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Abstract

A growing number of organopnictogen redox catalytic methods have emerged–especially within 

the past ten years–that leverage the plentiful reversible two-electron redox chemistry within group 

15. The goal of this Perspective is to provide the context to understand the dramatic developments 

in organopnictogen catalysis over the past decade with an eye towards future development. An 

exposition of the fundamental differences in the atomic structure and bonding of the pnictogens, 

and thus the molecular electronic structure of organopnictogen compounds, is presented to 

establish the backdrop against which organopnictogen redox reactivity–and ultimately catalysis–is 

framed. A deep appreciation of these underlying periodic principles informs an understanding of 

the differing modes of organopnictogen redox catalysis and evokes the key challenges to the field 

moving forward. We close by addressing forward-looking directions likely to animate this area in 

the years to come. What new catalytic manifolds can be developed through creative catalyst and 

reaction design that take advantage of the intrinsic redox reactivity of the pnictogens to drive new 

discoveries in catalysis?
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1. Introduction

Chemistry is patterned by elemental properties arising from the quantum structure of atoms.
1 As systematized in the periodic table, an element’s periodic position corresponds with 

approximate expectations about its properties.2 Accordingly, the redox reactivity of the 

elements is usefully (even if somewhat over-simplistically) abstracted according to their 

periodic ‘block’. For elements in the s- and f-blocks, single oxidation states3 (+I or +II for s 
elements,4-6 +III for f elements7,8) tend to prevail; by contrast, numerous stable oxidation 

states separated by modest reduction potentials proliferate among the transition metals of the 

d-block.9 Especially for the late transition metals of the second (4d) and third row (5d), the 

prevalence of accessible two-electron redox processes provides the thermodynamic and 

mechanistic basis10 upon which innumerable groundbreaking discoveries in catalytic 

synthesis are built.11-14

The elements of the p-block—especially the ‘heavier’ entrants of principle quantum number 

n≥3—are more akin to their neighbors in the d-block than they are to either the s- or f-blocks 

in terms of breadth of accessible oxidation states. Representatively, compounds of the group 

15 elements (collectively known as the pnictogens,15,16 abbreviated Pn) express a rich redox 

reactivity,17-20 where the valence electronic ns2np3 configuration gives rise to compounds 

that span −III to +V oxidation states.21-25

Correspondingly, discrete chemical reactions involving redox events at pnictogen centers 

have been described since at least the early 19th century.26,27 Since that time, many 

developments in the synthetic chemistry of organopnictogen-based two-electron redox are 

intimately connected to pioneering achievements of 20th century organic chemistry. 

Staudinger’s reduction of organic azides by P(III) reagents to give P(V) iminophosphoranes 

is a bedrock reaction in organic synthesis28-30 that continues to find new applications in 

catalysis31-33 and chemical biology.34-39 Wittig’s olefin synthesis,40-42 which leverages the 

driving force PIII→PV=O, ushered in a new era in industrial preparation of carotenoids, such 

as vitamin A.43 Further down group 15, unique aryl transfer reagents were introduced by 

Barton based on the conversion BiV→BiIII,44-46 a forerunner to ongoing oxidative 

organopnictogen method development. In short, the impact of organopnictogen-based redox 

methods on synthesis is both long and celebrated.

New developments that merge elementary organopnictogen redox reactions into catalytic 

cycles involving formal two-electron redox cycling have been gathering pace, especially 

within the past decade. These developments, proceeding in parallel with ongoing synthetic 

redox method developments elsewhere in the p-block in Groups 13,47-50 14,51,52 16,53-58 

and 17,59-68 represent the vanguard of a new class of redox catalysts composed of main 

group elements that evoke an analogy with well-established activation modes of the late d-

block elements.69-74

Along with ample fundamental science motivations, the attractiveness of redox catalysts 

derived from the heavier group 15 elements is buoyed in a practical sense by the relative 

abundance and low cost of these pnictogens.75 Phosphorus is abundant both in the earth’s 

crust (1300 ppm) and in the biosphere, being the only member of the pnictogen family other 
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than nitrogen that is essential to life. While the heavier pnictogens are comparatively more 

scarce (As, 5.7 ppm; Sb, 0.75 ppm; Bi, 0.23 ppm), all are produced on >20,000 ton scale 

annually.76 And though bismuth is only roughly as abundant terrestrially as palladium (0.52 

ppm) and platinum (0.5 ppm), it is 103–104 times less expensive on a per kilogram basis (cf. 

$7.50/kg for Bi, ~$75000/kg for Pd, ~$33000/kg for Pt). Indeed, established non-redox 

activation modes in organopnictogen catalysis (i.e. Lewis acid,77-79 Lewis base,80-82 and 

frustrated Lewis pair83-86 catalysis), along with the long history of Group 15 compounds as 

supporting ligands in organometallic chemistry,87-94 serve as a validation of the viability of 

organopnictogens as constituents of practical catalysts.

In this Perspective, we wish to highlight exciting recent advances in the burgeoning field of 

organopnictogen redox catalysis. Our major goals are: (1) to identify the pivotal 

contributions defining the current state of the art and (2) to articulate future directions that 

are likely to define the forefront of research moving forward. Toward these goals, we first 

trace the fundamental periodic properties of the group 15 elements and then illustrate how 

these periodic trends are expressed in the diversity of reactions driven by group 15 redox 

catalysis. In this way, we hope to convey not only an appreciation of the new synthetic 

capabilities revealed by group 15 redox catalysis, but also a context for understanding of the 

relationships—both similarities and distinctions—between the congeneric elements in terms 

of their catalytic chemistry. By conceptualizing group 15 redox catalysis in this way as a 

worthy catalytic modality, we hope that this Perspective will knit together the broad cross-

section of synthetic inorganic and organic chemists active in the organopnictogen area and 

serve to nucleate new efforts in this productive and promising area of research.

2. Periodicity and Vertical Trends in Group 15

Given that an informed understanding of the periodic trends and the related structural, 

bonding, and electronic features of organopnictogens establishes the guiding principles for 

further development of this field of catalysis, the purpose of this section is to provide a 

targeted evaluation of key features of the elements themselves and organic molecules 

containing them that drive the redox catalytic reactivity endemic to each pnictogen. 

Interested readers can find further elaboration of many of these themes in prior monographs 

and reviews.95-100

2.1 Trends in Atomic Electronic Structure.

The importance of atomic electronic structure in chemical bonding and reactivity is an 

essential feature of molecular orbital theory. As expanded below, the relative importance of s 
and p valence atomic functions in organopnictogen bonding and molecular structure—and 

thus reactivity— varies intrinsically with spatial and energetic atomic orbital disposition.

2.1.1 Valence orbital size.—A graph of the radial probability maxima for the valence s 
and p orbitals of the group 15 elements is given in Figure 1A.101 As expected for the 

increasing principal quantum number, the radial extension of the valence AOs increases 

down the group, but three subtleties of the periodic atomic electronic structure are 

noteworthy. First, the increase in size—though monotonic—is not smooth. Instead, a 

‘sawtooth’ shape is evident, such that the van der Waals radii of P (1.80 Å) and As (1.85 Å) 
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are clustered, as are Sb (2.05 Å) and Bi (2.07 Å). This effect has been attributed to a 

‘secondary periodicity’102,103 arising from incomplete screening of nuclear charge owing to 

the intervention of the d- and f-elements on period 4 (As) and 6 (Bi), respectively (i.e. the 

‘scandide’ and ‘lanthanide’ contractions).104 Second, the increase in radial extension does 

not affect s and p orbitals equivalently.105 For valence 2s and 2p orbitals of nitrogen, the 

probability maximum in the radial distribution function is nearly identical (0.54 and 0.52 Å, 

respectively), but for the 3s and 3p orbitals of phosphorus it differs by ca. 15%. The radial 

differences between ns and np are even more pronounced for As, Sb, and Bi. This 

phenomenon arises because the 2p orbital lacks a core shell of the same angular momentum 

(l=1) and thus does not have a radial node, whereas radial nodes are requisite for all p 
orbitals of higher principal quantum number (n>2) to satisfy quantum orthogonality. In 

effect, the first-filled p orbital shell exerts an outward effect on all higher p shells through 

‘primogenic repulsion,’ as coined by Pyykkö.106,107 Kaupp has further emphasized the 

importance of radial nodes in main group bonding and reactivity.108,109 Third, spin-orbit 

coupling and relativistic effects take on significant importance for bismuth.110-113 The 6p1/2 

and 6p3/2 spinors diverge markedly in radial extension, and the 6s orbital experiences a 

significant contraction compared to a notional ‘nonrelativistic bismuth.’ The importance of 

these orbital effects, especially the latter, has very profound consequences for the chemical 

and redox reactivity of bismuth (vide infra).

