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Abstract 

Background:  Globally, gastrointestinal (GI) cancer is one of the most prevalent malignant tumors. However, studies 
have not established glycolysis-related gene signatures that can be used to construct accurate prognostic models for 
GI cancers in the Asian population. Herein, we aimed at establishing a novel glycolysis-related gene expression signa-
ture to predict the prognosis of GI cancers.

Methods:  First, we evaluated the mRNA expression profiles and the corresponding clinical data of 296 Asian GI 
cancer patients in The Cancer Genome Atlas (TCGA) database (TCGA-LIHC, TCGA-STAD, TCGA-ESCA, TCGA-PAAD, 
TCGA-COAD, TCGA-CHOL and TCGA-READ). Differentially expressed mRNAs between GI tumors and normal tissues 
were investigated. Gene Set Enrichment Analysis (GSEA) was performed to identify glycolysis-related genes. Then, 
univariate, LASSO regression and multivariate Cox regression analyses were performed to establish a key prognostic 
glycolysis-related gene expression signature. The Kaplan-Meier and receiver operating characteristic (ROC) curves 
were used to evaluate the efficiency and accuracy of survival prediction. Finally, a risk score to predict the prognosis 
of GI cancers was calculated and validated using the TCGA data sets. Furthermore, this risk score was verified in two 
Gene Expression Omnibus (GEO) data sets (GSE116174 and GSE84433) and in 28 pairs of tissue samples.

Results:  Prognosis-related genes (NUP85, HAX1, GNPDA1, HDLBP and GPD1) among the differentially expressed 
glycolysis-related genes were screened and identified. The five-gene expression signature was used to assign 
patients into high- and low-risk groups (p < 0.05) and it showed a satisfactory prognostic value for overall survival 
(OS, p = 6.383 × 10–6). The ROC curve analysis revealed that this model has a high sensitivity and specificity (0.757 at 
5 years). Besides, stratification analysis showed that the prognostic value of the five-gene signature was independ-
ent of other clinical characteristics, and it could markedly discriminate between GI tumor tissues and normal tissues. 
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Background
Globally, cancers of the gastrointestinal (GI) tract, 
including those that originate from cells in the esopha-
gus, stomach, exocrine pancreas, liver, gallbladder, biliary 
tract, small intestines, colon, rectum and anus, are asso-
ciated with a high prevalence and mortality rate [1]. The 
prevalence of GI cancers, such as liver and gastric can-
cers, in Asia is higher than in North America or Europe 
[2]. The pathogenic factors for GI cancer are complex and 
include chronic inflammation, infection, environmen-
tal carcinogens and genetic susceptibility [3]. Currently, 
the main therapeutic options for GI cancers are surgical 
resection, radiotherapy and chemotherapy among oth-
ers. However, the postoperative survival rate is still low 
[4]. Currently, the prognosis of GI cancer patients relies 
on traditionally recognized prognostic factors, such as 
pathological staging, histological grade and immunohis-
tochemical studies of molecular markers [5]. Prognostic 
indicators are of great significance in developing new 
treatment strategies, therefore, independent indicators 
for better prognosis should be urgently established.

The tumor microenvironment is highly involved in the 
occurrence and development of malignant tumors, and 
is closely associated with energy metabolism. Mitochon-
drial oxidative phosphorylation and glycolysis are the 
two major pathways for cellular energy production [6]. 
Compared to normal cells, even under normoxia condi-
tions, cancer cells mainly rely on glycolysis to produce 
the energy required for cellular processes [7]. This phe-
nomenon is regarded as a landmark event in the process 
of tumor formation. Glycolysis and its related genes play 
a very essential role in the development of GI cancers [8]. 
Glucose metabolism, including glycolysis and hexosa-
mine synthesis, is abnormally activated in liver cancer, 
leading to enhanced malignant phenotypes [9]. Moreo-
ver, in gastric cancer, the energy needs of tumor cells are 
achieved through glycolysis [10]. Enhanced glycolysis has 
also been shown to promote the proliferation and metas-
tasis of colorectal cancer cells [11]. Currently, the mecha-
nisms through which key enzymes and glycolysis-related 
genes in tumor metabolic pathways are regulated have 
not been elucidated. Therefore, elucidating the mecha-
nisms through which metabolic remodeling occurs in 
tumors is of great clinical significance for the accurate 
diagnosis and treatment of GI cancers. So far, prognostic 

prediction models based on glycolytic genes have only 
been reported in liver and colon cancers [12, 13]. For the 
first time, we established a risk prediction model that is 
based on glycolytic genes for seven common tumors of 
the digestive tract to assist in identifying risky patients 
and follow-up to improve treatment outcomes in the 
Asian population.

