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ABSTRACT

Measures of human brain functional connectivity acquired during the resting-state track

critical aspects of behavior. Recently, fluctuations in resting-state functional connectivity

patterns—typically averaged across in traditional analyses—have been considered for their

potential neuroscientific relevance. There exists a lack of research on the differences between

traditional “static” measures of functional connectivity and newly considered “time-varying”

measures as they relate to human behavior. Using functional magnetic resonance imagining

(fMRI) data collected at rest, and a battery of behavioral measures collected outside the

scanner, we determined the degree to which each modality captures aspects of personality

and cognitive ability. Measures of time-varying functional connectivity were derived by fitting

a hidden Markov model. To determine behavioral relationships, static and time-varying

connectivity measures were submitted separately to canonical correlation analysis. A single

relationship between static functional connectivity and behavior existed, defined by

measures of personality and stable behavioral features. However, two relationships were

found when using time-varying measures. The first relationship was similar to the static case.

The second relationship was unique, defined by measures reflecting trialwise behavioral

variability. Our findings suggest that time-varying measures of functional connectivity are

capable of capturing unique aspects of behavior to which static measures are insensitive.

AUTHOR SUMMARY

Correlated patterns of brain activity measured in the absence of any prescribed task show

meaningful temporal fluctuations. However, the manner by which such fluctuations track

aspects of human behavior remains unresolved. The current report takes a data-driven

approach to characterize how time-varying patterns of human brain functional connectivity

differ from traditional static measures in their ability to track aspects of personality and

cognitive ability. We determine that time-varying patterns of functional connectivity not only

track similar aspects of behavior as do static measures, but also unique behavioral qualities

as well, specifically those that reflect behavioral variability. These results highlight the

importance and relevance of examining time-varying measures of functional connectivity.
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Behavioral significance of time-varying functional connectivity

INTRODUCTION

Measuring activity in the human brain during a task-free “resting state” has become common

as this activity is known to be spatially and temporally organized (Biswal et al., 1995). These

patterns of resting-state functional connectivity (rsFC) are sensitive to numerous aspects of

behavior, including cognitive performance (Stevens et al., 2012; Chan et al., 2014), age

(Chan et al., 2014), and the extent of cognitive impairments (Alexander-Bloch et al., 2010;

Rudie et al., 2013). Using rsFC data from the Human Connectome Project (Van Essen et al.,

2013), a recent report utilized canonical correlation analysis (CCA) to reveal that rsFC and nu-Canonical correlation analysis:
Statistical model that finds the
maximal correlation between two
datasets using cross-covariance
matrices.

merous behavioral measures were linked via a single mode of population covariation, provid-

ing a single inextricable link between stable functional brain organization and interindividual

behavioral differences (Smith et al., 2015).

The majority of neuroimaging studies have investigated rsFC by assuming that it is stable

across the measurement period. However, a recent emphasis has been placed on determin-

ing whether, and to what degree, rsFC systematically varies in time (Calhoun et al., 2014).

While some measurable fluctuations are likely due to noise or nonneural physiological sig-

nals (Hutchison et al., 2013; Lindquist et al., 2014; Hindriks et al., 2016; Duff et al., 2018;

Lurie et al., 2019), there is evidence that these rapidly evolving changes have a neuronal basis

(Chang & Glover, 2010; de Pasquale et al., 2010; Brookes et al., 2014; Thompson, 2018).

Moreover, analysis of time-varying FC might reveal new relationships to behavior unobtain-

able by static analyses (Cohen, 2018; Kucyi et al., 2018). There is recent evidence that fluctua-

tions of task-based FC track aspects of cognitive control (Khambhati et al., 2018) and attentionCognitive control:
The ability to adapt one’s behavior
in a dynamic environment where
multiple sources of information must
be processed.

(Sadaghiani et al., 2015), suggesting that flexible network reconfiguration indexes trial-by-trial

performance.