2.1.2 Valence orbital ionization energies.—A plot of the valence atomic orbital one-

electron ionization energies is shown in Figure 1B.101 As seen especially for the heavier 

pnictogens (P─Bi), valence p orbital energy increases uniformly down group 15. By 

contrast, the s orbital ionization energy does not exhibit such a monotonic trend. Instead, the 

‘sawtooth’ profile is again seen; note for instance that the magnitude of the one-electron 

binding energy of the As 4s orbital is slightly larger than that of the P 3s orbital and that the 

Bi 6s orbital ionization energy is substantially larger than that of the Sb 5s orbital. These 

effects can be traced back to the d- and f-block contractions,104 which is augmented in the 

latter case by the relativistic stabilization of the Bi 6s orbital and spin-orbit splitting of the 

p½ and p³⁄₂ orbital energies.114

2.2 Trends in Molecular and Electronic Structure.

2.2.1 Bonding and Hybridization.—The interplay of AO radial sizes and energies has 

significant effects on the bonding of the heavier pnictogens. Kutzelnigg has explained that 

the decreased spatial overlap of the s and p orbitals down group 15 results in less s/p mixing 

and a lifting of the orthogonality for s/p hybrid orbitals.115,116 As illustrated by Kaupp for 

the series H3Pn (Pn=P─Bi), valence s-character accumulates in the non-bonding lone-pair 

orbital down the group, and the Pn─H bonds tend to be made increasingly from essentially 

unhybridized p-orbitals.109 This ‘hybridization defect’ arising from the increasingly 

disparate s and p orbital sizes generally leads to weakening of σ bond energies down group 

15. Thus, for the series H3Pn (Pn=P─Bi), a consistent decrease in the Pn─H bond 

dissociation enthalpy is observed down the group (P: 81.4, As: 74.6, Sb: 63.3, Bi: 51.8 kcal/

mol).117,118

Lipshultz et al. Page 4

J Am Chem Soc. Author manuscript; available in PMC 2022 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2.2 Tricoordination.—Data for the triphenylpnictogen(III) compounds (Ph3Pn) in the 

Cambridge Structural Database119 exemplify the periodic trend in molecular structure that 

trace the molecular-electronic structure nexus (Fig. 2). In accord with the trend in atomic 

size (Sect 2.1.1), a sawtooth-like increase in Pn─C bond lengths in the PnPh3 series – PPh3 

(CSD-1238522),120 AsPh3 (CSD-1318411),121 SbPh3 (CSD-1318403),122 BiPh3 

(CSD-1468789)123 – is observed, where P─C (1.93 Å) and As─C (1.96 Å) are shorter 

bond lengths than Sb─C (2.15 Å) and Bi─C (2.25 Å). Relatedly, the average bond angle 

∠C-Pn-C decreases down the group: ∠C-P-C 102.7°, ∠C-As-C 100.4°, ∠C-Sb-C 96.6°, 

and ∠C-Bi-C 93.7°. Two mutually reinforcing effects drive this trend: (1) the longer bond 

lengths of the heavier pnictogens ease steric crowding between the aryl substituents and thus 

permit narrower bond angles, and (2) the s/p hybridization defect leads to increasingly 

directional bonding down the group (i.e. higher p-orbital contribution to Pn─C bonding and 

greater accumulation of s-character in the nonbonding lone pair). The longer bond lengths 

and greater pyramidalization of the heavier pnictogens are common features of trigonal 

tricoordinate group 15. As a corollary, the barrier to pyramidal inversion of trivalent 

organopnictogens via the ‘umbrella coordinate’ increases down the group.124,125 By transit 

from a pyramidal C3v to a planar D3h geometry, the HOMO nonbonding lone pair (2a1) 

correlates with the atomic p orbital oriented along the rotational axis. The energetic penalty 

to planarization thus imposed, which is accentuated in the case of bismuth by the relativistic 

stabilization of the 6s orbital relative to the 6p set,126 has been correlated with the 

electronegativity of the central pnictogen within the context of a second-order Jahn-Teller 

effect.127

As will be detailed in subsequent sections, many of the organopnictogen compounds that 

exhibit catalytic redox properties are nontrigonal (i.e. no local threefold symmetry).74 The 

interrelation of molecular geometry and electronic structure of nontrigonal compounds can 

be approached by reference to the frontier correlation diagram in Figure 3. Descent from 

local C3v symmetry by progression along the bending (e symmetry) normal mode gives Cs-

symmetric structures. Electronically, the consequence of this symmetry-lowering distortion 

is a lifting of the degeneracy of the unfilled orbitals resulting in a decrease in the HOMO-

LUMO energy gap. Computational and experimental validation for this electronic picture 

has been established for nontrigonal chelates of pnictogen(III) triamide compounds.128-131 

The ability to construct pnictogen compounds of diverse molecular shapes by appropriate 

constraint allows for electronic structure tailoring with profound consequences for the future 

of catalysis in this area.

2.2.3 Pentacoordination.—In parallel to the foregoing discussion of tricoordinate 

pnictogen(III) compounds, the pentaphenylpnictogen(V) compounds (Ph5Pn) first prepared 

by Wittig132-134 illustrate relevant periodic trends for molecular compounds in 

pentacoordination (Fig. 4). Solid state structures for Ph5P (CSD-1232414)135 and Ph5As 

(CSD-1230863)136 are well-described as trigonal bipyramidal (τ = 0.90 and 0.98, 

respectively). By contrast, the heavier congeners Ph5Sb (CSD-1232410)137 and Ph5Bi 

(CSD-1254431)138 crystallize as distorted square pyramidal structures (τ = 0.25 and 0.22, 

respectively).139,140 These static structures provide snapshots spanning the Berry 

pseudorotation coordinate,141,142 and spectroscopic evidence supports that they persist in 

Lipshultz et al. Page 5

J Am Chem Soc. Author manuscript; available in PMC 2022 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



solution.143 Intriguingly, whereas Ph5P, Ph5As, and Ph5Sb are all colorless solids, Ph5Bi is 

violet.144,145 Seppelt and Pyykkö have provided evidence that a ligand-to-metal charge 

transfer excitation in the visible region results from Bi-based LUMO composed of the 

relativistically-stabilized 6s orbital.146,147 Without relativistic considerations, the HOMO-

LUMO gap is predicted to be 27% larger, such that “‘nonrelativistic’ pentaphenylbismuth 

would not be violet.” The connection between the observed low-energy optical transition 

and the propensity for Ph5Bi to react as an electrophilic aryl transfer reagent has been noted.
148

