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Abstract
Primary immunodeficiencies comprise a group of inborn errors of immunity that display significant clinical and genetic 
heterogeneity. Next-generation sequencing techniques and predominantly whole exome sequencing have revolutionized the 
understanding of the genetic and molecular basis of genetic diseases, thereby also leading to a sharp increase in the discovery 
of new genes associated with primary immunodeficiencies. In this review, we discuss the current diagnostic yield of this 
generic diagnostic approach by evaluating the studies that have employed next-generation sequencing techniques in cohorts 
of patients with primary immunodeficiencies. The average diagnostic yield for primary immunodeficiencies is determined 
to be 29% (range 10–79%) and 38% specifically for whole-exome sequencing (range 15–70%). The significant variation 
between studies is mainly the result of differences in clinical characteristics of the studied cohorts but is also influenced 
by varying sequencing approaches and (in silico) gene panel selection. We further discuss other factors contributing to the 
relatively low yield, including the inherent limitations of whole-exome sequencing, challenges in the interpretation of novel 
candidate genetic variants, and promises of exploring the non-coding part of the genome. We propose strategies to improve 
the diagnostic yield leading the way towards expanded personalized treatment in PIDs.

Keywords  Primary immunodeficiencies · Whole exome sequencing · Next-generation sequencing · Diagnostic yield · 
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Introduction

Primary immunodeficiencies (PIDs) are a group of inborn 
errors of immunity, caused by germline mutations that affect 
different parts of the immune system. PIDs are associated with 
a broad range of symptoms, including recurrent infections, 
autoimmunity, autoinflammation, allergies, and malignancy 
[1]. The diagnosis of these disorders is both hampered by the 
heterogeneous clinical presentation, genetic heterogeneity, and 

the variable mutational mechanisms that underlie the genetic 
defects. The advent of next-generation sequencing (NGS) has 
revolutionized the field of sequencing technologies, enabling 
high throughput sequencing with continuously decreasing 
costs and wide-spread use in both clinical and research set-
tings. The application of these generic and unbiased techniques 
have also enabled an exponential increase in the identification 
of novel genes for PIDs, predominantly through the application 
of whole exome sequencing (WES) [2–4]. WES entails the 
sequencing of all protein coding exons and is widely used for 
the diagnosis of inherited disorders, enabling a genetic diagno-
sis that also provides insight into the molecular defect in PID 
patients, ultimately informing on the therapeutic options [5–7].

In this review, we discuss the application of WES in the con-
text of PIDs and determine the current diagnostic yield from 
documented studies. In addition, we discuss the value of WES in 
research setting together with the limitations and pitfalls that are 
relevant for its use in diagnostics and research. Lastly, we discuss 
future perspectives, including the possible added value of whole 
genome sequencing (WGS) in the field of PIDs.
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Box 1 General Recommendations for the Analysis of NGS Data for PIDs

WES is Superior to Targeted Sequencing as a First‑Tier Diagnostic Approach

•	 WES facilitates analysis of (almost) all protein coding regions of the genome instead of a selected gene panel.
•	 WES in silico gene panels can be more easily updated than targeted sequencing panels as these leverage thexist-

ing exome data, while actual sequencing panels require a more laborious procedure and acquisition of new data.
•	 The diagnostic yield for PIDs using next-generation sequencing was on average 29%, and 38% for WES alone.
•	 Systematic and regular re-analysis of WES data and analysis of the whole exome in research setting improves yield 

[2, 8, 9].

Analysis of WES Data: Prioritization and Strategies

•	 Variants called from WES data are subjected to standardized variant filtering for non-synonymous, rare variants 
impacting exons and splice sites.

•	 In silico gene lists are useful to find variants in described PID genes [1, 3, 10, 11]. When no suitable variant is found, 
all the genes outside of the PID genes can be analyzed to find potentially novel variants.

•	 To prioritize variants exome-wide, a detailed description of the patient phenotype and pedigree is helpful. The 
phenotype-genotype analysis requires judgement both at the variant and gene level. Metrics for the variant level 
include variant effect predictions, nucleotide, and amino acid conservation. For the gene level, these include con-
straint against loss-of-function, functional/pathway annotations, and phenotypes of animal models such as knock-
out mice [12, 13].