In recent years, various risk prediction models that are 
based on gene expression data, such as autophagy-related 
genes prognosis prediction models [14], immune-related 
genes prognosis prediction models [15] and inflamma-
tion-related genes prognosis prediction models [16], are 
widely applied in the clinical prediction of patient sur-
vival. Elevating aerobic glycolysis and dependence on 
glycolysis to produce energy is one of the main metabolic 
characteristics of cancer [17]. Attempts have been made 
to target tumors by inhibiting the activity of key enzymes 
in the tumor glycolytic pathway. It has been reported that 
inhibiting the glycolytic pathway in tumors can effec-
tively suppress the proliferation of tumor cells, and even 
play a role in killing tumor cells [18]. However, inhibi-
tion of a single target may be insufficient in suppressing 
tumor proliferation and may even cause drug resistance. 
For example, NRF2 has dual roles in cancer [19, 20]. The 
antioxidant function of NRF2 is important in protect-
ing against cancer initiation and progression. Based on 
such a protective effect, numerous chemopreventive 
compounds that can activate NRF2 have been identified 
[21–23]. Besides, NRF2 can also exert cancer-promoting 
effects [24]. Several NRF2 target genes are involved in 
drug resistance [22]. Elevated NRF2 levels have been cor-
related with chemoresistance in cancer cells [20, 25–28]. 
In addition, the KRAS oncogene, a critical driver of mul-
tiple cancers, is also an important target for cancer ther-
apy. Studies have reported that oncogenic KRAS alters 
glucose and glutamine metabolism to support pancreatic 
ductal adenocarcinoma cell proliferation [29–32]. KRAS 
upregulates stress-granule formation, which is involved 
in chemoresistance [32–34]. Because of the multiple 
functions of a single gene, it is insufficient to target gene 
for cancer therapy. Therefore, the therapeutic potential 
of combined treatment and predictors of multiple glyco-
lytic enzyme targets should be studied [35]. In this study, 
we aimed at elucidating the relationship between glyco-
lysis-related genes and clinical-related indicators from 

Finally, the expression levels of the five prognosis-related genes in the clinical tissue samples were consistent with the 
results from the TCGA data sets.

Conclusions:  Based on the five glycolysis-related genes (NUP85, HAX1, GNPDA1, HDLBP and GPD1), and in combina-
tion with clinical characteristics, this model can independently predict the OS of GI cancers in Asian patients.

Keywords:  Gastrointestinal cancer, Glycolysis-related genes, Prognosis, Asian patients
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the entire Asian GI tumor, and to establish a more accu-
rate prognostic model that is based on glycolysis-related 
genes. From the Cancer Genome Atlas (TCGA) database, 
we identified a glycolytic associated five-gene signature 
that is closely related to overall survival (OS) of GI cancer 
patients in the Asian population. Based these five genes, 
a prognostic prediction model was constructed and was 
shown to accurately predict and monitor the prognosis 
for GI cancers in the Asian population.

Methods
Data collection and mRNA expression dataset
The mRNA expression profiles and the correspond-
ing clinical data for 296 Asian GI cancer patients were 
obtained from the TCGA database (http://cance​rgeno​
me.nih.gov/). These patients were; 158 LIHC patients, 74 
STAD patients, 38 ESCA patients, 11 PAAD patients, 11 
COAD patients, 3 CHOL patients and 1 READ patients 
(TCGA-LIHC, TCGA-STAD, TCGA-ESCA, TCGA-
PAAD, TCGA-COAD, TCGA-CHOL and TCGA-READ). 
Their detailed clinical information is summarized in 
Table  1. Various glycolysis-related genes were obtained 
from Molecular Signatures Database v7.0 (MSigDB) (https​
://softw​are.broad​insti​tute.org/gsea/msigd​b/index​.jsp).

Gene set enrichment analysis (GSEA)
GSEA analysis was performed using the GSEA software 
v4.0.1 and “h.all.v7.1.symbols.gmt” (http://www.broad​
insti​tute.org/gsea) to evaluate whether the defined gene 
sets showed statistically significant differences between 
the tumor and normal tissues. p ≤ 0.05 and false discov-
ery rate (FDR) < 0.25 were the criteria for identifying sig-
nificantly enriched gene sets in GSEA.