It is important to consider ways in which static and time-varying FC differ, and how these

differences impact the way each modality encodes aspects of behavior. Whereas static mea-

sures provide a snapshot of the stable organization of the brain, time-varying measures in-

dex higher order relationships between brain regions. Such measures include the degree to

which functional networks vary their interconnectivity with other networks, the change in

global organizational structure, and how the global FC profile transitions between different

functional substates (Vidaurre et al., 2017; Shine & Breakspear, 2018). Thus, it is likely that

measures of static and time-varying FC encode different behavioral features; however, a pre-

cise characterization of this relationship is missing. Studies have focused on either one type

of connectivity (static: Smith et al., 2015; time-varying: Casorso et al., 2019), or on specific

behaviors (Rosenberg et al., 2016), but only two studies attempted to simultaneously disen-

tangle static and time-varying FC’s behavioral relevance (Jia et al., 2014; Liégeois et al., 2019).

Jia and colleagues (2014) found that time-varying measures of FC explained more variance in

behaviors tracking alertness, cognition, emotion, and personality than did static FC. Liégeois

and colleagues (2019) found that measures of time-varying FC tracked both task-based be-

havior and self-reported personality traits, whereas static measures only captured self-reported

traits. Although leveraging the power of the Human Connectome Project, these studies only

had access to basic measures of human behavior, lacking access to measures typically em-

ployed by cognitive neuroscientists studying working memory, cognitive control, and execu-

Working memory:
The active short-term retention of
information no longer present in the
current environment. tive function.

Executive function:
The management and awareness of
multiple sources of information in
order to attain goals of varying
urgency.

To directly address the behavioral differences captured by static and time-varying FC, we

utilized resting-state blood oxygen level–dependent (BOLD) data collected alongside a bat-

tery of complex behavior and personality measures. These measures ranged across working

memory, executive functioning, processing speed, affect, and impulsivity. Building off Smith
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Behavioral significance of time-varying functional connectivity

and colleagues (2015), we leveraged CCA to determine whether there exist modes of co-

variation between behavior and static, as compared to time-varying, rsFC. Static rsFC was

estimated by computing a node-node correlation matrix across all regions of the brain. Time-

varying rsFC was estimated by fitting a hidden Markov model (HMM) to the data. The HMMHidden Markov model:
Statistical model that infers the
current state of a system based only
on the state immediately preceding it
in time.

allowed for the characterization of, and transition likelihood between, multiple latent “states”

in a data-driven fashion as fast as the modality allowed, overcoming limitations imposed by

sliding window methods (Hutchison et al., 2013). The HMM has been used to character-

ize brain dynamics across multiple neuroimaging modalities during rest (Baker et al., 2014;

Vidaurre et al., 2017) and task (Vidaurre et al., 2018).

Using static FC, CCA revealed a single relationship primarily defined by variance in mea-

sures of personality and affect, as well as task-general behavioral features. With time-varying

FC, CCA instead revealed two (orthogonal) relationships. The first was highly similar to that

found using static FC. However, the second was specific to time-varying FC and was defined by

variance in trialwise measures of reaction time to processing speed and working memory tasks,

as well as measures tapping into overall processing accuracy. These results suggest that there

exists meaningful information in the temporal fluctuations of rsFC patterns that can explain

aspects of human behavior to which previous analytic methods have been insensitive.

METHODS

Participants

Twenty-three healthy, young adult participants (mean age = 28.26 years, SD = 4.52 years, 10

females) were recruited for a repeated measures study to participate in two or three sessions.

Five participants were unable to attend the third study session as a result of having moved away

from the state of California. As a result, only 18 participants were included in the third session

(mean age = 27.67 years, SD = 4.64 years, 8 females). All participants were native English

speakers, had normal or corrected-to-normal vision, and had normal hearing. Participants

were excluded for any history of neurological or psychiatric disorders, use of psychotropic

drugs, a history of substance abuse, or MRI contraindications. All participants provided writ-

ten, informed consent according to the procedures of the University of California Berkeley

Institutional Review Board.