•	 In sporadic cases of PIDs, a trio analysis can be performed by sequencing of both the patient and parents, allowing 
the exploration of de novo variants [14, 15]. In familial PID cases, variants from affected and/or unaffected family 
members can be overlapped to find candidate variants [3]. These approaches can drastically decrease the number of 
possible candidate variants.

•	 Functional testing in PID patients is minimally invasive and often required to demonstrate a possible functional 
defect for variants of uncertain significance (VUS).

Opportunities to improve the Genetic Diagnosis of PID Patients

•	 There remains a high potential to find new genes associated with PIDs, also indicated by the low average yield seen 
for NGS-based methods in PIDs.

•	 Challenges in the diagnosis of PIDs include extremely rare or heterogeneous phenotypes, complex mutational 
mechanisms, or incomplete penetrance, which is in part due to the requirement of exposure to a specific pathogen 
to cause an overt phenotype.

•	 Collaborative efforts are being undertaken to match patients with similar genetic defects, especially in extremely 
rare PIDs, for example, by using genetic matchmaking’ platforms [2, 5, 16, 17].

•	 WGS starts to be used as a method to explore non-coding variation and its relevance in PIDs and has recently dem-
onstrated its potential to diagnose patients with non-coding mutations [18].
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Genetics of PIDs

The number of PIDs and genes associated with inborn 
defects of immunity has sharply increased in recent years. 
Currently, over 400 different disorders have been described 
arising from defects in 430 genes. Of all known PID genes, 
NGS already accounts for 45% of new gene discoveries [1]. 
The potential of NGS is reflected by the increasing number of 
recent discoveries, as 64 of the 430 known PID genes were 
discovered in the last 2 years [1]. The mutations known to 
cause PIDs influence all components of the intricate immune 
system and follow different inheritance patterns. Most of 
the established PIDs are inherited in an autosomal recessive 
fashion, caused by homozygous or compound heterozygous 
mutations, leading to a loss of function (LoF) of the encoded 
protein. In addition, heterozygous mutations inherited in 
an autosomal dominant (AD) fashion can exert LoF effects 
through haploinsufficiency or negative dominance, by caus-
ing an insufficient level of functional protein and through 
interference of the mutant protein with the wildtype protein, 
respectively. Lastly, in recent years, a growing number of 
heterozygous mutations have been identified that confer a 
hypermorphic or even neomorphic gain of function (GoF) 
effect, leading to an augmented or novel protein function 
[19]. The wide variety of genetic causes and the pheno-
typic heterogeneity of PID patients that pose an important 
diagnostic challenge are summarized in Fig. 1, where the 
relationship between mutational mechanism and effects 

on the gene, protein, and pathway is indicated, as well as the 
effect of the presence or absence of a pathogen on the clinical 
manifestations of PID patients.

Advances in the identification of new PID genes and 
the understanding of underlying disease mechanisms have 
revealed that different inheritance modes of mutations in 
the same gene exhibit different phenotypes. Illustratively, 
in the most recent classification of the International Union 
of Immunological Societies (IUIS), more than 35 genes 
are listed twice [1]. Examples of genes displaying such 
allelic series include CARD11, consisting of heterozygous 
mutations that cause distinct phenotypes through negative 
dominance (hyper IgE syndrome) or hypermorphism (B cell 
expansion with NF-kB and T cell anergy), whereas bial-
lelic mutations lead to LoF ((severe) combined immuno-
deficiency) [20]. Moreover, both hypermorphic and LoF 
mutations in STAT1 [21, 22] and RAC2 [23, 24] cause dis-
tinct forms of PID. These examples illustrate the presence 
of allelic series and add to the complexity of genotype-
phenotype relationships, which complicates correct variant 
interpretation using NGS.

