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A B S T R A C T   

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is responsible for the 
current pandemic, coronavirus disease 2019 (COVID-19). While all people are susceptible to the SARS-CoV-2 
infection, the nature and severity of the disease vary significantly among individuals and populations. Impor-
tantly, reported disease burdens and case fatality rates differ considerably from country to country. There are, 
however, still uncertainties about the severity of the disease among individuals or the reason behind a more 
severe disease in some cases. There is a strong possibility that the severity of this disease depends on a 
complicated interaction between the host, virus, and environment, which leads to different clinical outcomes. 
The objective of this article is to point out the essential influential factors related to the host, virus, and envi-
ronment affecting the clinical outcome of COVID-19.   

1. Introduction 

Today, the world is fighting against a devastating pandemic caused 
by the novel coronavirus, severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2). The virus causes a complicated respiratory disease, 
now called coronavirus disease 2019 (COVID-19). As of today, (Jan 25, 
2021), there are 99.1 million of confirmed cases and over 2.13 million 
reported deaths due to COVID-19, worldwide. The majority of infected 
cases present asymptomatic or mild symptoms, while the minority of 
cases shows severe or critical outcome and some, unfortunately, die [1, 
2]. Although older patients with underlying diseases seem to be more 
susceptible to severe illness and death [3], several cases of 
life-threatening infection occur among healthy individuals with no 
health-related concerns [4]. Therefore, there are some crucial yet 
unanswered questions such as, why does disease severity vary among 
individuals? and why do some individuals get a more severe disease? 
Indeed, there is a missing, probably multiple, behind this discrepancy. 

There are many factors related to the host, virus, and environment 
that may address the complexity of COVID-19 clinical phenotype [5,6]. 
The exact influence of host factors, specifically, genetic makeup, has 
remained mostly unknown. There is, on the other hand, a little data 
available about the pathogenesis of SARS-CoV-2 and there are only some 

initial assumptions about the virus behavior [2]. The significant role of 
environmental factors is also in its infancy. We are just beginning to 
uncover how host, viral, and environmental factors interact with each 
other and affect the infection. In this article, we discuss essential factors 
affecting the susceptibility and disease severity of SARS-CoV-2 infection. 
Understanding the underlying mechanisms behind the complicated 
disease phenotype is of the highest importance today and will be 
essential in identifying high-risk groups. Although there is little data 
available about SARS-CoV-2, our experience and knowledge from 
similar viruses can bring insightful information to the scientific 
community. 

2. Host factors 

Since a strong protective immune response is essential to eliminate 
the virus before its progression to more severe stages, the host’s good 
general health state is undoubtedly critical. As such, people of any age, 
especially older adults with comorbidities such as chronic bronchitis 
[7], diabetes [8], hypertension [9], cardiovascular disease [10], lung 
and liver diseases [11], chronic kidney disease [12], and chronic 
obstructive pulmonary disease (COPD) [13] may experience a more 
severe disease. Moreover, conditions and treatments that compromise 
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the immune system, such as cancer treatment, bone marrow or organ 
transplantation, and prolonged use of corticosteroids, may also 
contribute to a higher risk of the disease, more severe outcomes, and 
even death [14]. Although epidemiological findings in some studies did 
not provide any evidence to more spread of SARS-CoV-2 among patients 
with asthma [14,15], it seems that patients with non-allergic asthma 
suffer from a more severe COVID-19 than patients with allergic asthma 
[16]. Importantly, metabolic syndrome is a cluster of conditions 
including abdominal obesity, elevated blood pressure, dysglycemia, 
atherogenic dyslipidemia, pro-thrombotic state, and proinflammatory 
state, which could affect the outcome of any disease. In this case, the 
worsened outcome of the disease may be due to the three components of 
this syndrome: hypertension, type 2 diabetes mellitus, and obesity that 
are mentioned as risk factors in the severity of COVID-19 [17]. Beside 
these well-known risk factors, there are other host-related conditions 
that may affect the outcome of COVID-19. 