Experimental Design and Procedure

Participants underwent one practice session approximately 1 week (mean = 6 days, SD = 2.37

days) before their first testing session. They then completed two or three identical testing ses-

sions. Testing sessions 1 and 2 were separated by approximately 1 week (mean = 8 days, SD =

1.47 days), while testing sessions 2 and 3 were separated by approximately 1 year (mean =

399 days, SD = 28.73 days).

Each session began with two 6-minute resting-state scans in the MRI machine, in which

participants were instructed to stay awake with their eyes open and fixate on a crosshair. Dur-

ing the first session, the resting-state scans were followed by a structural scan. Immediately

after the MRI scan, participants completed two self-report questionnaires and a task outside

of the scanner: a visual analog scale (VAS; McCormack et al., 1988), the Barratt Impulsive-

ness Scale (BIS; Patton et al., 1995), and a box completion task (Salthouse, 1996). Immedi-

ately following completion of the questionnaires and task, participants then completed four

computerized cognitive tasks in counterbalanced order (different orders across participants

and for each session): a Stroop task (Stroop, 1935), a digit symbol substitution task (DSST;

Rypma et al., 2006), a spatial working memory (WM) task (Kuo et al., 2011), and a Color
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WM task (Zhang & Luck, 2008). Visual depiction of the four computerized task paradigms are

shown in Supporting Information Figure S1.

The BIS is a survey that determines measures of impulsivity along a set of three subtraits:

“Attentional,” “Motor,” and “Non-planning.” The VAS has participants make a mark along

a line segment in which one side represents “Not” and the other side “Extremely” for the

following items: “Anxious,” “Happy,” “Sad,” “Nauseous,” “Drowsy,” “Jittery,” “Fatigued,” and

“Dizzy.” Participant responses are measured as the distance (in centimeters) away from the

“Not” end of the line. The box completion task requires that participants use a pencil to fill in

the fourth side of an open-ended square as rapidly as possible. The measure of interest is the

duration of time it takes to complete 100 squares.

In the Stroop task, color words (blue, red, green, yellow) or animal names (horse, bird, cat,

dog) printed in different colors (blue, red, green, yellow) were presented on the left side of the

computer screen. Participants had to indicate the font color by pressing one of four buttons.

For ease of task performance color-to-button mappings were presented at the bottom part of

the screen throughout the duration of the experiment. Participants used the four fingers of

their right hand for responding with color-to-button mappings randomly assigned to partici-

pants. Compatible, neutral, and incompatible trials were presented with equal probability. In

compatible trials, color and word were the same. In neutral trials, the task-irrelevant dimen-

sion (e.g., word meaning) was not related to the task (e.g., animal names). In incompatible

trials, color and word differed. Each Stroop session was 10 minutes long and comprised eight

blocks of 36 trials each. The stimuli were presented for 300 ms with an interstimulus interval

of 1,700 ms. The measures of interest included the difference score, in milliseconds, between

the median response time of correct responses to trials in which there was an incongruity be-

tween the word and color (incongruent trials: i.e., the word “RED” in blue text) and the median

response time of correct responses to a trial in which the color of the text matched the word

(congruent trials: i.e., the word “RED” in red text). Moreover, we also focused on the standard

deviation of this response time difference, as well as the accuracy on incongruent trials. We

chose not to compute a difference score for accuracy as individual differences for accuracy on

congruent trials was likely to be minimal.

The DSST required that participants indicated via button press whether a presented symbol-

number pair correctly matched an on-screen answer key. Nine symbols were paired with

numbers 1 through 9, and the answer key was shown at the top of the screen on every trial;

140 pairs were presented in which the symbol-number pair either matched (50%), or did not

match (50%), the provided answer key. Pairs were presented on screen for 4,000 ms, during

which the participant could indicate their response. Participants were instructed to respond

as rapidly and as accurately as possible. Measures of interest included the overall accuracy,

median reaction time, and standard deviation of reaction time, for match and nonmatch trials

separately.