Practical Guide for WES Analysis

The utilization of WES in the diagnosis of PIDs has three clear 
advantages over targeted gene panels. Firstly, in silico gene 
panels used with WES can be adjusted as more PID-associated 

Fig. 1   Schematic overview of 
the mutational mechanisms 
and effects on gene, protein, 
and pathway level with the 
phenotypic manifestations that 
result from various forms of 
PID. For autosomal recessive, 
X-linked and autosomal 
dominant forms of PID, the 
effects on the gene level and 
subsequently on the protein level 
are indicated that lead to either 
deficiency or hyperactivation 
of the immunological pathways 
involved. These effects at the 
pathway level can either result 
in a phenotype manifesting with 
symptoms of immunodeficiency, 
autoimmunity, or 
autoinflammation. Pathogen 
exposure can be a prerequisite for 
the phenotype to develop, which 
contributes to the incomplete 
penetrance observed in PIDs.
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genes are identified, allowing for the analysis of new patients 
with the most up-to-date gene panel, and regular reanalysis of 
previously unsolved PID cases [9]. Filtering of the WES data 
provides a more straightforward analysis of known disease 
genes. Importantly, WES also facilitates the analysis of genes 
not included in any gene panel, providing the possibility to find 
candidate variants in all known coding regions of the genome in 
a research setting [2]. With this analysis, it is possible to identify 
rare variants in genes that could be involved in the phenotype 
of the patient in genes not yet associated with any form of PID. 
Secondly, WES provides genome wide detection of copy num-
ber variation (CNVs) [25, 26] and regions of homozygosity 
(ROHs) [27]. Thirdly, potentially relevant but unsubstantiated 
findings from the analysis of a single gene, gene panel, or in 
silico WES analysis can be more reliably interpreted after full 
exome or genome analysis to find better matching candidate var-
iants. When no other better suitable candidate variant is found, 
this may support the suspicion of pathogenicity. In contrast, gene 
panels allow deeper sequencing, as only a selection of genes 
are sequenced, possibly leading to more reliable variant calling, 
especially for the detection of mosaicism [28]. WES also has a 
higher chance of incidental findings, requiring more intensive 
counseling by clinical geneticists [29].

There is no single, most optimal approach to analyze exome 
data. Here, we aim to summarize the best practices from the 
literature and give practical guidance for this type of analysis. 
The analysis of variants detected using WES involves several 
filtering steps. Figure 2 shows these filtering steps schemati-
cally, with an approximate number of variants left after each 

step. These filter steps retain rare, coding non-synonymous vari-
ants, i.e. variants that alter the amino acid and variants affecting 
canonical splice sites that are rare in the general population. Rare 
variants are filtered based on variant allele frequencies (VAF), 
which are obtained from databases such as dbSNP and gnomAD 
[10, 11]. Also, variant frequencies from exomes in local and 
in-house databases can be useful to address local genomic vari-
ation or recurrent artifacts that may be platform specific [2, 30]. 
The exact allele frequency cut-off for filtering variants remains a 
matter of debate, but generally lies below 1%. Different frequen-
cies may be applied for suspected dominant or recessive diseases 
[19]. A list of remaining variants can be ranked based on variant, 
gene, and available pedigree or segregation data, respectively. 
Variants are prioritized by the effect of the single-nucleotide var-
iant (SNV) or CNV: frameshift, splice site, missense, insertion, 
and deletion. The remaining rare variants can be checked against 
a list of known PID genes and further analyzed based on pre-
dicted protein effect, conservation, constraint against LoF, and 
other annotations such as information of gene ontology (GO) 
and phenotypes of knockout mice models [31]. An approach that 
can significantly reduce the number of variants is the concurrent 
analysis of equally affected or unaffected close relatives. Espe-
cially the application of a trio WES analysis, which includes 
the healthy parents of the patient, can be especially relevant in 
(severe) sporadic cases of PID. De novo variants can be identi-
fied by excluding all variants inherited from either parent [3, 
19]. Each exome harbors approximately 1–2 de novo variants, as 
indicated in Fig. 2 [14]. De novo variants can be included in the 
analysis when the pedigree suggests de novo occurrence. In con-
sanguineous families, homozygosity mapping can be applied. 
This approach is based on the principle that pathogenic variants 
are relatively often present in homozygous regions formed from 
identity by descend, where both alleles share all variation [32].