2.1. Lifestyle 

It is believed that people’s lifestyles significantly influence the dis-
ease course and its outcome [18,19]. Harmful health behaviors such as 
sedentary behavior with reduced physical activity, overeating, elevated 
alcohol and tobacco consumption, and increased screen time causing 
impaired sleep are associated with non-communicable diseases and can 
interfere with immunity system behavior [20]. It is reported that the 
higher physical fitness, better health, lower inflammation, better redox 
balance, and longer leukocyte telomere length in master athletes can 
help them to face COVID-19 with a stronger health state comparing to 
their frail sedentary age-matched peers [21]. Severe obesity puts people 
at a higher risk for complications from COVID-19 by increasing the risk 
of acute respiratory distress syndrome (ARDS) [22]. Moreover, obesity 
makes people prone to multiple chronic diseases and underlying health 
conditions that can potentially increase the risk of severe disease [23]. It 
is essential to have regular and moderate exercise during the pandemic 
to prevent the health risks associated with physical inactivity, increase 
wellbeing and immunity, and reduce stress and anxiety [18,24]. 

2.2. Smoking 

To date, smoking has been associated with several respiratory dis-
eases and poor prognosis [25]. Tobacco smoking increases the suscep-
tibility to infections by altering the host’s mechanical and 
immunological defense [26]. Structural changes in the respiratory tract, 
including increased mucosal permeability and disruption of the respi-
ratory epithelium, almost contribute to the development of respiratory 
tract infections and further complications [27]. For the COVID-19, many 
studies suggested an association between smoking with negative pro-
gression and adverse outcomes of the disease [28–30]. Smokers, espe-
cially former smokers, have a significantly higher 
angiotensin-converting enzyme 2 (ACE2) and transmembrane serine 
protease 2 (TMPRSS2) expression [31,32]. On the contrary, data from 
recent studies suggest that active smokers are underrepresented among 
patients with COVID-19 [33,34]. The protective role of smoking in 
COVID-19 is suggested due to some plausible mechanisms such as an 
anti-inflammatory effect of nicotine, a blunted immune response in 
smokers (reducing the risk of a cytokine storm in COVID-19), and 
increased nitric oxide in the respiratory tract (which may inhibit repli-
cation of SARS-CoV-2 and its entry into cells) [35]. However, it is sug-
gested that the reported data are questionable with several biases and 
knowledge gaps, which necessitate further investigations on this matter 
[35]. 

2.3. Gender 

The risk of a severe disease seems to be higher in male patients than 
in female patients, possibly because of genetic, hormonal, and 

immunological differences between the two genders [31,36,37]. In a 
recent study, men had more than 50% risk of getting severe COVID-19 
infection and ICU admission than women [38]. The impact of sex ste-
roid hormones on the T-helper 1/T-helper 2 cytokine balance is asso-
ciated with the severity of most infectious diseases in males [39]. Also, 
males are at a higher risk of diseases caused by deleterious X-linked 
alleles. Interestingly, the expression level of ACE2, as an X chromosome 
encoded gene product, is found to be more in males than females [40, 
41]. Although the role of this relation in the disease severity has not yet 
been explicitly proven in COVID-19 patients, the higher expression of 
the ACE2 in males may be attributable to the elevated mortality rate in 
this group [42,43]. However, pregnant women are more sensitive to 
infections, especially viral infections, due to many biological and me-
chanical alterations during pregnancy [44]. As the T-helper 2 system is 
much more dominant in pregnant women for the fetus’s protection, it 
makes the mother more susceptible to viruses because of the critical role 
of the T-helper 1 response in viral infections [45]. 

2.4. Age 

All people of any age are affected by the SARS-CoV-2 infection. Be-
side All above-mentioned risk factors, the over-activation of NLR Family 
Pyrin Domain Containing 3 (NLRP3) inflammasome, by increasing 
hyperinflammatory cascade, in aged individuals seems to play an 
essential role in the higher lethality in this group [46]. Preliminary 
evidence suggests that children suffer from less severe COVID-19, which 
could be because of their lower intensity of viral exposure and lower 
expression of ACE2 and TMPRSS2 receptors in their upper and lower 
airways [32,47]. A still-developing immune system with relatively lower 
levels of inflammation-driving cytokines, absence of high-risk factors, 
and more pulmonary stem cells that are capable of repairing the 
damaged cells, could be other possible reasons for this observation [2, 
48]. Besides, COVID-19 might be milder in children due to the 
cross-immunity generated from seasonal coronaviruses [49], and their 
exposure to different vaccines throughout their lives [50]. 