2.3 Trends in Dative and Redox Reactivity.

2.3.1 Measures of donor reactivity.—The dissociation enthalpy for Lewis adducts 

with group 13 Lewis acids provides a measure of donor ability of trivalent 

organopnictogens.149 On the basis of gas phase experiments with AlH3, acid-base adduct 

formation is most favorable for P and least favorable for Bi (Fig, 5, left). These findings 

correlate with qualitative observations regarding nucleophilic reactivity; triphenylphosphine 

and triphenylarsine readily undergo alkylation with methyl iodide, but triphenylstibine 

requires the more reactive trimethyloxonium electrophile (Me3O)BF4 to undergo 

quaternization, while triphenylbismuth is not quaternized even with (Me3O)BF4.150,151 

However, steric effects often are entangled with this underlying trend. Specifically, the 

relatively small atomic radii of phosphines and arsines relative to stibines and bismuthines 

give rise to a substantial repulsive interaction with sterically encumbered Lewis acids 

(iPr3Pn─AltBu3 series, Fig. 5, right), resulting in accordingly diminished energetic 

stabilization of the Lewis adduct. In effect, the lighter pnictogens are more sensitive to steric 

influences than their heavier congeners.152-154

2.3.2 Aqueous reduction potentials.—The standard electrode potentials for the 

group 15 ions in aqueous solution establish an important trend governing the redox reactivity 

of these elements.155 As shown in the Frost diagram in Figure 6,156 phosphorus is the only 

element for which the Pn(III) and Pn(V) oxyacids are more stable than the elemental form. 

These positive oxidation states become increasingly unstable down the group; high valent 

Bi(V) is the least stable among Pn(V) congeners. This increasing preference for the lower 

valent state among the heavier group 15 elements can be viewed as a manifestation of the 

‘inert pair effect,98-100,157-159 which in turn may be related to the hybridization defects 

within the high-valent compounds.116 Computed Pn(V)=O bond energies from the reaction 

H3Pn + 0.5O2 → H3Pn=O series (MP2/DZ+d level) display a similar effect, wherein 

phosphorus forms the most stable oxide while bismuthine oxide is energetically uphill.160 

As such, as a general rule the PnIII/PnV redox couples can be summarized as follow: PIII/PV 

is strongly reducing, AsIII/AsV and SbIII/SbV are mildly oxidizing, and BiIII/BiV is strongly 

oxidizing.

2.3.3 Thermodynamics of reductive elimination from 5-coordinate 
pnictoranes—Similarly to the relative stabilities of the pnictide oxides described above, 

evaluation of the relative thermodynamic stabilities PnX5 compounds with respect to PnX3 

illuminates a periodic trend (Fig. 7). Among the PnF5 congeners, BiF5, which is known to 

fluorinate hydrocarbons,161,162 is at least 45 kcal/mol less stable than the lighter congeners,
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163,164 such as the stable, Lewis acidic PF5. Similarly, the PnH5 series165 displays an 

irregular thermodynamic trend for the liberation of H2 and PnH3, in which decomposition of 

BiH5 is at least 20 kcal/mol more favorable than any of the lighter congeners, owing again to 

the substantially more oxidizing nature of Bi(V). As will be shown, these general 

characterizations manifest in markedly differing reactivity of organopnictogens, and thus 

provide a framework for appreciating the divergences in application in redox catalysis.

The foregoing atomic properties and molecular reactivity trends are the fundamental 

backdrop against which the varied organopnictogen reactivity described in this Perspective is 

brought into relief. As described below, these periodic trends govern much of the divergent 

structure, bonding, and electronic nature of the recently uncovered examples of 

organopnictogen redox catalysis.

3. State-of-the-Art Developments in Organopnictogen Redox Catalysis

Although an initial report can be traced to 1981,166 the overwhelming majority of 

demonstrations in the field of organopnictogen redox catalysis have come in the past decade. 

In this section, the key developments will be discussed, organized first by pnictogen element 

and then by reaction type. The purpose of this section is to develop a systematic perspective 

on the state of the field, with an eye toward understanding prevailing themes and, 

accordingly, gaps in current knowledge which might present avenues for further research.

3.1. Organophosphorus Redox Catalysis.

As described in the preceding section, the redox chemistry of organophosphorus molecules 

is primarily driven by the reducing nature of the P(III) state and the relative stability of the 

P(V) oxidation state, especially those compounds possessing P(V)=O moieties.167-169 As 

such, the oxidation of P(III) compounds to stable P(V) species can be accomplished with a 

variety of oxidants of even modest oxidizing power.170-177 Conversely, the reduction of P(V) 

to P(III) is often contrathermodynamic, thus requiring relatively forcing conditions or 

bespoke molecular design;178-182 this presents the primary challenge in achieving 

organophosphorus redox cycling.

In practice, the relatively strong P(V)=O bond typically requires strong reductants183 such as 

metal hydrides to generate the P(III) species via the intermediacy of a hydridophosphorane.
184 However, the barrier to reduction is lower for constrained cyclic phosphine oxides 

relative to unstrained cyclic185 or acyclic186,187 congeners, providing a rationale for catalyst 

design operating in the PIII/PV=O couple. Reductive ligand coupling represents another 

available avenue for the reduction of P(V) species, as described in a seminal report by Mann 

in 1948188-192 and modernized into a programmable process by McNally.193-195 

Nevertheless, the poor driving force inherent to P(V) to P(III) reduction presents the key 

challenge in achieving self-contained organophosphorus redox cycling.

3.1.1 Catalytic Wittig Reaction.—The Wittig reaction is a cornerstone of 

organophosphorus chemistry, and efforts to render it catalytic in phosphine require a strategy 

for mild and swift reduction of the phosphine oxide byproduct to enable PIII/PV redox 

cycling. The past 12 years have seen the successful application of novel organophosphorus 
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molecules to achieve such a feat.196-199 In 2009, O’Brien reported the first example of 

organophosphorus redox catalysis using a five-membered phospholane oxide (3-methyl-1-

phenylphospholane 1-oxide) P1•[O] operating in the PIII/PV=O couple in the context of a 

Wittig reaction (Fig. 8A).200 This strategy uses a mild hydrosilane reductant, Ph2SiH2, to 

reduce the phospholane oxide precatalyst to the active P(III) species, which can then 

undergo quaternization, deprotonation, and Wittig reaction to obtain the desired product 

olefin and regenerate the phospholane oxide pre-catalyst. In 2013, O’Brien significantly 

lowered the reaction temperature for catalytic Wittig reactions to ambient temperature via 

the use of a Bronsted acidic additive, 4-nitrobenzoic acid, which enhances the rate of 

reduction of phosphine oxide P2•[O] (Fig. 8B).201 O’Brien further developed a series of 

electron-deficient phospholane oxide precatalysts, including P3•[O], to enable the use of 

non-stabilized ylides in the catalytic Wittig reaction (Fig. 8C).202

Other organophosphorus catalyst scaffolds have proven adept at achieving catalytic Wittig 

reactions. In 2019, Werner demonstrated the utility of phosphetane203 oxide P4•[O]204 to 

enable catalytic Wittig reaction at 1 mol% catalyst loading at ambient temperature in the 

absence of any acidic additive (Fig. 9).205 Simple phosphine oxide precatalysts, such as 

Ph3PO, Oct3PO, or Bu3PO, have been explored for catalytic Wittig reactions, but to this 

point have required the assistance of microwave heating or Bronsted acid additive at high 

temperature.206,207

In 2014, Werner demonstrated the first enantioselective catalytic Wittig reaction operating in 

a PIII/PV=O couple, highlighting some challenges in realizing such a method (Fig. 10). In 

this work, a variety of chiral phosphine catalysts are applied for desymmetrization of 

prochiral haloketone 11 to give enantioenriched diketone 12. The most promising result 

utilizes (S,S)-Me-DuPhos (P5), a C2-symmetric bisphospholane,208 with phenylsilane as the 

terminal reductant in dioxane via microwave heating at 150 °C, which gives 39% yield and 

62% ee.209,210

The formation of the phosphorus ylide can also be achieved in the absence of base through 

conjugate addition to activated olefins and proton transfer, as exemplified by Werner and Lin 

(acrylates),211-214 Vouturiez (ynoates),215,216 Kwon (allenes),217 and Lin (enones)218 using 

a selection of catalysts previously described (Fig. 11A). Of particular note is an 

enantioselective variant enabling the synthesis of (trifluoromethyl)cyclobutenes (Fig. 