The Spatial WM task (“Spatial WM”) required that participants initially encode and retain

the color of a rapidly presented set of colored squares. The task followed a 2 (load: 2 vs. 4)

× 2 (cue onset: early vs. late) design. Participants viewed an array of 2 or 4 colored squares

for 180 ms prior to retaining this information over a 900-ms delay period. In the early-cue

condition, a cue appeared in the location of where one of the squares had previously been

after 200 ms (and stayed on screen for the remaining 700 ms). In the late-cue condition, the

cue appeared after 800 ms (and stayed on screen for the remaining 100 ms). Next, participants

had to indicate whether a newly presented colored square, among an array of 2 or 4 colored
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squares, matched the color of the spatially cued square prior to the delay. The new array

remained on screen for 1,920 ms. Participants were instructed to respond as accurately and

as quickly as possible. In total, participants completed 240 trials, with 60 trials coming from

each condition. Measures of interest included percent accuracy, median reaction time, and

the standard deviation of reaction time, across both cognitive loads, for match and nonmatch

trials separately.

The color working memory task (“ColorWM”) required that participants initially encode the

colors of three squares rapidly presented on screen for 1,000 ms. Following a delay of 500 ms,

a visual cue to the location of one of the squares appeared for 500 ms. After a 1,250 ms delay,

a distractor color appeared on screen for 500 ms. Following another delay of 1,250 ms, the

participants were then presented with a colorwheel for 3,000 ms and were instructed to move

the cursor along the wheel in a continuous fashion until the selected color matched the color

of the cued square being held in memory. Participants completed 40 trials in total and were

provided a 5-second break after the end of the 20th trial. Measures of interest included the

median and standard deviation of reaction time and error angle (calculated as the difference

in degrees along the colorwheel between the correct answer and the response provided by the

participant) across all responses.

During the practice session, participants completed the four cognitive tasks so as to famil-

iarize themselves with the tasks before the testing sessions. The purpose of this session was

to minimize practice effects. The testing sessions were all identical. The final testing session

was conducted on the same MRI machine as the previous sessions, but in a different location.

Reliability tests ensured that MRI effects (such as signal-to-noise ratio and artifacts) were not

different across the two locations.

Behavioral measures for each subject at each session were considered as separate yet de-

pendent datapoints, and therefore no averaging across sessions occurred. Given the depen-

dent nature of these data points, we utilize the analytic methodology from Smith et al. (2015),

which accounted for familial relationships between specific subjects in the Human Connec-

tome Project. Specifically, we performed all statistics such that permuted null distributions

never shuffled labels across sessions for subjects. In other words, all sessions from any partic-

ular subject were always grouped together so as to appropriately account for within-subject

variability.

Factor Analysis of the Behavioral Data

All 31 behavioral measures were included in the analyses and subjected to a factor analysis.

Six measures each came from the Spatial WM task and the DSST: percent accuracy, median

reaction time, and the standard deviation of reaction times for match and nonmatch trials.

Three measures came from the Stroop task: percent accuracy on incongruent trials, median

reaction time difference between congruent and incongruent trials, and the standard deviation

of the reaction time difference between congruent and incongruent trials. Four measures came

from the Color WM task: median and standard deviation of response error, as well as median

and standard deviation of reaction times. All eight measures from the VAS were included, as

well as the scores of the three subtraits of the BIS. Last, the time to complete all 100 squares

for the box completion task was included.