2.5. Vaccination 

There is substantial epidemiological evidence indicating that peo-
ple’s vaccination background could influence the COVID-19 outcome 
[51]. In this context, the Bacillus Calmette-Guérin (BCG) vaccine may 
significantly diminish the severity of the COVID-19 or even prevent the 
disease [52]. It is demonstrated that in countries and regions with na-
tional BCG vaccination programs, the number of involved people, and 
the pattern of death due to COVID 19 were relatively low [53]. Two 
mechanisms have been considered to explain this non-specific effect: 
trained immunity and heterologous immunity [52]. The “trained im-
munity” of such vaccines refers to the vaccine-induced histone modifi-
cations and epigenetic reprogramming at the promoter sites of genes 
encoding inflammatory cytokines and invigorating innate antimicrobial 
mechanisms [54]. The process results in an inhibited viral replication 
and a decrease in viral load and symptoms [53,55]. In heterologous 
immunity, cross-reactivity of the host immune response elicited by the 
vaccine antigens improved response against non-mycobacterial patho-
gens. However, further protection by BCG vaccination against viruses 
has been demonstrated in studies using animal models and it cannot be 
necessarily concluded that such effects can be observed in human [52]. 
Moreover, some studies provide some evidence suggesting that ecolog-
ical studies about less COVID-19 in countries with routine BCG immu-
nization are based on population rather than individual data, so that it 
can be confounding [56]. As another live attenuated vaccine, the 
Measles-Mumps-Rubella (MMR) can help prevent worsen outcomes of 
COVID-19 because of its capability to induce “trained” non-specific 
innate immune cells like the BCG vaccine [57]. The common features 
between MMR viruses and SARS-CoV-2 such as transmission and their 
primary replication in the upper respiratory tract and cross-protective 
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innate immunity offered by MMR vaccines, led to reconsidering MMR 
vaccination for immuno-prophylaxis against COVID-19 [58]. The ability 
of past vaccinations to generate immunity against non-self antigens 
provides a preferred condition for the immune system to increase the 
specific immunity against SARS-CoV-2 infection [35]. 

2.6. Genetics 

Many of the severe COVID-19 cases do not demonstrate any of the 
above-mentioned host-related risk factors [59,60]. A recent modeling 
study indicates that 50% of the variance of the ‘predicted COVID-19’ 
phenotype is due to genetic factors [61]. Differences in genetic makeup 
can affect each individual’s response to infection, leading to the wide 
variance in the infection outcome. As an example, the variable expres-
sion pattern and genetic variations of ACE2 receptor among different 
individuals might be associated with the severity of COVID-19 [40,62]. 
The ACE2, as a functional receptor for SARS-CoV-2, has a dual role 
during SARS-CoV-2 pathogenesis; its increased expression level can be a 
risk factor for the development of COVID-19 infection, and its reduced 
expression during COVID-19 leads to ARDS [63]. There is a decline of 
ACE2 expression from Europeans to Asians, suggesting a relationship 
between the decreased numbers of this genotype and the higher number 
of deceased cases in European countries such as Italy [64,65]. Also, ACE 
I/D allele frequency is entirely different in the ratio worldwide among 
different regions. Interestingly, a study reported a correlation between 
the increased I/D allele frequency and the recovery rate [65]. However, 
the frequency of the D allele in Africa, Europe, America, and Arab re-
gions is more than in East Asia. Thus, a high frequency of the D allele 
may be related to the disease severity [65]. 