Prognostic signature construction
Raw mRNA expression data were normalized by [log2 
(data + 1)] for further statistical analysis. Univariate Cox 
regression was used to screen and analyze the genes 
affecting the OS of patients (p < 0.05). Then, LASSO Cox 
regression and multivariate Cox proportional hazards 
regression models were used to identify and analyze 
the prognostic genes in order to establish a predictive 
model. The selected mRNAs were classified into two 
types; hazard ratio (HR) > 1 was the risk type while haz-
ard ratio (HR) < 1 was the protective type. Based on the 
mRNA expression and coefficients as derived from the 
multivariate Cox proportional hazards regression analy-
sis, a prognostic risk score formula was established. 
The risk score formula was:  Risk score = expression of 
gene1 × β1gene1 + expression of gene2 × β2gene2 + …
expression of genen × βngenen (β represents the regres-
sion coefficient of each mRNA).

Sample collection and validation of the expression 
of glycolysis‑related genes at mRNA and protein levels
The Institutional Review Board of Nanjing Medical Uni-
versity and the Ethical committee of the Tongling Peo-
ple’s Hospital approved this study (ethical review No. 
2019-008). All study participants were required to sign an 
informed consent before enrollment. Twenty-eight paired 
GI tumors and adjacent non-tumor tissues were collected 
from patients at the Tongling People’s Hospital from 
2018 to 2019. All the patients had not received chemo-
therapy or radiotherapy before surgery. The obtained 
tissues included 8 paired COAD tissues, 5 paired READ 
tissues and 15 paired STAD tissues. All tissue samples 
were rapidly frozen and stored in liquid nitrogen until 
RNA extraction. Total RNA was extracted and subjected 
to reverse transcription followed by Real-time quantita-
tive polymerase chain reactions (qRT-PCR), as previously 
described [36]. The primer sequences were: The forward 
primer for GAPDH was CCT​TCC​GTG​TCC​CCACT 
while its reverse primer was GCC​TGC​TTC​ACC​ACC​
TTC; the forward primer for NUP85 was CAT​TGA​GCG​
GAT​ACC​TCT​G while its reverse primer was GAC​GGC​
TTT​CAT​GGC​TAA; The forward primer for GPD1 was 
TCT​TTG​GGG​AGC​AGG​AAC​ while its reverse primer 
was GAA​GGA​AGC​CTG​GGT​GAA; the forward primer 
for HAX1 was GGC​TTG​CTT​TCC​GGTAG while its 
reverse primer was ACG​CGA​ACC​TTT​GAACC; the for-
ward primer for GNPDA1 was GCA​ACA​GAC​ACT​GCC​
ACA​ while its reverse primer was CAG​GAG​AGC​GGG​
ACACT; and, the forward primer for HDLBP was ACA​
GGG​AAA​GAA​AGC​AAG​G while its reverse primer was 
CAG​ATG​GGG​AAG​AGG​TGA​. All experiments were 
done in duplicates. The Human Protein Atlas (HPA) data-
base (https​://www.prote​inatl​as.org/) was used to evaluate 
the protein expression levels of the five glycolysis-related 
genes in LIHC tissues, COAD tissues and correspond-
ing normal tissues (Additional file 1: Appendix S1).

Statistical analysis
We used the median value of the risk score to assign the 
296 patients into high- and low-risk groups. Kaplan–
Meier curves and log-rank methods were used to assess 
the prognostic significance of the risk score. Next, differ-
ential expression of the selected genes was examined and 
classified into high- and low-risk groups according to the 
median risk score. The receiver operating characteristic 
(ROC) curve analysis was performed to assess the sensi-
tivity and specificity of prognostic prediction while the 
univariate and multivariate Cox analyses were performed 
to determine whether the risk score was an independent 
indicator of other clinical characteristics, including age, 
gender, grade and stage. Hazard ratios (HRs) and 95% 

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
https://software.broadinstitute.org/gsea/msigdb/index.jsp
https://software.broadinstitute.org/gsea/msigdb/index.jsp
http://www.broadinstitute.org/gsea
http://www.broadinstitute.org/gsea
https://www.proteinatlas.org/
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Table 1  Clinical pathological parameters of Asian patients with gastrointestinal cancer in this research

Tumor type Clinical characteristic N (%)

Liver hepatocellular carcinoma (LIHC) Age (years)  > 65 36 (22.78)

 ≤ 65 122 (77.22)

Gender Male 124 (78.48)

Female 34 (21.52)

Stage I–II stage 151 (95.57)

III–IV stage 7 (4.43)

Vital status Alive 114 (72.15)

Dead 44 (27.85)

Stomach adenocarcinoma (STAD) Age (years)  > 65 41 (55.41)

 ≤ 65 33 (44.59)

Gender Male 49 (66.22)

Female 25 (33.78)

Stage I- II stage 43 (58.11)