Fig. 2   The general steps used to 
filter variants from WES. The 
approximate number of variants 
in each step is indicated. All 
filtering steps can be applied in 
silico. The number of vari-
ants that remain after filtering 
depends on the cut-off values 
used for filtering based on allele 
frequency and on algorithms 
used to call CNVs [3, 19, 
26]. CNV numbers are highly 
dependent on the algorithm 
used; therefore, the number of 
CNVs is not indicated here. For 
the analysis of de novo variants, 
sequencing of a patient’s parents 
as a trio is required, after which 
all variants present in the par-
ents can be filtered [3].
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Yield of WES for PID Diagnostics

WES has in many cases replaced targeted gene panels and 
Sanger sequencing and forms a first-line diagnostic approach 
for PID patients. Although the knowledge base on PIDs 
continues to improve, the majority of PID patients do not 
receive a diagnosis using NGS approaches [2, 5]. In this 
section, we determine the current diagnostic yield of NGS 
for PID from the current literature and discuss approaches 
to improve the diagnostic yield. We collected studies that 
describe the application of WES, WGS, and other targeted 
NGS approaches in PID patient cohorts. The studies that 
were included are presented in Table 1.

The average diagnostic yield of NGS was 29% (range 
10–70%) and 38% specifically for WES (range 15–70%) in 
the context of PIDs (Table 1). The average yield indicates 
that in many cases, a majority of PID patients are not effec-
tively diagnosed using NGS-based sequencing approaches 
such as WES.

The marked spread in diagnostic yield between studies 
can most likely be explained by variation in patient selection 
and is dependent on disease severity. Patient cohort charac-
teristics differed widely between studies, with some using 
specific subsets of PID, whereas other studies describe a 
generic cohort of PID patients. Furthermore, the selection 
criteria for these patients were not always clearly described. 
The different patient populations influence the a priori 
chance of establishing a genetic diagnosis. For example, 
patients with a severe combined immunodeficiency (SCID) 
present early in life with severe immune defects and have an 
increased chance of a monogenic diagnosis. This is reflected 
in the studies that were used, with two of the studies with 
the highest yield (79 and 70%) describing a cohort of SCID 
patients [33, 34]. Moreover, one study describing a generic 
cohort of PID patients found a diagnostic rate of 100% for 
SCID patients [35]. Patients with a consanguineous back-
ground are more likely to carry homozygous variants, which 
can be more easily identified using WES. This bias is also 
observed in the studies included in this review, where some 
patient populations originated from countries with a high 
level of consanguinity, thereby influencing the chance of 
homozygous variants leading to PIDs [2, 33, 35–39]. In 
adults with milder symptoms, the likelihood for a true mono-
genic defect may be lower, which is reflected in a propor-
tionally lower yield. The yield may be decreased due to the 
possibility of polygenic inheritance, acquired immunodefi-
ciency, and environmental factors [40]. Patient selection also 
influences diagnostic yield because some forms of PID are 
more extensively described in literature, causing differences 
in the number of genes described per disease.

The sequencing approaches also varied between studies. 
Some studies used a targeted gene panel, while other studies 

applied WES. Several studies combined these approaches 
[33, 37, 41]. The number of genes that were analyzed var-
ied from 46 to 356 for targeted gene panel approaches and 
between 12 and 4813 for WES-based approaches, with one 
study using all genes associated with human disease [42]. 
These numbers correlate with the specificity of the patient 
selection, where cohorts with SCID or HLH (hemophago-
cytic lymphohistiocytosis) patients require fewer genes to be 
analyzed, while still resulting in a relatively high diagnostic 
yield [34, 43]. The differences of analyzed genes between 
studies indicate the challenge of establishing universal gene 
panels for PIDs. Initiatives such PanelApp, GF-PID (Genet-
ics First Primary Immunodeficiencies), and the IUIS that 
establish gene lists for PIDs attempt to unify this process for 
individual clinics [1, 5, 44]. Taken together, the described 
differences in patient cohort characteristics, sequencing 
approaches, and selected gene panels between studies do 
not permit to draw definitive conclusions about the current 
diagnostic yield of NGS in (subsets of) PIDs.