Interestingly, recent data from China declared that individuals with 
blood group A are at a higher risk of getting COVID-19, compared to 
those with blood type O [66]. However, there were some limitations to 
this study; the selected population for the investigation was fairly small, 
pre-existing medical conditions that can be effective on the severity of 
COVID-19 was not considered, and the control population groups lacked 
information such as age and sex [66]. It is also demonstrated that in-
dividuals with O blood group seem to have lower levels of ACE and 
higher ACE2 activity, which makes them less likely to develop severe 
COVID-19 [67]. Furthermore, in a study, rare putative loss-of-function 
variants of X-chromosomal Toll-like receptor 7 (TLR7) possibly associ-
ated with impaired type I and II interferon (IFN) responses were re-
ported in young male patients with severe COVID-19 [68]. Besides, a 
cohort study on young COVID-19 patients suggested that a defective 
A91V perforin variant could be responsible for severe outcomes of the 
disease. In this case, as the variant may have an association with the 
decreased effectiveness of CD8 and NK cells, the ineffective SARS-CoV-2 
clearance favoring the progress to a severe COVID-19 [69]. Finding a 
relationship between host differences and the clinical consequence of 
SARS-CoV-2 infection may be necessary to identify high-risk individuals. 

3. Viral factors 

SARS-CoV-2, as a coronavirus, has a single strand, positive-sense 
RNA genome with 29.8–29.9 kilo-bases length [70]. Generally, the 
virus is replicating similar to other coronaviruses and mutating at a rate 
as expected for other RNA viruses; the estimated average evolutionary 
rate for SARS-CoV-2 is 1.20 × 10− 3 nucleotide substitutions per site per 
year, with mutations arising during every replication cycle [71]. The 
result of virus replication is the production of different mutants, and 
natural selection is decisive about which one will be predominant. 
Notably, a study has recently claimed that there are two types (S and L) 
of the virus, where L type is suggested to be more aggressive and spread 
more quickly [72]. Another study also mentioned three central variants 
named A, B, and C, of which A is the ancestral type according to the bat 
outgroup coronavirus [73]. However, there is a little data on whether 
the severity of COVID-19 is dependent on viral determinants such as 

genetic variation, viral load, and coinfection. 

3.1. Genetic variation 

The reported sequences from different countries showed high ho-
mology, with greater than 99% nucleotide and amino acid sequence 
identity [74]. To date, many mutations reported; however, none of them 
are associated with a significant change in virus behavior or virulence, 
and the information continues to emerge [72,75,76]. It has been re-
ported that the D614G mutation increased in frequency and distribution 
worldwide and became the globally dominant form of SARS-CoV-2 [77]. 
The G614 mutant is found to be associated with higher levels of viral 
nucleic acid in the upper respiratory tract in human patients, suggesting 
higher viral loads and higher infectivity [72,77]. Later, another variant, 
which was possibly transmitted to humans from farmed minks, was 
identified in Denmark, provoking concerns about reducing virus 
neutralization in humans. However, the studies are ongoing, and to date, 
following many investigations and surveillance, this new variant does 
not appear to spread widely [76,78]. Surprisingly, emersion of a new 
variant in the United Kingdom called SARS-CoV-2 VOC 202012/01, as 
the variant of concern, was reported on December 2020. This variant 
contains 23 nucleotide substitutions and is not phylogenetically related 
to the common circulating SARS-CoV-2 virus in the United Kingdom 
when the variant was detected. Further investigations suggested that 
SARS-CoV-2 VOC 202012/01 has increased transmissibility with no 
disease severity change [76,79]. Moreover, 501Y⋅V2 is a new variant 
that is detected most recently in South Africa. In this case, genomic data 
highlighted that this variant rapidly displaced other lineages in South 
Africa. Also, preliminary studies suggested that the 501Y⋅V2 variant is 
associated with a higher viral load and, consequently, maybe with 
higher transmissibility. However, there is no clear evidence of any 
changes in the disease severity at this stage due to this new variant [76, 
80]. The potential risk of changing the virus virulence during the 
pandemic is vital and needs further investigation. 