III–IV stage 29 (39.19)

Not reported 2 (2.70)

Vital status Alive 54 (72.97)

Dead 19 (25.68)

Not reported 1 (1.35)

Esophageal carcinoma (ESCA) Age (years)  > 65 6 (15.79)

 ≤ 65 32 (84.21)

Gender Male 35 (92.11)

Female 3 (7.89)

Stage I–II stage 11 (28.95)

III–IV stage 6 (15.79)

Not reported 21 (55.26)

Vital status Alive 31 (81.58)

Dead 7 (18.42)

Pancreatic adenocarcinoma (PAAD) Age (years)  > 65 4 (36.36)

 ≤ 65 7 (63.64)

Gender Male 5 (45.45)

Female 6 (54.55)

Stage I–II stage 11 (100.00)

III–IV stage 0 (0.00)

Vital status Alive 6 (54.55)

Dead 5 (45.45)

Colon adenocarcinoma (COAD) Age (years)  > 65 2 (18.18)

 ≤ 65 9 (81.82)

Gender Male 8 (72.73)

Female 3 (27.27)

Stage I–II stage 10 (90.91)

III–IV stage 1 (9.09)

Vital status Alive 9 (81.82)

Dead 2 (18.18)

Cholangiocarcinoma (CHOL) Age (years)  > 65 2 (66.67)

 ≤ 65 1 (33.33)

Gender Male 2 (66.67)

Female 1 (33.33)

Stage I–II stage 3 (100.00)

III–IV stage 0 (0.00)
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confidence intervals (CIs) were used to assess the relative 
risk. Moreover, survival curves of clinic-pathologic char-
acteristics and model validation between the two groups 
were created using the Kaplan-Meier method. p ≤ 0.05 
was considered statistically significant. All statistical 
analyses were performed using the R 3.6.3 and GraphPad 
Prism 7 softwares.

Results
Differently expressed glycolysis‑related genes in Asian 
gastrointestinal cancer patients
We obtained the mRNA expression profiles and clinical 
data for 296 Asian GI cancer patients from the TCGA 
database. Compared to normal tissues, GSEA revealed 
that glycolysis-related gene sets were significantly 
enriched in Asian GI tumor tissues (Fig.  1a-e). Using 
|log2 (Fold Change)|  > 0 and p < 0.05, we finally identi-
fied 19 up-regulated and 138 down-regulated glycolysis-
related genes in Asian GI tumor and non-tumor tissues 
(Fig. 1f ). Heat maps were established to show the differ-
entially expressed genes between the tumor and normal 
groups (Fig. 1g).

Construction of a risk score formula as an indicator 
of prognosis with the univariate Cox regression analysis
We used the univariate Cox regression analysis to screen 
and identify the genes associated with prognosis and sur-
vival. Ten mRNAs (RBCK1, HS2ST1, GPD1, SRD5A3, 
HAX1, GNPDA1, CDK1, NUP62, HDLBP and STMN1) 
were screened and identified as independent potential fac-
tors associated with poor prognosis. The candidate mRNAs 
were classified into two types: a risk type (RBCK1, HS2ST1, 
SRD5A3, HAX1, GNPDA1, HDLBP and STMN1) with 
HR > 1, which was associated with poor prognosis and a pro-
tective type (GPD1, CDK1, NUP62,) with HR < 1, which was 
associated with good prognosis (data not shown). Pearson 
correlation coefficients for the 10 mRNAs revealed strong 
correlations between: CDK1 and NUP62; STMN1 and 

NUP62; GNPDA1 and NUP62; HS2ST1 and NUP62; GPD1 
and NUP62; STMN1 and CDK1; GNPDA1 and CDK1; 
HS2ST1 and CDK1; GNPDA1 and STMN1; HS2ST1 and 
GNPDA1; RBCK1 and GNPDA1 as well as between HDLBP 
and HS2ST1, with a correlation coefficient greater than 
0.3 (Fig. 2a). Using the expression levels of the 10 mRNAs 
together with their regression coefficients as assessed 
by multivariate Cox analysis, a prognostic risk score for-
mula was established: Risk score = 0.3459 × expression of 
RBCK1 + 0.5377 × expression of HS2ST1 – 0.3413 × expres-
sion of GPD1 + 0.3543 × expression of SRD5A3 + 0.6679 ×  
expression of HAX1 + 0.4753 × expression of GNPDA1 –  
0.3001 × expression of CDK1 – 0.6322 × expression of 
NUP62 + 0.5384 × expression of HDLBP + 0.3651 × expres-
sion of STMN1. ROC curve analysis of the mRNA signature 
was 0.744 at 5 years, indicating a good performance in pre-
dicting the prognosis of GI cancers (Fig. 2b). Subsequently, 
patients were assigned into low- and high-risk groups based 
on the median value of risk scores (Fig. 2c). We evaluated the 
survival times of patients in the high- and low- risk groups 
and found that mortality rates for patients with high-risk 
scores were higher than those with low-risk scores (Fig. 2d). 
Heatmap analysis was performed to reveal the expression 
profiles of the 10 mRNAs. Based on the survival risk score of 
the 10-mRNA expression, patients were divided into a low- 
or high-risk groups using the median risk score (Fig. 2e).