We clustered the behavioral data into eight factors using MATLAB’s factoran function and

allowed for promax oblique rotation (Supporting Information Figure S2). We labeled these fac-

tors qualitatively by observing which behavioral measures loaded highest on each factor. We
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chose eight factors as it most cleanly separated tasks from one another and grouped together

correlated measures.

fMRI Data Acquisition

Imaging data were collected on a 3-Tesla Siemens MAGNETOM Trio whole-body MR scan-

ner using a 12-channel head coil at the University of California, Berkeley, Henry H. Wheeler

Jr. Brain Imaging Center. Whole-brain functional data were acquired in two runs using a

T2*-weighted echo planar imaging pulse sequence (180 volumes/run, 37 interleaved axial

slices parallel to the AC-PC line, slice thickness 3.5 mm, interslice distance = 0.7 mm, TR =

2,000 ms, TE = 24 ms, FA = 60◦, matrix 64 × 64, field of view 224 mm). A high-resolution

T1-weighted structural 3DMP-RAGE was also acquired (160 slices, slice thickness 1 mm, TR =

2,300 ms, TE = 2.98 ms, FA = 9◦, matrix 256 × 256, field of view 256 mm). An LCD pro-

jector back projected a fixation cross for the resting-state scan onto a screen mounted to the

radiofrequency (RF) coil.

fMRI Data Processing

Preprocessing of the imaging data were performed using fMRIPrep 1.1.4 (Esteban, Markiewicz,

et al. 2018; Esteban, Blair, et al., 2018), which is based on Nipype 1.1.1 (Gorgolewski et al.,

2011). The T1-weighted (T1w) image was corrected for intensity nonuniformity (INU) using

N4BiasFieldCorrection (ANTs 2.2.0; Tustison et al., 2010, and used as T1w-reference through-

out the workflow. The T1w-reference was then skull stripped using ANTs BrainExtraction (ANTs

2.2.0), using OASIS as target template. Brain surfaces were reconstructed using recon-all

(FreeSurfer 6.0.1; Dale, Fischl, & Sereno, 1999), and the brain mask estimated previously

was refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-

derived segmentations of the cortical gray matter of Mindboggle (Klein et al., 2017). Spatial

normalization to the ICBM152Nonlinear Asymmetrical template version 2009c (MNI152NLin

2009cAsym; Fonov et al., 2009) was performed through nonlinear registration with ANTs Reg-

istration (ANTs 2.2.0; Avants et al., 2008), using brain-extracted versions of both T1w vol-

ume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white matter, and

gray matter was performed on the brain-extracted T1w using fast (FSL 5.0.9; Zhang, Brandy,

& Smith, 2001).

For each of the BOLD runs found per participant (across all sessions), the following prepro-

cessing was performed. First, a reference volume and its skull-stripped version were generated

using a custom methodology of fMRIPrep. Head-motion parameters with respect to the BOLD

reference (transformation matrices, and six corresponding rotation and translation parameters)

were estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9; Jenkinson et al.,

2002). BOLD runs were slice-time corrected using 3dTshift from AFNI. The BOLD time series

(including slice-timing correction when applied) were resampled onto their original, native

space by applying a single, composite transform to correct for head motion and susceptibil-

ity distortions. These resampled BOLD time series will be referred to as preprocessed BOLD

in original space, or just preprocessed BOLD. The BOLD reference was then co-registered

to the T1w reference using bbregister (FreeSurfer), which implements boundary-based regis-

tration (Greve & Fischl, 2009). Co-registration was configured with nine degrees of freedom

to account for distortions remaining in the BOLD reference. The BOLD time series were re-

sampled to MNI152NLin2009cAsym standard space, generating a preprocessed BOLD run in

MNI152NLin2009cAsym space. Several confounding time series were calculated based on

the preprocessed BOLD: framewise displacement (FD), DVARS, and three region-wise global

signals. FD and DVARS were calculated for each functional run, both using their implemen-

tations in Nipype (following the definitions by Power et al., 2014). The three global signals
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were extracted within the CSF, the white matter, and the whole-brain masks (i.e., global sig-

nal). The head-motion estimates calculated in the correction step were also placed within the

corresponding confounds file. All resamplings were performed with a single interpolation step

by composing all the pertinent transformations (i.e., head-motion transform matrices, suscep-

tibility distortion correction when available, and co-registrations to anatomical and template

spaces). Gridded (volumetric) resamplings were performed using ANTs ApplyTransforms, con-

figured with Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos,

1964).