The characterization of novel PID genes in research set-
ting and their implementation in the diagnostic PID panel 
have improved the diagnostic rate in recent years [1]. In two 
studies, a WES-based approach was used to identify variants 
in several genes not included in the IUIS classification, lead-
ing to an improvement of the yield with 4 and 11 percentage 
points, respectively [2, 8]. This approach could therefore 
lead to extra diagnoses in laboratories with the possibility 
to perform whole exome (re-)analysis in research setting.

Several intrinsic shortcomings of WES also influence the 
diagnostic yield. These include incomplete coverage of some 
genes [45], but more specifically also incomplete analysis of 
structural variants, CNVs, repeat expansions, and the lack 
of coverage of most non-coding regions. These shortcom-
ings are caused by mapping errors, which are inherent to 
short read sequencing approaches when applied to repetitive 
regions and because of the lack of targeting of regions that 
are outside of the exons. Because these sources of genetic 
variation might play a role in human disease, there is a possi-
bility that diagnoses in PIDs are missed based on WES data 
[25, 46]. Ultimately, it is expected in the future that WGS 
will offer a more complete test to assess both the coding and 
non-coding part of the genome, outweighing the extra costs 
posed by more complex analysis of the data and data storage.

There are various indications that non-coding regions 
of the genome may also play a role in the pathogenesis of 
PIDs. In a recent study by Thaventhiran et al., 1318 PID 
patients underwent WGS, in order to address the diagnos-
tic challenges posed by PID patients presenting in adult-
hood with no apparent family history of the disease. With 
this approach, 91 patients (10.3%) with variants in coding 
regions of known PID genes were diagnosed. Moreover, an 
analysis of the non-coding genome identified deletions in 
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regulatory elements, which were shown to contribute to the 
phenotype. Examples include a case where compound het-
erozygosity of ARPC1B was detected in a patient, caused 
by a coding nonsense variant and a deletion of a region con-
taining the promoter. This study also gives an insight into 
the influence of multiple variants on the phenotype. In the 
cohort, 60 (6.8%) patients had a pathogenic TNFRSF13B 
(TACI) variant, with five also carrying a variant in another 
PID gene [18]. This study gives insight into the involvement 
of intergenic variation and the possibility of digenic and 
possibly polygenic causes of PIDs. As non-coding variants 
are not detected using a WES-based approach, this result 
also indicates the possibilities and added value of a whole-
genome approach, possibly improving diagnostic yield 
through establishing deleterious variants in the non-coding 
regions of the genome.

Challenges in the Discovery of New PID 
Genes

Association of variants in genes not previously associated 
with genetic diseases such as PIDs has been accomplished 
using WES, although establishing a causal relationship 
between variant and phenotype remains challenging [1, 3]. 
As sequencing technologies continue to improve with rapid 
and cost-effective sequencing of all variants in the exome, 
the rate limiting factor of research has become the interpre-
tation of this great wealth of genomic information [58]. Vari-
ant and gene annotations, overlapping strategies, and func-
tional validations are vital in this process. However, these 
annotations still require interpretation and do not always 
clearly indicate the structural and functional effects of vari-
ants. Moreover, the effects of splice site variants, insertions, 
deletions, and structural variants are more difficult to inter-
pret than SNVs. Also, variants in genes with a completely 
unknown function or poorly described functions are difficult 
to link to a phenotype without functional studies [3].

The number of rare variants that are generated from the 
WES data is based on cut-off values for the frequencies of 
the variants in various databases that represent the general 
population. These values therefore influence what variants 
are considered in the analysis of an exome. A generalized 
workflow for this approach is shown in Fig. 2. These cut-
off values are based on the expected occurrence of disease-
causing variants in the general population. However, choos-
ing the cut-off values in the analysis of WES data remains 
subjective and a matter of debate. Filtering out variants 
that are less rare could lead to missed diagnoses, as more 
common alleles could also cause disease in compound het-
erozygous state. An example of common variants that can 
cause a genetic disease is the ABCA4 variant p.Asn1868Ile 
which has an allele frequency of close to 7% in the European 

population and causes a monogenic form of blindness known 
as Stargardt disease in a compound heterozygous fashion 
[59]. Filtering variants using a database of exomes from the 
local population can be very effective to filter benign vari-
ants that might occur at a very low frequency in the world-
wide population in international databases [30].