Construction of the five‑gene signature as an indicator 
for prognosis
LASSO COX regression analysis was performed to 
optimize the prognostic model and prevent overfitting 
(Fig.  3a). It was found that the regression coefficient 
for each gene and the model achieved the best per-
formance (Fig.  3b). Finally, five genes were screened 
as independent potential prognostic factors for OS. 
NUP85, HAX1, GNPDA1 and HDLBP with HR > 1 
were considered as risk genes, whereas GPD1 with 
HR < 1 was considered as a protective gene (Fig. 3c and 

Table 1  (continued)

Tumor type Clinical characteristic N (%)

Vital status Alive 1 (33.33)

Dead 2 (66.67)

Rectum adenocarcinoma (READ) Age (years)  > 65 0 (0.00)

 ≤ 65 1 (100.00)

Gender Male 1 (100.00)

Female 0 (0.00)

Stage I–II stage 1 (100.00)

III–IV stage 0 (0.00)

Vital status Alive 1 (100.00)

Dead 0 (0.00)
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Table 2). Similarly, we calculated the Pearson correla-
tion coefficients for the five mRNAs and found strong 
correlations between GNPDA1 and NUP85, with a 
correlation coefficient greater than 0.3 (Fig. 4a). More-
over, we established a prognostic risk score formula as 
previously described: Risk score = 0.4761 × expression 
of NUP85 – 0.1974 × expression of GPD1 + 0.7262 ×  
expression of HAX1 + 0.4541 × expression of GNPDA1  
+ 0.5417 × expression of HDLBP. The ROC curve anal-
ysis with a five-mRNA signature was 0.757 at 5 years, 
better than 0.744 of the previous model, indicating that 
this model has a high sensitivity and specificity in pre-
dicting survival outcomes in Asian GI cancer patients 
(Fig. 4b). Based on the median value of the risk score, 
patients were assigned into low- and high-risk groups 
(Fig.  4c). Analysis of survival outcomes of patients in 
the high- and low- risk groups showed that mortality 
rates for patients in the high-risk group were higher 
than those in the low-risk group (Fig. 4d). Then, heat-
map analysis was performed to reveal the expression 
profiles of the five genes in the low- or high-risk group 
(Fig. 4e).  

Relationships between risk scores and clinical 
characteristics
We performed the univariate and multivariate Cox 
regression analyses to evaluate the effects of risk scores 
and other clinical parameters, including age, gender, 
grade and stage, on the prognostic value. The univariate 
Cox regression analysis showed that the five-gene risk 
score (HR = 1.537, 95% CI 1.359-1.738, p < 0.001) and 
stage (HR = 2.069, 95% CI 1.529-2.798, p < 0.001) corre-
lated with the prognosis of GI cancer patients (Fig.  5a). 
In addition, the risk score and stage were found to be 
independent prognostic indicators (p < 0.001, Fig.  5b). 
These findings imply that the model can efficiently pre-
dict the prognosis of GI cancer with glycolysis-related 
gene risk score as an independent indicator (Fig.  5a, 
b). Furthermore, the expression levels of four mRNAs 
(NUP85, HAX1, GNPDA1 and HDLBP) were found 
to be elevated while that of GPD1 in tumors from the 
TCGA database was suppressed (Fig.  5c), consistent 
with our previous results. Then, we calculated the five-
gene-based risk score for GI cancer patients. Patients in 