11B)219 developed by Voituriez in 2018 with Kwon’s bicyclic chiral phosphine oxide 

HypPhos P7•[O].

3.1.2 Catalytic Staudinger Reactions and Aza-Wittig.—In 2012, van Delft and 

Rutjes reported the first catalytic Staudinger reaction with a dibenzophosphole catalyst P10 
and PhSiH3 as reductant (Fig. 12A).220 In contrast to iminophosphorane hydrolysis 

employed in the stoichiometric reaction, the catalytic reaction involves direct reduction of 

the P(V) iminophosphorane with PhSiH3 for the formation of the amine product and 

regeneration of the phosphine catalyst.221 PPh3 (P11) could also be used in place of the 

dibenzophosphole under identical conditions, albeit with significantly prolonged reaction 

times. Mecinović later demonstrated an ambient temperature protocol by employing an 

optimized hydrosilane reductant.222 Catalytically formed iminophosphoranes from PPh3 
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(P11) can also be used for Staudinger amidation reactions (Fig. 12B),223 although the 

precise mechanism of the redox cycle is unclear.224-226

Other applications of iminophosphorane intermediates in the context of PIII/PV=O cycling 

include catalytic aza-Wittig227-230 and diaza-Wittig reactions (Fig. 13A).231 In 2018, Kwon 

demonstrated the first catalytic asymmetric Staudinger-aza-Wittig reaction232,233 with high 

levels of stereoinduction via desymmetrization of diketones using HypPhos catalyst P12 
with the assistance of a Brønsted acid additive (Fig. 13B).234

3.1.3 Catalytic Appel and Mitsunobu Reactions.—Organophosphorus catalyzed 

oxidation-reduction condensation reactions,235,236 such as the Appel and Mitsunobu 

reactions, face challenges of reagent compatibility (between halenium/azo oxidant and 

hydrosilane reductant) and product stability. In 2011, Rutjes and van Delft achieved a PIII/

PV=O catalyzed Appel bromination (Fig. 14A).185 In this transformation, diethyl 

bromomalonate (DEBM) is an ideal bromenium donor, showing good compatibility with 

hydrosilane reductants. Further, the dibenzophosphole catalyst P10 is exclusively reactive 

toward the bromenium source, thus selectively generating the electrophilic 

bromophosponium ion, but unreactive towards the brominated products.237,238 Recently, 

Werner further extended the scope to chlorination of alcohols with benzotrichloride as 

oxidant and trioctylphosphine (P13) as the catalyst (Fig. 14B).239 Catalytic Appel conditions 

with PPh3 (P11) can also be used to drive amide couplings between carboxylic acids and 

amines, as demonstrated by Mecinović in 2014 (Fig. 14C).240 Alternatively, Denton has 

extensively developed redox-neutral PV-mediated dehydrative halogenation reactions using 

Ph3PO as catalyst with oxalyl chloride as dehydrative reagent to enable phosphine oxide/

phosphonium cycling.241-248

Recently, an annulation of amines and carboxylic acids was described via 

organophosphorus-driven recursive dehydration using phosphetane catalyst P4•[O], DEBM, 

and PhSiH3 or Ph2SiH2 (Fig. 15).249 In this tandem catalytic reaction, the catalytically-

generated bromophosphonium first induces amide coupling and then cyclodehydration in a 

second catalytic turnover. To facilitate the coupling of alkyl amines, fully-substituted diethyl 

(methyl)bromomalonate (DEMBM) is required to suppress N-alkylation. These conditions 

enable the coupling of pharmaceuticals, such as ibuprofen, without racemization at adjacent 

stereocenters, as well as the synthesis of dihydroisoquinoline natural products such as 

dihydropapaverine. Interestingly, the use of diethyl chloromalonate as the oxidant, and thus a 

chlorophosphonium intermediate as the dehydrating species, results in only amide bond 

formation.

In 2010, O’Brien again successfully applied precatalyst P1•[O] in a catalytic Mitsunobu-

type reaction (Fig. 16).250 Later, Aldrich disclosed some initial efforts into recycling both 

phosphine oxide and the azocarboxylate reagent, by an iron-phthalocyanine catalyzed 

process in the presence of oxygen.251 However, a detailed study from Taniguchi reported 

difficulty in reproducing both yield and enantiomeric ratio for some examples, as well as 

successful product formation in the absence of hydrazine catalyst. These results indicate this 

reaction might not undergo a true Mitsunobu process, and further study appears to be 

necessary.252,253 Recently, Denton has used creative catalyst design to enable redox-neutral 
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PV-based catalysis operating in a phosphine oxide/phosphonium cycle to achieve a highly 

successful catalytic Mitsunobu reaction.254

3.1.4 Catalytic Reductive O-Atom Transfer.—Owing to the strongly reducing nature 

of trivalent P(III) compounds, phosphines are excellent O-atom acceptors from a variety of 

oxygenated substrates. In 2010, Woerpel described the first PIII/PV=O catalyzed reductive 

O-atom transfer by selective reduction of alkyl silyl peroxides to silyl ether products.255 The 

overall reaction is initiated by concerted insertion of triphenylphosphine into the O─O 

bond. Labeling and crossover studies demonstrate that a concerted elimination/silyl transfer 

step is operative in generating the silyl ether products and a phosphine oxide, which could in 

turn be selectively reduced by a titanium(III) hydride generated in situ.

To expand PIII/PV=O catalyzed O-atom transfer to less-oxidizing oxygenated substrates, the 

catalytic chemistry of a biphilic256 phosphetane catalyst scaffold has been developed. In 

2015, a phosphetane-catalyzed deoxygenative condensation reaction of α-keto esters and 

carboxylic acids via formal carbene insertion into the protic O─H bond of the acid was 

described (Fig. 17).257 The reaction initiates by Kukhtin-Ramirez addition258 of the P(III) 

phosphetane P14 to the keto ester substrate 48. Proton transfer from the benzoic acid 

followed by Arbuzov-like259 displacement of phosphine oxide P14•[O] from intermediate 

P14b results in formation of α-acyloxy ester product 50. The catalytic cycle is closed by 

reduction of phosphetane oxide P14•[O] to P14 by the hydrosilane reductant.

The phosphetane scaffold is also effective for engaging nitro groups in O-atom transfer. 

Building on seminal stoichiometric work by Cadogan,260-263 in 2017 a catalytic synthesis of 

indazoles and benzotriazoles from nitroimine and -azo starting materials, respectively, using 

P4•[O] as precatalyst under comparatively mild conditions was described (Fig. 18).264

In this transformation, DFT models implicate a [3+1] cycloaddition of P(III) species to the 

nitro group as the turnover-limiting step. In accord with empirical observations, the barrier 

to this step with a phosphetane is significantly lower in energy than with an acyclic 

trialkylphosphine. Distortion-interaction analysis265 of the relevant transition structures (Fig. 