3.2. Viral load 

Some studies supported the notion that being infected with a higher 
load of SARS-CoV-2 and having a higher load of the virus during 
infection is associated with more severe illness and even death [81–83]. 
The SARS-CoV-2 viral load (RNAaemia) is associated with cytokine 
storm, perhaps useful to predict the poor prognosis of COVID-19 patients 
[81]. Hence, higher viral load may result in more organ damage and 
disability in critically ill patients due to the stimulated cytokine storm 
and proinflammatory and inflammatory cytokines [81,84]. Moreover, 
patients with severe COVID-19 tend to have a high viral load and a long 
virus-shedding period [82]. High virus load promotes a robust immune 
response, which could contribute to a more severe clinical disease 
phenotype caused by cytokine storm [85]. While the viral load is 
necessary to trigger the illness, although variable in individual cases, the 
clinical course and severity depend on the magnitude of the airways’ 
immune and inflammatory response. 

3.3. Coinfections 

The respiratory environment is not sterile, and coinfection with other 
viruses and bacteria may impact the pathogenesis and severity of SARS- 
CoV-2 infection, perhaps by interacting with the virus and altering the 
immune system [86]. For instance, SARS-CoV-2 and influenza A virus’s 
coinfection have been reported, requiring more evaluation [87]. 
Another study reported that the most common coinfections detected in 
specimens from multiple sites in northern California were rhinovir-
us/enterovirus, respiratory syncytial virus, and non-SARS-CoV-2 Coro-
naviridae, respectively [88]. Coinfection among respiratory viruses is 
common in hospitalized patients, but it is unclear whether it contributes 
to more severe disease or not and requires more investigations [89]. 

S. Samadizadeh et al.                                                                                                                                                                                                                          



Respiratory Medicine 180 (2021) 106356

4

Additionally, the impact of the commensal microbiome on the severity 
of the disease needs to be more scrutinized [90]. Notably, the microbial 
metabolic processes in the gut influence the production of cytokines. As 
there is a pivotal role of the immune system, especially cytokines in 
SARS-CoV-2 pathogenesis, the microbiome interactions with 
SARS-CoV-2 could be relevant to the microbiomes’ impacts on cytokines 
[90]. 

It is speculated that prior exposure to other coronaviruses could 
confer partial immunity to SARS-CoV-2 [91]. Indeed, several studies 
suggest a significant amount of cross-reactivity and antibody production 
among different coronavirus infections. In this case, common cold 
coronaviruses (CCCs) have been suggested as the origin of SARS-CoV-2 
specific T and B cells in unexposed individuals [92]. Therefore, the ac-
quired immunity is expected to act preventively against more severe 
disease. However, although there is no direct evidence to support, the 
possibility of detrimental pre-existing immunity due to mechanisms 
such as original antigenic sin, which results in the propensity to elicit 
potentially inferior immune responses, and antibody-mediated disease 
enhancement should not be undermined [92,93]. 

4. Environmental factors 

Among factors that directly affect the disease susceptibility and 
severity, the effect of environmental factors is also remarkable. How-
ever, it is still unclear whether environmental factors such as climate, air 
pollution, dietary, socio-economics, and culture are related to a more 
complicated disease phenotype. Environmental factors are very 
complicated, and it is hard to speculate how these factors affect the 
COVID-19 outcome. 

4.1. Climate 

Climate factors such as temperature and humidity may be necessary 
for endemic infections. Based on previous studies, droplet-mediated 
viral diseases like influenza are hypothesized to survive and spread 
more easily in cold and dry environments [94,95]. However, the role of 
temperature and humidity in the transmission of SARS-CoV-2 currently 
is not conclusive [96,97]. Reports from several studies indicate that 
temperature, humidity, and wind speed are inversely associated with the 
incidence rate of COVID-19 and deaths, which is consistent with influ-
enza and SARS-CoV [72,95,97–100]. On the other hand, a positive 
correlation between precipitation and SARS-CoV-2 infections is also 
reported [101]. Rationally, changes in weather alone will not neces-
sarily lead to declines in case counts without the implementation of 
extensive public health interventions. 

4.2. Air pollution 

Air pollution is another environment-related health threat to people 
who are more endangered by respiratory diseases. Results from a study 
suggest that long-term exposure to air pollution increases susceptibility 
to the severe outcomes of COVID-19 [102]. Patients in areas with higher 
air pollution levels before the pandemic are at greater risk than patients 
who are exposed to a cleaner air, comparatively [102]. As pollution 
impairs the first line of defense of upper airways, namely cilia [103], 
patients living in an area with high levels of pollutants are more prone to 
develop chronic respiratory conditions and are more vulnerable to any 
infections. Extended exposure to air pollution leads to a chronic in-
flammatory stimulus, even in young and healthy subjects [104]. More-
over, it is suggested that SARS-CoV-2 can survive longer when attached 
to a pollutant [105], and ACE2 expression increases due to exposure to 
air pollution [106]. 