The selection of possible gene candidates is highly 
dependent on annotations, which causes a bias towards well-
annotated genes and gene families with known functions. 
These annotations can include disease models such as gene 
knockouts in mice, which lead to potential for error because 
of the differences between model organisms and humans. 
The overlap in disease phenotypes in humans and model 
organisms is modeled in tools such as Exomiser, which uses 
this phenotype data to filter variants from exome data [60]. 
The description of the phenotype and the pedigree by the 
physician is of equal importance for a more accurate associa-
tion of this phenotype with a gene functioning in a certain 
pathway. Additionally, a complete pedigree is important for 
predicting the mode of inheritance of the disease.

In silico predictions of variant effect tools such as PhyloP, 
CADD, and predictions of the constraint to LoF of genes 
such as LOEUF are often used to estimate the effect of vari-
ants and gene LoF on protein function and by extension the 
phenotype [11–13]. These factors indicate the conservation 
between species, the effect of missense variants on protein 
function, and an estimate of the tolerance of the gene and of 
specific residues to variants, respectively. These predictions 
should be used with caution, as variants that score highly 
using these metrics do not necessarily indicate a relation to 
the phenotype. On the contrary, variants with lower scores 
do not directly indicate the opposite. These predictions 
should be used as a guide in combination with functional 
annotations to estimate the relevance of variants. Instead of 
interpreting variants based on just one or a few important 
metrics, interpretation should be underpinned by a synthesis 
of (predicted) gene function from literature and other gene 
annotations, predictive metrics for the specific variant and 
the gene itself, the phenotype, and pedigree of the patient to 
gain insight into the effect of variants on the phenotype and 
to identify possible candidate variants.

An effective approach to decrease the number of candi-
date variants is trio analysis, which includes sequencing of 
the parents of a patient suspected a sporadic form of AD 
disease caused by a de novo mutation. As for other severe, 
sporadic diseases such as intellectual disability, patient-
parent trios allow for the systematic detection of possible 
de novo mutations, which are not present in the healthy par-
ents and arise during gametogenesis or early in embryogen-
esis [14, 15]. Other forms of segregation by WES data can 
also be helpful; however, correct phenotyping of the tested 
family members is of great importance, in order to select 
variants shared between family members with comparable 
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phenotypes or to exclude shared variants from unaffected 
family members. Nevertheless, the benefit of a pedigree is 
influenced by incomplete penetrance, other genetic factors, 
and environmental factors, where a PID manifests only with 
exposure to a specific pathogen [40, 61].

Individual PIDs are rare, as some genetic defects have 
only been described in a single patient or a handful of 
patients in the literature [1]. This causes difficulties in the 
future diagnosis of PIDs, especially in patients with similar 
phenotypes, as the clinical presentation of PIDs can overlap 
significantly. Cohort-based studies of patients with similar 
phenotypes or with variants in the same gene can provide 
a more robust analysis of the underlying genetic causes. 
Notably, overlapping the variants of multiple patients with 
the same phenotype can also drastically reduce the number 
of candidate variants. This phenotype-first approach has 
been used in the past for the elucidation of genetic disor-
ders, such as Miller syndrome, where WES was first applied 
to establish a pathogenic variant in a Mendelian disorder 
[62]. However, this approach is not feasible in patients with 
extremely rare or phenotypically heterogeneous disorders. 
WES enables a genetics-first approach for patient diagnosis. 
Data sharing platforms such as Genematcher from Match-
maker Exchange and initiatives such as Solve-RD (research 
project funded by the European Commission to solve the 
unsolved rare genetic diseases) and GF-PID can be helpful 
to identify patients that possibly share pathogenic variants 
in the same gene, increasing the chance of causality [2, 5, 
16, 17]. Quality control of the analytic approach can also 
be accomplished through multi-center validation of variant 
interpretation [63]. Nevertheless, additional functional vali-
dation of the effect of a genetic variant on gene and protein 
level is paramount to establish a direct causal relationship 
and to give insight in the molecular mechanism of the dis-
ease. In PID patients, immune cells can easily be extracted 
from blood to be studied ex vivo, providing a non-invasive 
method for validation experiments. In case the function of 
the affected gene is unknown, its function and the effect of 
the variant can be studied in gene knockout and knock-in 
models to evaluate pathogenicity of either suspected LoF 
and hypermorphic or GoF variants, respectively.