Further postprocessing included removal of artifactual signals from the time series data. We

used recommended nuisance regression approaches based on recent processing comparisons

(Ciric et al., 2017; Parkes et al., 2018). We regressed out the six head-motion estimates, the

mean white matter signal, the mean cerebral spinal fluid signal, their temporal derivatives and

quadratic expansions, and the quadratic expansions of the temporal derivatives. We chose to

avoid global signal regression due to (1) the known effect of introducing artifactual negative

correlations into the data and (2) the increase in distance-dependent motion effects. As tempo-

ral contiguity is necessary to accurately estimate changes in FC across time, we did not apply

any scrubbing techniques to our data. Last, we applied a bandpass filter from 0.01 to 0.1 Hz

to the data. Mean framewise displacement of our sample was relatively low (mean FD = 0.14,

range = 0.06–0.37) and aligned with previously analyzed samples (Power et al., 2014).

Static Functional Connectivity

To obtain measures of FC, we first measured the mean BOLD signal across all voxels con-

Static functional connectivity:
Statistical similarity of recorded time
series between two brain regions
assessed across the entire recording
period, producing one value.

tained within each node of our brain atlases. Cortical nodes were taken from the 400-node

Local-Global atlas (Schaeffer et al., 2018). Twenty-one subcortical nodes were taken from the

Harvard-Oxford atlas (Makris et al., 2006). Twenty-two cerebellar nodes were taken from the

AAL atlas (Tzourio-Mazoyer et al., 2002). Four cortical nodes in bilateral anterior temporal

pole regions had to be removed from all analyses due to insufficient coverage (less than 25%

of voxels contained data) in one or more participants in one or more scans. This left data from

439 nodes distributed across the entire brain.

Scans were concatenated within session, per participant, in order to increase reliability

of the measured FC profile for each session. To remove spurious data differences between

sessions, each session’s data was standardized. FC was measured as the Pearson correlation

coefficient between every node and all other nodes for which there was sufficient coverage.

Hidden Markov Model

Setup

The HMM derives brain dynamics based on BOLD time series parcellation data. The HMM

assumes that the time series data are characterized by a number of states that the brain cycles

through at different times throughout the scanning period (Baker et al., 2014).

At each time point t of brain activity, the observed time series data was modeled as a mixture

of multivariate Gaussian distributions. Each one of these Gaussian distributions corresponded

to a different state k and was described by first-order and second-order statistics (activity [µk]

and FC [Σk], respectively) that can be interpreted as the activity and FC of each state. Using

notation, if xt describes the BOLD data at each time point t, then the probability of being in

state k is assumed to follow a multivariate Gaussian distribution:

P(xt|st = k) ∼ multivariate Gaussian(µk, Σk)
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In turn, we modeled how transitions between states took place. The basic Markovian prin-

ciple that describes the transition between states assumes that the probability of the data being

in state k at time t relates only to the probability of being in state l at time t − 1. This can be

described by the following equation:

P(st = k) = ΣlΘl,kP(st−1 = l)

where Θl,k is the transition probability from state l to state k. Taken together, the HMM infers

the P(st = k) probabilities for each state k and time t (state time courses) as well as the

transition probabilities Θl,k and the statistics of each state (µk, Σk) that best describe the data.

To make inference tractable, a variational Bayes algorithm was used that works by minimizing

the Kullback–Leibler divergence between the real and themodeled data (Wainwright & Jordan,

2007).