4.3. Dietary 

Diet might also be another independent risk factor in the 

development of severe infection. It is crucial to consume healthy, fresh, 
and nutritive foods and avoid diets including saturated fats, sugars, and 
refined carbohydrates, contributing to obesity and type 2 diabetes 
[107]. Although these products are not proven to be precisely con-
cerning COVID-19, consumption of the above-mentioned products leads 
to chronic inflammation and impairs host defense against viruses due to 
the activation of the innate immune system and the impairment of 
adaptive immunity [108]. On the other hand, the routine dietary habits 
of people in some countries may lead to potent antioxidant or anti ACE 
activity. For example, eating uncooked or fermented cabbage by people 
living in low-death rate European countries, Korea and Taiwan, might 
be considered as a reason for the low prevalence of deaths by COVID-19 
[109]. Adequate nutrient compounds such as vitamins and minerals are 
essential for the body to invigorate the immune system and avoid un-
desirable outcomes of infections [110]. 

Vitamin D deficiency is a general health issue in many regions. Its 
deficiency links to the development and progression of several comor-
bidities and susceptibility to infectious diseases. Vitamin D plays a vital 
role in modulating innate and adaptive immune responses [111,112]. It 
is reported that vitamin D insufficiency is highly prevalent in severe 
COVID-19 patients [96]. There is also a relationship between vitamin D 
consumption and reduced risk of COVID-19 and influenza infection 
[113]. Importantly, vitamin D consumption could be beneficial in 
COVID-19 due to its enhancing effects on regulatory T cell (Treg) levels 
[114,115]. 

Vitamin C is one of the most important sources of antioxidants [116]. 
Since the cytokine storm increases oxidative stress in patients suffering 
from COVID-19, vitamin C may be useful to reduce ARDS associated 
with COVID-19 [117]. Notably, it is reported that high-dose of oral 
vitamin C has antiviral effects with no significant side effects [118,119]. 
Therefore, the more vulnerable individuals would better consume high 
doses of vitamin C as a preventative measure in their daily diet [31,120]. 

Researchers have demonstrated that the level of iron in serum may 
have a close relation with COVID-19 severity and mortality rate since 
patients who died during hospitalization had significantly lower serum 
iron levels in comparison to those who recovered before and after the 
treatment. Noteworthy, patients with a low level of iron have cough as a 
common clinical presentation [98]. Therefore, iron consumption could 
be beneficial by decreasing chronic cough hyper-responsiveness and 
allergic inflammation in the lungs [121,122]. Also, there is data that 
Zinc consumption could limit the cytokine storm in COVID-19 due to 
anti-inflammatory activity [123]. 

4.4. Socio-economic 

Socioeconomically, poor nutritional status is generally influenced by 
poverty and could be enumerated as a significant risk factor for the 
disease severity. In a study, people from Asia and black-colored skin 
people were shown to have a higher risk of death from COVID-19, 
partially attributed to deprivation as a significant problem [124]. Be-
sides, Hispanics and indigenous communities of Latin America may have 
been facing the pandemic more vulnerably due to the deprivation and 
social disparities [125,126]. Also, the health care system’s inefficiency 
in low- and middle-income countries dramatically increases the impact 
of COVID-19 [126]. Notably, there is evidence of more virus trans-
mission in crowded areas [127]. For example, many cases of COVID-19 
in the U.S. have occurred among older adults living in nursing homes or 
Long-term homecare facilities [128]. Occupational risks for getting a 
severe disease are also notable. Essential workers in healthcare, social 
care, sanitary services, and transportation simply cannot work from 
home due to their job’s characteristics. Therefore, these groups are more 
likely to be exposed to the virus, potentially putting them in the 
high-risk group [129]. 
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4.5. Culture 