19) shows that the differential barrier arises from an enhanced stabilizing interaction energy 

for the phosphetane rather than a diminished distortion penalty.266-269 In effect, the 

contracted endocyclic C-P-C bond angle results in a low-lying LUMO, thus imbuing the 

phosphorus center with increased biphilic character relative to acyclic and larger 

phosphacyclic compounds. For comparison, a similar catalytic Cadogan transformation 

described by Nazaré using a larger-ring phospholene oxide precatalyst requires higher 

catalyst loadings and significantly longer reaction times.270

This approach to catalytic nitro deoxygenation has been similarly applied to C─N bond-

forming reactions for the synthesis of carbazoles and indoles, as shown in Figure 20.271 

Here, oxazaphosphirane intermediate 55 was observed at low temperature as the immediate 

precursor to carbazole formation. DFT calculations suggest an oxazaphosphirane as the 

pivotal intermediate, which thermally dissociates phosphine oxide P4•[O] to reveal a free 

nitrene capable of evolving to the carbazole product via C─H amination.272
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Given that such an oxazaphosphirane intermediate might be targeted to further reaction 

development via heterolytic ring opening with a Lewis acid, introduction of an arylboronic 

acid partner to the PIII/PV=O catalyzed nitro deoxygenation manifold resulted in a new 

reductive C─N cross coupling of nitroarenes and boronic acids (Fig. 21).273 The scope was 

subsequently expanded to allow the reductive coupling of nitromethane with both boronic 

acids and esters, providing an efficient strategy for installation of the MeHN− fragment with 

inexpensive and easy-to-handle nitromethane as the methylamine surrogate.274 By virtue of 

the nonmetal main group-catalyzed conditions for this C─N coupling, useful 

chemoselectivities are observed, establishing the method as a complement to existing 

transition metal-catalyzed techniques. Mechanistic investigations support a pathway 

involving formation of the oxazaphosphirane intermediate P4b, followed by engagement 

with the boronic acid 57 to make betaine P4c, leading to product formation via 1,2-metallate 

shift. This pathway is predicted to outcompete evolution of the oxazaphosphirane to a free 

nitrene 60, accounting for the excellent selectivity for intermolecular cross-coupling.275,276 

The C─N coupling event can be telescoped with subsequent ring closing events to allow for 

the synthesis of N-aryl heterocycles (58) by a cross-coupling/condensation cascade, as 

depicted in Figure 22.277

Phosphetane oxide P4•[O] also efficiently catalyzes deoxygenative processing of sulfonyl 

chlorides (including trifluoromethyl- and heteroarylsulfonyl derivatives) by O-atom transfer 

(Fig. 23).278 This approach has been applied to an electrophilic sulfenylation of indoles via 

fleeting sulfenyl(ium) electrophilic equivalents.

3.1.5 Catalytic Hydride and Hydrogen Transfer.—Phosphetane-based catalysts 

have also been shown to drive regioselective transpositive reduction of allylic bromides 

through the intermediacy of P(V) hydrides (Fig. 24).279 The reaction benefits from the 

colocalized donor and acceptor properties of the phosphetane to achieve the necessary 

changes in both oxidation state and coordination number. Specifically, the reaction starts 

with quaternization of phosphetane P15 by the allylic bromide. In the presence of the 

stoichiometric reductant LiAlH(O-tBu)3, hydride is delivered directly to the phosphorus 

center of allylic phosphonium cation P15a to give a hydridophosphorane P15b that is 

observable by low temperature 31P NMR spectroscopy. VT-NMR kinetics experiments and 

DFT calculations indicate that decomposition of pentacoordinate hydridophosphorane P15b 
to the reduction products occurs regiospecifically via a concerted 5-membered, 6-electron 

transition state (P15c). This pericylic γ-reductive elimination illustrates the unique merger 

of conventional organic and organometallic reactivities in catalytic chemistry of the p-block 

compounds.

In a conceptually complementary hydride transfer reaction, an unusual transfer 

hydrogenation of azobenzene with ammonia borane catalyzed by PIII/PV cycling was 

developed (Fig. 25). In this work, planar compound P16, introduced by Arduengo,280-282 

reacts with H3N•BH3 to give dihydridophosphorane P16a.283 Dihydride P16a in turn serves 

as a reactive hydrogen donor, transferring an H2 equivalent to a variety of electrophilic 

organic acceptors. The combined reactivities of P16 as hydrogen acceptor from ammonia-

borane and P16a as hydrogen donor to an organic substrate permit the use of this 
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phosphorus platform as a catalyst for transfer hydrogenation. Although alternative pathways 

have been suggested via DFT studies,284-286 experimental mechanistic investigations lead to 

the assertion that hydrogen transfer catalysis in this case involves P16⇌P16a cycling. These 

results establish precedent for ‘dihydride’ transfer hydrogenation with a p-block catalyst.

3.2 Organoarsenic Redox Catalysis.

The redox reactivity of organoarsenic compounds is similar, albeit less well developed, when 

compared to organophosphorus congeners, as might be expected by the similar valence 

orbital IEs of P and As (see Fig. 2B). For instance, As(III) molecules similarly undergo 

oxidation to As(V) with mild oxidants,287,288 and arsonium ylides can be generated from 

arsonium salts289,290 or carbene transfer291,292 for use in Wittig-type olefination reactions. 

In contrast, the As(V) oxidation state is less thermodynamically stable than P(V) (see Fig. 

6), such that pentacoordinate arsoranes are known to undergo reductive elimination via 

ligand coupling, 293 and O-atom transfer of R3As=O + PR3 → R3As + O=PR3 is both 

kinetically and thermodynamically accessible.294,295

3.2.1 Catalytic Wittig Reactions.—Taking advantage of the favorable deoxygenation 

of arsine oxides by P(III) reagents, the first report of organoarsenic redox catalysis was 

published in 1989 by Shi and Huang who described a tributylarsine-catalyzed Wittig 

olefination of aldehydes with activated bromoalkanes (Fig. 26).296 Triphenylphosphite, itself 

not competent to drive the direct olefination reaction, serves as a terminal O-atom acceptor 

by deoxygenation of the arsine oxide formed by Wittig olefination. Recently, Imoto and 

Naka have demonstrated the ability of an arsolane to efficiently catalyze similar 

transformations by AsIII/AsV=O cycling with a hydrosilane reductant at 100 °C.297

A second approach to arsine-catalyzed Wittig reactions involves Fe-porphyrin-catalyzed 

carbenoid transfer to generate the requisite arsenic ylide, as demonstrated by Tang (Fig. 27).
298,299 In an initial report from 2007, triphenylarsine (As2) catalyzes the olefination of 

aldehydes with ethyl diazoacetate in the presence of an Fe-porphyrin catalyst, where sodium 

dithionite is the terminal reductant enabling turnover at As. In a follow-up study in 2012, the 

arsine catalyst is immobilized on a polymer support to enable olefination of aldehydes and 

ketones with use of a soluble hydrosilane reductant, PMHS, at 110 °C to enable redox 

cycling of the arsine catalyst. Taken together, these reports demonstrate the utility of 

organoarsenic compounds in the catalytic generation of arsonium ylides for olefination and 

the propensity for reduction of the catalytic arsine oxides intermediates. However, concerns 

about toxicity and stability of the organoarsenic compounds have limited the utility of such 

transformations, especially as new strategies for facile turnover of phosphine oxides have 

emerged (see Sect 3.1.1). It remains to be seen whether there are any transformations unique 

to organoarsenic redox catalysis that would overcome the perceived barriers to use of As in 

synthesis.

3.3 Organoantimony Redox Catalysis.

As compared to both P and As, the chemistry of organoantimony compounds is 

distinguished by the less reducing nature of the Sb(III) oxidation state and more oxidizing 

nature of the Sb(V) oxidation state.300 As such, whereas oxidation of Sb(III) species can be 
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accomplished by reaction with strong oxidants such as bromine, peroxides, o-quinones, and 

iodoso compounds, stibines do not typically undergo quaternization with alkyl halides or 

Michael acceptors.301 Conversely, the lower stability of the Sb(V) compounds results in 

enhanced oxidizing power in relation to the lighter pnictogens, as depicted in Fig. 9. 