WES can exclusively uncover the genetic causes of PIDs 
located in the coding regions of the genome. As described 
above, WGS allows for identification of variants in introns 
and regulatory elements and provides improved identification 
of structural variants such as copy number variants (CNVs) 
and other structural rearrangements [19, 64]. The high per-
centage of unsolved PID cases using WES, as determined 
from literature describing the application of WES for the 
diagnosis of PID patients, indicate there might be a possi-
bility that the pathogenic variants are located in the non-
coding regions of the genome. WGS has also been recently 
applied for the analysis of variants in PID patients. The added 

value of this approach was demonstrated, with the identifica-
tion of compound heterozygous variants in both coding and 
non-coding regions [18]. However, the analysis of the vast 
amount of data generated by WGS is more complex than 
WES and more expensive, hindering its application in routine 
diagnostics [19]. Moreover, WGS has shown only a modest 
improvement of the diagnostic yield and coverage of coding 
sequences compared with WES so far [46]. WES and WGS 
both employ short read sequencing with GC bias leading 
to biased coverage. Short-read sequencing approaches suf-
fer from mapping difficulties of repetitive and paralogous 
sequences. Long-read sequencing could be a potential solu-
tion, facilitating the sequencing of regions difficult to assess 
using short read NGS technologies [65].

PIDs have long been considered as rare autosomal 
recessive disorders that cause completely penetrant 
phenotypes with severe defects in the immune system. 
However, this paradigm has shifted towards PIDs as a 
continuum ranging from mild and common diseases to 
severe and rare immune defects. This is shown in Fig. 3, 
which depicts the relationships between allele frequency 
of pathogenic variants, disease severity, and diagnostic 
yield in the context of PIDs. This indicates the spectrum 
formed by various forms of PID, ranging from extremely 
rare variants leading to severe disease with a high diag-
nostic yield ((S)CID), rare variants leading to a milder 
phenotype with an intermediate diagnostic yield (CVID), 
and more common variants that lead to common disease 
with a mild phenotype and a low diagnostic yield [61, 
66]. The differences in the presentation of PIDs could be 
caused by the interplay of multiple variants in patients 
with milder symptoms, illustrated recently by the pres-
ence of TNFRSF13B (TACI) variants in PID patients 
that also presented with another pathogenic variant [18]. 
We postulate that genetic causes of PIDs are more com-
mon than previously thought and are inherited following 

Diagnos�c yield

Variant effect

(S)CID CVID Common disease

Allele frequency

Fig. 3   The relationship between variant effect size, allele frequency, 
and the diagnostic success rate in the field of PIDs. The triangles 
indicate variant effect, allele frequency, and diagnostic yield, rang-
ing from highly impacting to weakly impacting, from extremely rare 
to common and from high to low, respectively. The characteristics of 
(severe) combined immunodeficiency ((S)CID), common variable 
immunodeficiency (CVID), and common disease are indicated in 
their approximate location within these three indicators
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more complex patterns. This constitutes a shift of PIDs 
from extremely rare recessive monogenic disorders that 
present in childhood towards a spectrum that includes 
more common diseases that are also caused by AD, de 
novo, multigenic and complex genetic variation that is 
also found in the non-coding regions of the genome and 
which causes disease later in life [40, 66, 67]. These 
factors also explain the limited diagnostic yield from 
NGS-based sequencing approaches, including WES, 
and indicate that this yield could be improved with more 
knowledge of these complex modes of inheritance that 
are being explored in the field of PIDs.