Different populations with different cultures and traditions are not 
expected to respond similarly to the outbreak. People with a culture of 
being more socially distant are less prone to spread the virus [130]. 
Controlling measures have been taken by countries in many areas, 
including healthcare services, work arrangements, the economy, and 
educational institutions. Beforehand, early enacted strict social 
distancing and stay-at-home policies in some countries have shown to 
play crucial roles in controlling the outbreak [130]. Supplying masks 
and gloves, as well as testing kits and treatment services, have been 
considered among the highest priorities. However, currently, it is rec-
ommended to wear gloves only while caring for sick individuals, which 
is most relevant to health care workers. The unessential use of gloves 
provides a false sense of security and may increase the virus spread 

[131]. Besides, many countries have provided various financial supports 
for the needy strengthening social solidarity during the pandemic. 
Furthermore, several online education options have been implemented 
following school closures. Identifying environmental risk factors will 
affect vaccine policy and further educate families and health personnel 
about these risk factors. (see Fig. 1). 

5. Discussion 

While everyone may be sensitive to SARS-CoV-2 infection, the nature 
and severity of the disease vary among individuals. The virus is wide-
spread in many countries worldwide, but only a small number are 
severely affected by COVID-19. As such, severe disease and death occurs 
only in a small subset of infected cases. Investigation of factors that 
could determine the clinical course and outcome of the disease appears 

Fig. 1. Factors affecting the COVID-19 outcome. There are many suggested host, viral, and environmental factors contributing to the COVID-19 phenotype. The 
severity of COVID-19 probably depends on the varying degrees of interaction among host, viral, and environmental factors. Interactions among these factors lead to 
differences in inflammatory and immune responses in the lung and different courses of the disease. 
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to be intriguing among scientists. Since the COVID-19 situation is 
rapidly changing, finding specific factors associated with complicated 
disease outcome is very demanding. Although our knowledge of the 
virus pathogenesis and behavior is not advanced enough to predict 
disease outcomes, studies on similar viruses have provided some critical 
insights. Since the development of effective treatment and vaccine is still 
ongoing, there is a huge possibility that we have to live with SARS-CoV-2 
for a long time and thus, the better understanding of the factors asso-
ciated with the severity of the disease is essential. 

The exact role of factors for complex COVID-19 phenotype remains 
contentious. Host differences could indeed dictate the clinical response 
to any viral infection. People are different in many aspects, especially in 
genetic makeup. Genetic differences are well-known to contribute to 
individual variations in the immune response to pathogens such as 
respiratory viruses. However, the characterization of stimulating genes 
for this complex disease remains unclear. Exploring host-related differ-
ences is vital in identifying high-risk individuals and will provide 
valuable information and basics for personalized medicine. Importantly, 
in emergency conditions, vaccines or drugs could be administered to 
more susceptible groups of people. The potential risk of SARS-CoV-2 
mutation or the evolvement of its virulence activities during the 
pandemic is a vital question that might change all future research and 
disease management in this regard. Although the virus pathogenesis has 
not yet been fully understood in detail, it seems that viral load is 
necessary to drive acute disease. However, the outcome depends on the 
level of the immune and inflammatory responses in the airway. 
Discovering a relationship between viral factors and clinical conse-
quences of COVID-19 may be meaningful in the future development of 
vaccines and treatments. Environmental factors affect the COVID-19 
course by the virus epidemiology alteration, transmission rate and 
population’s immune statues. Significantly, the effect of environmental 
factors varies in regions with different climate patterns, cultures, tra-
ditions, and many other interfering factors. Understanding the envi-
ronmental factors associated with a severe clinical course is likely to 
help develop an evidence base to inform vaccine policy, particularly in 
developing countries. 

6. Conclusion 

The COVID-19 outcome highly depends on a complicated interaction 
between the host, virus, and environment, which affects the intensity of 
the host response and leads to different clinical courses of the disease. 
Therefore, further studies, particularly in the context of the host, viral, 
and environmental factors, are required. More investigation is needed to 
focus on how the virus interacts with the host and environment, leading 
to the wide variance in observed symptoms. 
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