Consequently, oxidative transformations of substrates, such as alcohol oxidation, have been 

described using Sb(V) compounds.302 These stoichiometric reactions have been translated to 

a limited set of organoantimony-catalyzed methods.

3.3.1 Catalytic Oxidation Reactions.—Organoantimony redox catalysis is 

characterized by a conspicuous opportunity for further development. At present, only two 

publications have appeared in this area, each of which describes an identical overall 

transformation under slightly modified conditions, depicted in Figure 28. In 1982, Akiba 

translated a stoichiometric triphenylantimony dibromide-mediated oxidation of α-

hydroxyketones to α-diketones into a catalytic protocol, employing as little as 10 mol% of 

the Sb(V) catalyst.303 Upon single turnover, the resultant reducing Ph3Sb (Sb2) can be 

oxidized by the exogenous bromine surrogate 2,3-dibromo-3-phenylpropionate to regenerate 

the oxidizing Sb(V) dibromide (Sb1), turning over the cycle. 20 years later, Kurita described 

a more practical implementation, in which 10 mol% triphenylstibine (Sb2) is used directly 

as catalyst under aerobic oxidation conditions to effect the same transformation in nearly 

quantitative yield.304

In contrast to this mild, efficient reaction with SbPh3, the use of stoichiometric PPh3 or 

BiPh3 both provide no benzil product (81), owing to chemical inertness of the P(V) and 

Bi(III) states, respectively. In fact, this catalytic oxidation represents the microscopic reverse 

of well-established P(III)-mediated 1,2-dicarbonyl reduction by Kukhtin-Ramirez addition.
305-308 Further, reaction employing AsPh3 (As2) under air is sluggish and poorly efficient, 

demonstrating the varied reactivity of congeneric organopnictogens, which are each best 

suited to particular applications. However, this approach to catalytic alcohol oxidation via 

organoantimony catalysis has never been extended beyond these activated α-

hydroxyketones.

3.4. Organobismuth Redox Catalysis.

The redox chemistry of the BiIII/BiV couple is dominated by the manifestation of the inert 

pair effect.98-100,157,158 Owing to the poor spatial and energetic overlap of Bi valence s and 

p orbitals,108-109,115-116 with drastic relativistic effects of the heavy atom nucleus, only very 

strong oxidants can convert a Bi(III) center to Bi(V); accordingly BiCl3 does not yield BiCl5 

upon exposure to chlorine.309 However, Bi(V) species, such as Ph3Bi(OAc)2, are accessible 

through oxidation with peroxides, for example, and have been used extensively as strong 

oxidants, such as in alcohol oxidation, olefin oxidation, and oxidative cleavage of diols.
310,311 Further, the strongly oxidizing nature of Bi(V) centers has resulted in the 

development of ligand coupling reactions utilizing triaryl Bi(V) reagents, e.g. in the 

arylation of phenols.44-46 Recently, these principles have been applied by Ball to 

programmed, stoichiometric o-arylation of phenols by arylboronic acids via the 

intermediacy of triaryl Bi(V) species.312
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The BiI/BiIII couple has been much less studied in the context of organopnictogen chemistry, 

as only recently have discrete redox events in this manifold been explored. Of particular note 

is the seminal work of Dostál, who has demonstrated that Lewis base-stabilized aryl-Bi(III) 

dihydrides undergo facile release of H2 to generate the corresponding aryl-Bi(I) compounds,
313,314 which are then amenable to oxidative addition to deliver Bi(III) species.315-317 

Bismuth(III) alkoxides also undergo Bi─O homolysis in certain cases,318-319 a potentially 

relevant step in the SOHIO ammoxidation process for the synthesis of acrylonitrile from 

propylene.320-322 These rare examples represent the early stages of accessing low-valent 

organobismuth centers to enable redox events and have begun to find application in 

catalysis.

3.4.1 Catalytic Oxidation Reactions.—Much of the pioneering synthetic method 

development using organobismuth molecules can be attributed to Barton and coworkers. 

Indeed, the very first demonstration of any organopnictogen exhibiting redox catalysis was 

reported by Barton and Motherwell in 1981 (Fig. 29),166 in which triphenylbismuth (Bi1) 

catalyzes oxidative cleavage of α-glycols using a stoichiometric oxidant such as tert-butyl 

hydrogen peroxide (TBHP) or N-bromosuccinimide (NBS). This discovery was predicated 

upon the observation that, in the stoichiometric variant using triphenylbismuth carbonate as 

the oxidant, quantitative conversion to triphenylbismuth (Bi1) is observed. As such, simply 

by slow addition of an exogenous oxidant to regenerate a Bi(V) species, catalytic turnover 

can be achieved with catalyst loadings as low as 1%. Similar reactivity of both cis- and 

trans-decalin-9,10-diols suggests an open intermediate enabling the oxidative cleavage, as 

opposed to a cyclic intermediate as has been invoked for Criegee, Malaprade, and related 

oxidations.323 Here, it is relevant to note the difference in reactivity as exhibited in the 

SbPh3-catalyzed oxidation of benzoins as described in section 3.3.1, which is limited to 

more activated substrates.304

Postel and Duñach later described a series of oxidative cleavage reactions catalyzed by 

Bi(III) mandelate, under molecular oxygen in DMSO.324,325 Here, epoxides can be oxidized 

in situ to α-diketones, which are further oxidatively converted to two equivalents of 

carboxylic acid. Related reactions point to a dual Lewis acidic and redox role for Bi(III) in 

these reactions.326-329 Other Bi(III)-catalyzed oxidation reactions, including benzylic and 

allylic hydroxylation with TBHP, have been reported; however, mechanistic evidence is not 

supportive of a Bi-redox cycle.330-332

3.4.2 One-electron redox via open shell intermediates.—The first demonstration 

of radical-mediated organobismuth catalytic reactivity was described by Coles in the context 

of oxidative coupling of TEMPO with phenylsilane with release of H2 (Fig. 30).333 In this 

reaction, the isolable Bi(II) radical catalyst Bi2 can reversibly bond to TEMPO (85) to 

generate metastable Bi(III)-TEMPOxide Bi2a, which is proposed to undergo metathesis 

with a Si─H bond, generating the TEMPO─Si bonded product and Bi(III)-hydride Bi2b. 

This species was previously shown stoichiometrically to undergo oxidative loss of hydrogen, 

thus regenerating Bi(III) catalyst Bi2.318,319 Similar catalytic reactivity was recently 

demonstrated by Lichtenberg using a diaryl(bismuth)thiolate catalyst under UV irradiation.
334
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3.4.2 Catalytic Cross-Coupling.—While Bi(III) and Bi(V) reagents have been used as 

organometallic nucleophiles and electrophiles, respectively, in transition metal-catalyzed 

cross couplings for more than 20 years,335 Bi-catalyzed redox cross-coupling reactions have 

only recently been reported. A transition metal-like cross-coupling reaction catalyzed by two 

electron-processes at a Bi center was described by Cornella in 2020 (Fig. 31).336 In this 

work, tethered Lewis base-supported Bi(III)-bismuthane catalyst Bi3 undergoes 

transmetalation with an aryl boronic ester to generate triarylbismuthane Bi3a. Then, 

oxidation by strongly oxidizing fluoropyridinium reagent 91 yields Bi(V) species Bi3b, 

which is stabilized by the pendant Lewis basic sulfoximine. Finally, reductive elimination 

forges the new C─F bond of product 88 and regenerate Bi(III) species Bi3, turning over the 

cycle. This chemistry takes advantage of a tethered biaryl sulfoximine ligand framework on 

Bi to both stabilize highly oxidizing Bi(V) intermediates with the pendant Lewis base and 

yield selective ligand coupling of the exocyclic aryl ligand with the apical fluoride 

substituent. As described in a follow-up report, perfluoroalkyl sulfonate salts are 

successfully coupled using bis-CF3 bismuthane Bi4 bearing a sulfone tether to provide aryl 

triflate and nonaflate products.337 In this catalytic platform, rational ligand design to 

optimize geometric and electronic properties at the central pnictogen atom serve to unveil 

novel, transition metal-like reactivity.