the high-risk group showed significantly poor OS than 
those in the low-risk group (p < 0.001) (Fig. 5d). To vali-
date the generated prognostic model, GSE116174 and 
GSE84433 datasets were downloaded from Gene Expres-
sion Omnibus (GEO) and utilized as external samples. 
It was revealed that the survival and prognosis of Asian 
liver cancer patients and gastric cancer patients in the 
high-risk group were worse (Fig.  5e, f ). Previous uni-
variate and multivariate Cox regression analyses showed 
that tumor stage was correlated with the prognosis of GI 
cancer patients. Next, the Kaplan–Meier curve analysis 
was used to analyze colon cancer microarrays of Asian 
populations. We found that patients in stage III + IV 
(p < 0.001) and in T3-4 (p < 0.001) had poorer prog-
nostic outcomes, consistent with our previous results 
(Fig.  6a). This model showed a good performance in 
stratifying age ≤ 65 (p < 0.001) and > 65 (p = 0.010), male 
(p < 0.001) and female (p = 0.004), grade G1-2 (p < 0.001) 
and G3-4 (p = 0.017), clinical-stage I-II (p < 0.001) and 
III-IV (p = 0.032), T1-2 (p < 0.001) and T3-4 (p = 0.021), 
M0 (p < 0.001) and N0 (p < 0.001) (Fig.  6). Analogous to 
the aforementioned results, the high-risk group in both 
subgroups was associated with worse OS, especially in 
patients without lymph node and/or distant metasta-
sis. Overall, these results confirmed that the five-gene 
expression signature was an independent risk factor for 
predicting the survival of GI cancer patients in the Asian 
population. 

Expression levels of glycolysis‑related genes in clinical 
tissue samples
The HPA database was used to evaluate protein expres-
sion levels for NUP85, GPD1, HAX1, GNPDA1 and 
HDLBP in LIHC and COAD tissues compared to their 
expression in normal tissues. The NUP85, HAX1, 
GNPDA1 and HDLBP protein levels were significantly 
elevated in tumor tissues compared to normal samples, 
while GPD1 was significantly down-regulated in tumor 
tissues (Fig.  7a). In addition, NUP85, HAX1, GNPDA1 
and HDLBP exhibited elevated mRNA expression levels 
in GI tumor tissues when compared to the adjacent non-
tumor tissues, whereas GPD1 expression was suppressed 
in GI tumor tissues compared to the non-tumor tissues 
(Fig. 7b).

Fig. 1  Performance of GSEA and differential expression analysis of glycolysis-related genes based on the Asian GI cancer patients of TCGA datasets. 
Enrichment analysis was performed on the selected gene sets, including BIOCARTA_GLYCOLYSIS_PATHWAY (a), GO_GLYCOLYTIC_PROCESS (b), 
HALLMARK_GLYCOLYSIS (c), KEGG_GLYCOLYSIS_GLUCONEOGENESIS (d) and REACTOME_GLYCOLYSIS (e). Volcano map (f) and heatmap (g) of 
glycolytic genes expressed differentially in tumor and normal tissues

(See figure on next page.)
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Discussion
A GI tumor is a type of tumor that occurs in complex 
digestive organs and whose biodiversity as well as tumor 
characteristics are inconsistent [37]. It mainly includes 
liver hepatocellular carcinoma (HCC), stomach adeno-
carcinoma, esophageal carcinoma, pancreatic adenocar-
cinoma, colon adenocarcinoma, cholangiocarcinoma and 
rectal adenocarcinoma. The prevalence of HCC is higher 
in Asia than in America and Europe. About 78% of the 
global HCC cases are reported in Asian countries, with 
China accounting for about 55% of the global HCC cases 
[38]. GI cancers are the most common malignancies in 
Asia, especially in China and Japan [1]. Due to its impor-
tance and superior therapeutic efficacies, gene therapy 
is widely being evaluated [39]. Identifying effective bio-
markers to construct a prognostic model is of great clini-
cal significance in informing the clinical decision-making 
process. Several predictive models for patient survival 

rates have been identified, however, they all have limita-
tions. For example, in the autophagy-related gene prog-
nosis prediction model, autophagy is a double-edged 
sword in various tumors, promoting as well as inhibiting 
cancer progression [40]. Therefore, the expression lev-
els of autophagy related genes are unreliable. Similarly, 
in the immune response-related gene prognostic model, 
the established tumors often induce immune tolerance 
at an early stage of tumorigenesis, resulting in abnormal 
immune responses [41]. Glycolysis is the main energy 
source for cancer cells and the primary  energy  source 
for  tumor  invasion [42]. Studies have reported that gly-
colysis is a potential therapeutic and prognostic target 
for cancers [43–48]. Considering its role in cancer, con-
structing a glycolysis associated gene risk signature may 
be advantageous for the accurate diagnosis, therapy and 
prognosis of GI cancers. In addition, the prognostic 

Fig. 2  Construction of a risk score formula as an indicator of prognosis with the univariate Cox regression analysis in Asian GI cancer patients. a 
Correlations of significant differentially expressed genes. b Receiver operating characteristic (ROC) curve analysis of glycolysis-related model at 
5 years. c Risk score distribution in each Asian gastrointestinal (GI) cancer patient. d Survival in days of GI cancer patients in ascending order of risk 
scores. (F) Heatmap of the expression profile of the 10 glycolysis-related genes
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significance of glycolysis-related genes in Asian GI can-
cers has not been reported.

