in routine practice, especially in time-sensitive settings, such 
as emergency rooms.

Detection performance improved in various ways for both 
readers and categories of fractures. The difference in the sensi-
tivity between the two readers was greater when unassisted 
compared to the DL-assisted reading sessions. As expected, 
the sensitivity of non-displaced and buckle fractures benefited 
from DL assistance, as these fractures prove challenging to iden-
tify due to mild unilateral cortical lesions or bilateral cortical 
ruptures without significant displacement. The largest differ-
ence in sensitivity between the two readers was found for non-
displaced fractures (10.2%), followed by buckle fractures (5.1%). 
After DL was applied, the difference was reduced to  <1.9% in 
all fracture categories. The readers demonstrated high perfor-
mance for dislocated fractures and calluses (92.4%–94.7%), but 
less sensitivity to non-displaced and buckle fractures (67.8%–
85.4%). With DL, the sensitivity increased most significantly 

for non-displaced fractures in one reader (12.6%) and buckle 
fracture in the other reader (10.2%). Meanwhile, the sensitivity 
improved to a lesser degree (0%–5.7%) for dislocated fractures 
and calluses when the reader performed well without assistance. 
Nevertheless, the overall sensitivity significantly improved with 
DL for both readers for four fracture categories. Therefore, DL 
can provide supplemental rib fracture information to human 
readers, improve detection performance, and reduce fracture-
dependent reader variance.

Two complementary measures, sensitivity and FPS, were used to 
evaluate the true fracture detection efficiency and the likelihood 
of generating false positives. FPS could also serve as an indicator 
of the radiologists’ additional workload involving the cross-
examination of the false-positive candidates suggested by DL 
or colleagues in a double-reading setting. Therefore, we opined 
that FPS is the price paid for the gain of sensitivity, which might 
be a more useful measure than specificity in our study with an 
emphasis on the working efficiency (refer to the Supplementary 
Material 2 for the analysis of the specificity between the sessions 
with and without using DL).

Our result also revealed that DL influenced the FPS in a reader-
dependent manner. While not significant, the FPS of R1 increased 
after using DL, and that of R2 decreased. This discrepancy may 
be caused by the reader’s experience and individual tendency in 
response to the DL suggestions and the different presentation 
sequence of DL’s findings in the S2 and S3 sessions. Furthermore, 
the readers had a higher successful rate of rejecting false positives 
from DL in patients without fractures compared to patients with 
fractures.

Our results showed that a large proportion of false positives from 
DL were located on normal morphological variants. It remains 
a challenge to explain the features learned by the deep neural 
networks, and hence to infer the cause of the misclassification. 
From the human perspective, many false positives might be 
associated with the complex structure of the costal tubercle and 
groove of the rib. This complexity may be further enhanced by 
the non-uniform bone loss near cortical surface due to osteopo-
rosis. The tubercle structure and osteoporosis could be patient 
dependent and require an experience radiologist to discriminate 
between the true- and false-positive findings. The reader should 
be aware of the performance of DL; a training session on DL-as-
sisted reading with the essential nature of rib fractures could 
further improve the readers’ ability to reject false-positive find-
ings before adopting the DL algorithm, whose benefits should be 
studied in the future.

Our study had several limitations. First, the incidence of rib 
fractures was high. This reflected the status quo in Linyi People’s 
Hospital that CT was often ordered for patients with severe 
injuries, an appropriate approach based on the Expert Panel on 
Thoracic Imaging recommendations.6 The influence of the frac-
ture incidence on DL-assisted reading should be studied using 
subgroup analyses with a larger patient cohort. Second, the refer-
ence standard was established by an expert panel, which may vary 
among different groups. The reference standard could be further 

http://birpublications.org/bjr
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improved by adding the follow-up CT images, which would 
enable serial observation of the fractures and callus formation. 
In our practice, however, we found a few cases of buckle fractures 
in which the callus formation was not observed on follow-up CT. 
An agreement should be made before the expert reading session 
to handle such cases. Third, only two readers participated in 
this study. Although the sensitivity improved consistently for 
both readers with DL-assisted reading for the detection of four 
types of the fractures, the FPS increased insignificantly in one 
reader and decreased for the other reader. A study with more 
readers would enable a more realistic performance evaluation, 
and training programs preparing radiologists to work with DL 
assistance may be implemented to abate the discrepancies.

The pressure to report radiological findings quickly was lower 
than that in real-time clinical situations, owing to the retrospec-
tive nature of our study. This could have resulted in overestima-
tion of sensitivity. Nevertheless, our results found an increase 
in the sensitivity of rib fracture detection with DL compared to 
that without DL. Furthermore, our study simulated the rib frac-
ture detection process under the bone window that is a part of 
the radiological interpretation process for chest CT of trauma. 

The influence of DL-assisted rib fracture detection on the other 
results of trauma CT should be studied in the future.

In conclusion, the application of DL as a concurrent reader 
or second reader improved the performance of radiologists 
in detecting rib fractures in patients with blunt chest trauma. 
Furthermore, the reading time was significantly shorter with DL 
as a concurrent reader compared to without DL.
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