Discussion

NGS-based sequencing approaches such as WES have been 
instrumental in the diagnosis of monogenic diseases such as 
PIDs, giving an insight into the underlying molecular disease 
mechanisms of immune defects [1, 5, 19, 37]. The heterogeneous 
nature of phenotypes seen in PID patients, combined with the 
influence of exposure to external factors, complicates the genetic 
diagnosis of these patients. Currently, more than 400 genes have 
been linked to inborn errors of immunity [1], with both clini-
cal and genetic heterogeneity. Exome sequencing allows for the 
sequencing of the genomic regions that directly influence protein 
structure, which are highly relevant to human disease [3, 19]. 
Because of the efficient nature of NGS approaches, the inter-
pretation of variants and their relation to patient phenotypes has 
become the rate limiting step in its application in clinical and 
research approaches [58]. We have evaluated the application of 
NGS as a diagnostic approach in PIDs by discussing the current 
yield, inherent shortcomings of WES, strategies and difficulties 
of variant analysis, and the promises of exploring the non-coding 
genome using WGS. Furthermore, strategies for improvement of 
the diagnostic yield were considered. The general considerations 
of the application of NGS for the diagnosis of PIDs and a guide 
for variant analysis using WES can be found in Box 1.

We have collected studies describing the application of WES 
and other targeted NGS approaches for the diagnosis of PID 
in patient cohorts. These approaches resulted in a diagnosis in 
10–79% of cases with an average of 29% and 38% for WES 
alone. The high variability in diagnostic yield between studies 
and the low average yield of WES and other NGS approaches is 
caused by several factors, the most important being the widely 
varying patient cohort characteristics. Apart from the apparent 
methodological differences between the studies, the average low 
yield is also in part explained by the limitations of WES as well 
as a knowledge gap in the interpretation of the genes associ-
ated with PIDs. It is challenging to tie a phenotype to a specific 
variant, for example, due to uncertain variant effects, complex 
mutational mechanisms, digenic or polygenic inheritance, and 
unknown gene functions. Furthermore, causative variants that 

are not efficiently identified by WES, such as structural and non-
coding variants, could be present in WES-negative PID patients, 
which were described in a recent study where WGS was applied 
in the diagnosis of PID patients, indicating the added value of 
WGS in this context [18]. Additionally, there could also be a 
role for more common variants, possibly interacting with rare 
variants, in the pathogenesis of PIDs. Future research should 
focus on the elucidation of these relatively unexplored muta-
tional mechanisms that play a role in PIDs [65, 68]. The contri-
bution of external factors on the presentation of PIDs, such as 
the interplay with specific pathogens at various stages of life, 
also requires further investigation [40]. Lastly, we expect more 
effort towards functional characterization of the molecular con-
sequences of genetic variation to guide therapeutic approaches.

WES has contributed to a more accurate diagnosis of PID 
patients in the clinic, leading the transition towards personal-
ized medicine. A genetic diagnosis of PID patients helps to end 
“diagnostic odysseys,” enables genetic counseling for family 
members, and can inform on treatment approaches [2]. Since 
the advent of NGS, and WES specifically, it has become clear 
that PIDs are moving away from rare, monogenic diseases 
with a severe clinical presentation often in childhood. As pos-
tulated by Casanova and Abel, PIDs might be more common 
than originally thought, with most individuals suffering from 
recurrent infections having some form of PID, with its pres-
entation depending on the environment [61, 66]. The number 
of genes, genetic mechanisms, and phenotypes associated with 
PIDs keeps growing. This is in part due to the rise of novel 
pathogens, as exemplified by the COVID-19 pandemic during 
which pathogenic variants in both novel and known PID genes 
involved in the host immune response to viral infections have 
been associated with more severe forms of infection caused by 
the SARS-CoV-2 virus [69, 70]. PIDs give a unique insight into 
the molecular mechanisms of the immune response, shedding 
light on the pathways involved in the functioning and balance 
of immunity and self-tolerance. The continuing development 
in sequencing strategies and data interpretation will continue 
to improve the diagnosis and treatment of PID patients in the 
future.
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