We identified five novel glycolysis-associated genes 
(NUP85, GPD1, HAX1, GNPDA1, and HDLBP) in GI 
tumor and normal tissues. GPD1 was fond to be a posi-
tive prognostic gene, while NUP85, HAX1, GNPDA1, 

HDLBP were negative prognostic genes. The nuclear 
pore complex (NPC) is a combination of macromole-
cules that cross the nuclear membrane to form a selec-
tive barrier between the nucleus and the cytoplasm 
[49]. The central channel of NPCs is filled with nucleo-
porins (NUPs), which can build a size-selective diffusion 

Fig. 3  LASSO Cox regression model construction. a Curves represent regularization paths of LASSO coefficients. b Partial likelihood deviance as 
a function of regularization parameter λ in the TCGA dataset. c Forest plot describing the relationship between the five glycolysis-related gene 
expression and prognosis in GI cancer, *p < 0.05 and ***p < 0.001
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barrier for macromolecules larger than 40  kDa, while 
providing binding sites for nuclear transport receptors 
(nuclear transporters, importins and exportins), thereby 
transporting signal-carrying cargo across the NPC. 
NUP85 is an important member of the NPC outer ring 
[50]. It is postulated that dysregulated NUP85 functions 

may lead to tissue homeostasis imbalance. We found 
elevated NUP85 expression levels in tumors from the 
TCGA database in the Asian population, suggesting its 
possible involvement in the development of Asian GI 
cancers. It has been reported that targeting NUP85 in 
pancreatic cancer cells inhibits their invasiveness and 

Table 2  The information of  five prognostic mRNAs weighted by  its multivariable LASSO regression coefficient, which 
importantly associated with overall survival in Asian patients with gastrointestinal cancer

mRNA Ensemble ID Location Risk coefficient HR (95% CI) P value

NUP85 ENSG00000125450 Chromosome 17: 75,205,557-75,235,758 0.4761 1.6097 (0.9400-2.7565) 0.0828

GPD1 ENSG00000167588 Chromosome 12: 50,103,982-50,111,313 -0.1974 0.8208 (0.6871-0.9805) 0.0295

HAX1 ENSG00000143575 Chromosome 1: 154,272,589-154,275,875 0.7262 2.0672 (1.3904-3.0734) 0.0003

GNPDA1 ENSG00000113552 Chromosome 5: 141,991,749-142,013,041 0.4541 1.5748 (1.0864-2.2826) 0.0165

HDLBP ENSG00000115677 Chromosome 2: 241,227,264-241,317,061 0.5417 1.7189 (1.0023-2.9479) 0.0490

Fig. 4  Construction of a risk score formula as an indicator of prognosis with the multivariate Cox regression analysis. a Correlations of significant 
differentially expressed glycolysis-related genes. b ROC curve analysis of glycolysis-related model at 5 years. c Risk score distribution in each 
Asian GI cancer patient. d Survival in days of GI cancer patients in ascending order of risk scores. e Heatmap of the expression profile of the five 
glycolysis-related genes
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metastasis. Glycerol-3-phosphate dehydrogenase 1 
(GPD1) is an NAD+/NADH dependent enzyme, which 
plays an important role in the cytoplasm as a glycerol 
phosphate shuttle [51]. Abnormal GDP1 expression may 
exert adverse effects on human health. GPD1 expression 
has been shown to be activated in early tumor develop-
ment stages, such as those of glioblastoma [52]. However, 
GPD1 may exert an antitumor effect [53–55]. As a central 
component of lipid metabolism and synthesis, abnormal 
GDP1 activity can induce multiple digestive system dis-
eases [56, 57]. Therefore, the role of GPD1 in GI tumors 
is worthy of attention. We found that GDP1 expression 
levels in GI tumors was relatively low, which may be 
related to GPD1 deficiency and its effect on gluconeogen-
esis. In tumor sites, hematopoietic substrate-1-associated 

protein X-1 (HAX-1) is highly expressed during neo-
vascularization [58]. HAX-1 promotes the migration 
and invasion of carcinoma cells by disrupting apoptotic 
responses [58–60]. We also confirmed that elevated 
HAX-1 expression levels are closely correlated with 
tumor development. Glucosamine-6-phosphate isomer-
ase 1 (GNPDA1) can catalyze the conversion of glucosa-
mine 6-phosphate to fructose 6-phosphate and thereby 
increase the raw materials for glycolysis [61–63], which 
enhances cancer progression. GNPDA1 plays important 
roles in cell proliferation, migration and invasion [64, 65]. 
Elevated GNPDA1 expression levels are associated with 
poor prognosis in patients with HCC, pancreatic cancer 
and colorectal cancer [64, 66–68]. Furthermore, high-
density lipoprotein binding protein (HDLBP), also known 