3.4.3 Catalytic Reductive Deoxygenation.—Cornella has also explored the BiI/BiIII 

couple for catalysis in the context of transfer hydrogenation of azoarenes and nitroarenes 

(Fig. 32).338 Using an NCN-chelated bismuthinidene (Bi5) first described by Dostál,313,314 

an unstable Bi(III)-dihydride (Bi5a) is putatively formed by reaction with ammonia borane, 

in reverse analogy to the loss of H2 from a Bi(III)-dihydride (Bi5a) originally described by 

Dostál. In this catalytic reaction, the putative Bi(III)-dihydride (Bi5a) intermediate delivers 

H2 across either N─N or N─O π-bonds, accomplishing a transfer hydrogenation with good 

functional group tolerance. Mechanistic studies support the intermediacy of the Bi(III)-

dihydride (Bi5a), as its protonated cation (Bi5b) can be detected by HRMS in both 

stoichiometric and catalytic reactions. Here, the BiI/BiIII cycle is exploited to first receive an 

equivalent of H2 from ammonia borane and then deliver it to an activated π substrate, 

similarly to earlier work carried out in the PIII/PV couple.283 This reaction is the first 

demonstration of organopnictogen catalysis operating in the PnI/PnIII couple, thus paving the 

way for low-valent organopnictogen chemistry in catalysis.

Cornella further demonstrated the catalytic utility of the BiI/BiIII couple of bismuthinidenes 

such as Bi5-Bi7 for the reductive deoxygenation of N2O, through a distinct mechanistic 

pathway (Fig. 33).339 In this study, rapid deoxygenation of N2O by Bi5 liberates N2 and 

produces a dimeric [Bi2O2] species as detected by ESI-HRMS. Through careful tuning of 

the pendant imine ligands, aldimine-supported Bi6 and ketimine-supported Bi7 yield 

dimeric [Bi2O2] and monomeric [Bi─OH] scaffolds, respectively, upon exposure to N2O, 

with the structures unambiguously identified by single crystal X-ray crystallography. These 

results seemingly indicate an unstable, basic BiIII-oxide intermediate derived from O-atom 

transfer from N2O. Both aforementioned oxide-derived adducts yield parent compounds Bi6 
and Bi7, along with HOBpin and O(Bpin)2, upon exposure to HBpin at ambient 

temperature. Accordingly, catalytic reduction of N2O is feasible using Bi5, Bi6, and Bi7, 
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with Bi5 delivering the most rapid and efficient conversion, even at catalyst loadings as low 

as 0.1 mol%. This demonstration of BiI/BiIII catalysis combines the reducing nature of the 

Bi(I) state with a facile reduction of a Bi(III) oxide equivalent to enable redox cycling at 

ambient temperature, evocative of the body of work in PIII/PV=O redox catalysis.

4. Outlook

The quickening pace of progress in organopnictogen redox catalysis within the past fifteen 

years assures the continued vibrancy of this exciting area of research in the years to come. 

Looking ahead, we anticipate significant opportunities for ongoing discovery across a broad 

scientific front, including:

• Designing Catalysts with Improved Redox Leveling. A greater mastery over 

precision redox tuning will be needed to enable catalysis with greater speed 

(turnover frequency) and greater durability (turnover number). An appreciation 

for the connection between catalyst composition/structure and redox driving 

force of elementary reaction steps will be a necessary initial step in this quest, 

but a further attentiveness to round-trip thermodynamics will also be needed for 

catalysis. Detailed mechanistic and thermochemical studies that identify kinetic 

bottlenecks and parasitic branching points will be essential to inform new 

catalyst designs that enable faster turnover at milder conditions with lower 

catalyst loading. In the limit, such a high level of redox mastery would enable the 

reversible use of a given Pnn/Pnn+2 couple specified only by the reaction 

thermodynamics of the stoichiometric inputs.

• Taming Underexplored Two-Electron Redox Couples for Catalysis. Although 

periodic trends shape the innate driving forces for two-electron redox events at 

pnictogens (Sect. 2), novel design of organopnictogen compounds might open 

space for catalytic cycles operating within ‘atypical’ redox couples. As 

exemplified in Sect. 3, the PnIII/PnV couple has been widely employed in 

catalysis; by contrast, the lower-valent PnI/PnIII couple is still comparatively 

underdeveloped. Seminal work on the chemistry of Pn(I) centers have 

demonstrated their ability to achieve challenging bond activation reactions.340,341 

Although the generation of low-valent Pn(I) species under mild conditions poses 

the most immediate barrier to expansion of organopnictogen redox catalysis to 

the PnI/PnIII couple, pioneering work from Cornella in BiI/BiIII catalysis 338,339 

establishes feasibility and points to further opportunities. By expanding the 

accessibility of diverse redox states—presumably through ligand design and 

substituent effects—new channels of reactivity might be made available.

• Controlling Stereochemistry in Organopnictogen Redox Catalysis. The 

pioneering achievements of Werner,209,210 Voituriez,219 and Kwon234 (Sect. 3.1) 

establish the viability of stereochemical control within organopnictogen redox 

catalysis; however, new chiral organopnictogen catalysts will be needed to 

advance beyond these initial discoveries. For instance, it remains to be seen 

whether deliberate incorporation of ‘secondary sphere’ interactions can be 

leveraged to effect stereochemical discrimination.33,342-346 The opportunities 

Lipshultz et al. Page 16

J Am Chem Soc. Author manuscript; available in PMC 2022 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and/or complexities associated with stereogenic pnictogen chirality centers and 

their stereochemical fluxionality—especially in pentacoordination (i.e. polytopal 

isomerism)141,142—have not yet been explored in a systematic fashion. Indeed, 

given challenges presented by the varying coordination numbers, geometries and 

valence electron counts encountered in organopnictogen redox catalysis, the 

emergence of new heuristics of asymmetric design may be needed.

• Merging Organopnictogen Redox with Established Catalytic Modes. The merger 

of organopnictogen redox catalysis with other enabling modes of catalysis 

(organocatalysis, transition metal catalysis, Bronsted acid/base catalysis, inter 
alia) could lead to the development of further powerful classes of reactions. Such 

catalytic cycles could be envisioned to work in tandem, cascade,347-351 or 

synergistic modes,352 owing to the mutual compatibility of each catalytic mode 

of molecular transformation. Such mergers could make use of the distinct 

reactivities inherent to the aforementioned platforms and create opportunities for 

unveiling novel transformations.

• Embracing One-electron Open-shell Reactivity. Stable covalent bonds are 

(mostly) two-electron constructs, but their catalytic synthesis by stepwise one-

electron processes presents potentially enabling reaction channels.353-359 Open-

shell reactivity within organopnictogen catalysis is therefore ripe for 

development. Organopnictogen radicals and radical ions are well-known entities,
360,361 whose reactivity can be triggered by photochemistry362-367 or 

electrochemistry.368,369 Among possible scenarios, single-electron oxidation or 

reduction of catalytic intermediates370-377 could unveil new reaction pathways, 

including selective bond activation or challenging atom transfer processes.378-382 

Alternatively, single-electron pathways could be accessed to facilitate otherwise 

sluggish catalytic turnover, such as electrocatalytic reduction of phosphine 

oxides.383-386

• Beyond Homogenous Organic Reaction Media. The development of catalytic 

systems that can operate in nonorganic media will be a necessity to realize a 

broader potential of group 15 redox catalysis in contexts beyond organic 

synthesis. Noting the prevalence of organopnictogen redox chemistry in chemical 

biology in the form of the Staudinger ligation,34-39 the development of water-

compatible reaction systems presents an appealing challenge to the growth of the 

field of organopnictogen redox catalysis.387 Indeed, recent work utilizing P(V) 

chemistry to selectively label serine residues388 and Bi(V) chemistry to arylate 

phenols312 point to the potential of Pn(V) to enable selective bond-forming 

reactions. Alternatively, an adaptation of the design principles for homogeneous 

group 15 redox catalysis to heterogeneous catalyst development similarly 

presents untold prospects for discovery.

5. Concluding Remarks

To close, we return to the question posed at the end of the Abstract: “What new catalytic 

manifolds can be developed through creative catalyst and reaction design that take advantage 
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of the intrinsic redox reactivity of the pnictogens to drive new discoveries in catalysis?”389 

This is a critical question, and though a detailed answer may not be knowable except in 

hindsight, the contours of a reply surely can be traced in outline. Organopnictogen redox 

catalysis is a relatively young entrant to the science of catalysis presently populated by 

numerous highly successful catalytic modalities, each a towering achievement. Within this 

crowded context, organopnictogen redox catalysis must aspire to more than mimicry of 

existing techniques; it must express something authentic and inimitable. On this front, it 

seems likely that the most compelling opportunities presented by this emerging field—those 

that will maximize scientific and practical impact—will be realized through the discovery of 

new bond (dis)connections or functional group interconversions that are truly native to 

organopnictogen redox catalysis. We assert that the periodic trends—both within Group 15, 

and between Group 15 and others in the p-block—impart the pnictogens generally, and each 

of the pnictogen elements individually, with distinctive properties, providing a varied palette 

of components for catalyst design and reaction development. The diversity of characteristics 

in Group 15 position organopnictogen redox catalysis to achieve unique reaction classes that 

are without direct precedent or complement in the armory of catalytic synthesis. Along this 

trajectory, the progress achieved thus far in organopnictogen redox catalysis is but a 

tantalizing preamble to a future of ongoing discovery.
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Figure 1. 
(A) Atomic orbital radial probability function of Group 15 elements. (B) Valence atomic 

orbital 1-electron ionization energies of Group 15 elements.
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Figure 2. 
(top) Solid-state structures for Ph3Pn (Pn = P, As, Sb, Bi) viewed orthonormal to one of the 

equivalent Cα-Pn-Cα’ planes. Periodic variation in bond angles and pyramidalization are 

thereby best visualized. (bottom) Tabulated structural data for Ph3Pn, and computed 

inversion barriers of PnH3.
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Figure 3. 
Qualitative correlation diagram for frontier orbitals in C3v symmetry (center) upon descent 

to Cs symmetry (left and right). Orbital projections are viewed down the σ plane.
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Figure 4. 
Solid-state structures and structural data of Ph5Pn.
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Figure 5. 
Gas-phase Pn–Al distances and dissociation enthalpies (De) of Lewis adducts H3Al–PniPr3 

and tBu3Al–PniPr3.
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Figure 6. 
Frost oxidation state diagram for heavier pnictogens under acidic conditions.
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Figure 7. 
Gas-phase energies (kcal/mol) for the reactions PnF5→PnF3 + F2 and PnH5→PnH3 + H2.
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Figure 8. 
Phospholane-catalyzed Wittig reaction with (A) stabilized ylides and mechanism, (B) 

stabilized ylides at ambient temperature through inclusion of Brønsted acid additive, and (C) 

unstabilized ylides through development of electron-deficient phospholane catalyst.
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Figure 9. 
Phosphetane-catalyzed Wittig reaction with stabilized ylides at ambient temperature.
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Figure 10. 
Chiral phospholane-catalyzed asymmetric Wittig cyclization.
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Figure 11. 
A) Catalytic Wittig reactions from unsaturated ylide precursors. B) Asymmetric 

organophosphorus-catalyzed (trifluoromethyl)cyclobutene formation via a conjugate 

addition/Wittig olefination reaction.
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Figure 12. 
A) Dibenzophosphole-catalyzed Staudinger reduction. B) PPh3-catalyzed Staudinger 

ligation.
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Figure 13. 
A) Catalytic aza-Wittig reactions using benzo[b]phosphindole. B) Catalytic enantioselective 

aza-Wittig synthesis of chiral heterocycles catalyzed by HypPhos. Bz = benzoyl; Cy = 

cyclohexyl; Ts = tosyl.
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Figure 14. 
Organophosphorus-catalyzed Appel A) bromination, B) chlorination, and C) amidation. Bn 

= benzyl.
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Figure 15. 
Phosphetane-catalyzed tandem annulation of amines and carboxylic acids by sequential C–N 

and C–C bond formation. p-tol = para-tolyl; iBu = iso-butyl.
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Figure 16. 
Phospholane-catalyzed Mitsunobu-type reaction.
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Figure 17. 
PIII/PV=O catalyzed deoxygenative condensation of α-keto esters with carboxylic acids.
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Figure 18. 
Biphilic phosphetane-catalyzed N–N bond-forming Cadogan heterocyclization via PIII/

PV=O redox cycling.
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Figure 19. 
Transition structures and distortion/interaction analyses for (3+1) transition states (M06-2X/

6-311++g(d,p)): (A) phosphetane TS and (B) Me3P TS. Phosphine distortion energy (ΔEdP
‡) 

in green, nitromethane distortion energy (ΔEdN
‡) in blue, fragment interaction energy (ΔEi

‡) 

in red, activation energy (ΔE‡) in black. All energies in kcal/mol without zero-point 

correction.
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Figure 20. 
Biphilic organophosphorus-catalyzed intramolecular Csp

2-H amination and identification of 

oxazaphosphirane intermediate.
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Figure 21. 
PIII/PV=O catalyzed intermolecular reductive C–N cross coupling of nitroarenes and boronic 

acids. Boc = tert-butyloxycarbonyl.
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Figure 22. 
PIII/PV=O-catalyzed cascade synthesis of N-functionalized azaheterocycles.
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Figure 23. 
Phosphetane-catalyzed (fluoroalkyl)sulfenylation via deoxygenation of sulfonyl chlorides. 

Pin = pinacol.
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Figure 24. 
Organophosphorus-catalyzed regioselective reductive transposition of allylic bromides.
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Figure 25. 
PIII/PV-catalyzed transfer hydrogenation of azobenzene.
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Figure 26. 
Organoarsine-catalyzed Wittig reaction employing triphenylphosphite as stoichiometric O-

atom acceptor.
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Figure 27. 
Organoarsine-catalyzed Wittig-type olefination of aldehydes with diazo compounds, with 

Fe-porphyrin co-catalyst to facilitate carbene transfer. TCP = tetra(para-

chlorophenyl)porphyrinate.
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Figure 28. 
Benzoin oxidation via organoantimony redox catalysis.
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Figure 29. 
BiPh3-catalyzed α-glycol cleavage via Bi(V) oxidation. NBS = N-bromosuccinimide.
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Figure 30. 
BiII/BiIII-catalyzed dehydrogenative O–Si bond formation. Dipp = 2,6-di-iso-propylphenyl.
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Figure 31. 
Bi-catalyzed fluorination and triflation of aryl boronic esters and acids, respectively. 

Proposed mechanism of fluorination. Tf = triflyl.
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Figure 32. 
Bismuthinidene-catalyzed transfer hydrogenation of azoarenes and nitroarenes to hydrazines 

and hydroxylamines, respectively, with ammonia borane.
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Figure 33. 
Bismuthinidene-catalyzed reductive deoxygenation of N2O via the intermediacy of Bi(III)-

oxide equivalents with pinacolborane. m-Tp = meta-terphenyl.
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