Fig. 5  Analysis of risk factors and survival analysis plotted by Kaplan-Meier curves. a Univariate Cox regression analysis of the relationship between 
glycolysis risks core and clinical characteristics. b Multivariate Cox regression analysis of the relationship between glycolysis risks core and clinical 
characteristics. c Expression of the five mRNAs in GI tumor tissues and normal tissues. (*p < 0.05, **p < 0.01, ***p < 0.001). d Kaplan-Meier survival 
curves showing the overall survival probability stratified by the low- and the high-risk groups in the TCGA dataset. e Kaplan-Meier survival curves 
showing the overall survival probability stratified by the low- and the high-risk groups in the GSE116174 dataset. f Kaplan-Meier survival curves 
showing the overall survival probability stratified by the low- and the high-risk groups in the GSE84433 dataset
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Fig. 6  Kaplan-Meier survival analysis for Asian GI cancer patients in TCGA dataset. a Relationship between the clinical features and survival rate. b 
Prognosis of risk scores for the Asian GI cancer patients categorized by the clinical feature
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as vigilin, has been shown to play a significant role in cel-
lular sterol metabolism in human atherogenesis [69]. Sev-
eral studies have shown that vigilin is highly expressed in 
multiple cancers, including gastric cancer, suggesting it 
may be a promoter for carcinogenesis [70–72]. In con-
clusion, these five genes are involved in the progression 

of GI cancers and were used to establish a five-gene 
prognostic signature. GI cancer patients in the high-risk 
group exhibited significantly poor prognosis than those 
in the low-risk group. Due to the biological functions of 
the five genes in carcinogenesis and the significant cor-
relation with the prognosis of GI cancer patients, the 

Fig. 7  Expression levels of genes in clinical tissue samples. a Representative images of immunohistochemistry staining of the five glycolysis-related 
genes from the Human Protein Atlas (HPA) database, including LIHC and COAD. b Expression of the five glycolysis-related genes in 28 paired clinical 
samples, including 8 paired COAD tissues, 5 paired READ tissues and 15 paired STAD tissues, using qRT-PCR to examine
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five-gene signature is a novel biomarker that can be used 
to inform clinical decisions (Fig. 8).

However, this study is associated with several limita-
tions. Our datasets were mainly from the TCGA data-
base in the Asian population. Although we validated 
the expression levels of the identified genes in the col-
lected tissues, only a small number of Asian patient 

samples were represented. Further validation of the 
five-gene expression signature in a large  sample popu-
lation is necessary. Meanwhile, in Asian people of dif-
ferent ancestry, genetic variation should be considered 
as a correction factor. Besides, this study provides the 
possibility that the five-gene expression signature may 
function as a therapeutic and prognostic target, which 

Fig. 8  A flowchart of the data analysis procedures
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was merely analyzed through available retrospec-
tive data. The underlying mechanisms of the five-gene 
expression signature in cancer progression should be 
elucidated through functional experiments. In recent 
years, studies have reported that non-coding RNA plays 
an important role in the initiation and progression of 
cancer. Aberrant expression of non-coding RNAs have 
been found to be involved in the regulation glycolysis 
associated genes [73–77]. Thus, further studies on the 
non-coding RNAs that are associated with glycolysis in 
GI cancer are also necessary. In summary, we identified 
and validated a glycolysis associated five-gene risk sig-
nature (NUP85, GPD1, HAX1, GNPDA1 and HDLBP) 
that can predict the OS of GI Asian cancer patients. 
This five-gene signature can be used as a novel tool in 
clinical practice. More studies should evaluate the roles 
of these genes in Asian GI cancers, which can provide 
the theoretical basis for clinical practice. Furthermore, 
more data is be needed to validate the general applica-
bility of this signature in clinical decisions.

Conclusions
We systematically established five glycolysis-related 
genes (NUP85, GPD1, HAX1, GNPDA1 and HDLBP) 
in Asian GI cancers. Moreover, we established a five-
gene expression signature and showed that the predic-
tive model can independently predict the OS of Asian 
GI cancer patients by combining molecular signatures 
and clinical characteristics.
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