The input time series data for the HMMwas the total time series data for all participants and

all sessions (for the last session there were only 18 participants). Specifically, across the three

sessions and for all participants we concatenated the processed functional time series and ob-

tained a matrix of dimensions: (360 × 23 + 360 × 23 + 360 × 18) × number of regions

of interest (439) (Vidaurre et al., 2017). Data were standardized for each participant prior to

running the HMM. To control the dimensionality in the final data matrix, a principal compo-

nent analysis (PCA) dimensionality reduction technique was applied on the concatenated time

courses using 25 components (Stevner et al., 2019). Finally, the number of states for the HMM

was chosen as 12. Both of these settings were similar to the previous work that introduced the

use of the HMM on fMRI data (Vidaurre et al., 2017).

Inference

Running the HMM with these parameters resulted in a data matrix of dimensions (no. time

points × no. participants) × no. states. Each row represented the probability of each state

being active at each timepoint for each participant. Additional quantities related to the tempo-

ral characteristics of each state could then be obtained. First, we quantified the proportion of

time that an individual resided in the state during the scan acquisition (fractional occupancy,

FO). Additionally, the switching rate was defined as the difference between the probability of

activating a state at time t and activating a state at time t+1 summed over all states and over

all time points and divided by the number of time points. The HMM also provided each state’s

mean activity and connectivity µk and Σk, respectively. Finally, the HMM also provided the

state transition probability matrix of dimensions (no. states × no. states) where each matrix

entry (k, l) quantified the transition probability of going from state k to state l.

An agglomerative hierarchical clustering algorithm was applied to the transition probability

matrix in order to determine whether there existed a temporal structure in the data, as had pre-

viously been shown with resting-state FC data from the Human Connectome Project (Vidaurre

et al., 2017). This analysis starts by classifying each data point as a separate cluster and pro-

gressively combines clusters of data at different hierarchical levels: similar data are clustered at

a low level of hierarchy and less similar data are clustered at a higher level of hierarchy (Hastie,

Friedman, & Tibshirani, 2009). We used the linkage function as implemented in MATLAB with

default settings (method = ‘single,’ distance = ‘euclidean’). We regarded each identified cluster

as one metastate. In turn, the metastate time courses were considered as the sum of the time

courses of the individual states that comprised them. Fractional occupancy and switching rate

of the metastates were calculated as in the case for single states.
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To assess whether there existed any relationship between the derived HMM time-varying

FC measures and in-scanner head motion, we first computed the mean FD across both runs

for each subject in each session. There existed no difference in mean FD across sessions (all

t’s < 1.19, adjusted p’s = 0.679). Next, we correlated these session-specific mean FD values

with each of the 17 measures derived from the HMM (i.e., fractional occupancy of each of the

12 states, fractional occupancy of each of the 3 metastates, mean switching rate across the 12

states, and mean switching rate across the 3 metastates). Given the number of statistical tests

performed (17 × 3 = 51) and the related nature of the data being assessed, we applied false

discovery rate (FDR) correction to our results to account for multiple comparisons. Two of the

51 tests survived multiple comparisons correction: Fractional Occupancy of State 1 in Session

2 (r = 0.847, adjusted p < 0.001), and Fractional Occupancy of State 11 in Session 3 (r = 0.734,

adjusted p = 0.026). Given the lack of any consistent relationship between in-scanner head

motion and our HMM measures across sessions, it is likely that our preprocessing strategy of

the fMRI BOLD data appropriately corrected for motion artifact for the current study’s analyses

of time-varying FC.

Spatial Characterization of States

To spatially characterize the derived states, we thresholded the activity maps of each state to

include the top 40% of both positive and negative activations. We then spatially overlapped

each state with the 10 resting-state networks described in Smith et al. (2009) to obtain an

overlap index for each network. The index was calculated by counting the number of voxels

that were included in the thresholded map and then dividing these by the size of the resting-

state network under consideration in order to account for size bias.

Canonical Correlation Analysis

To relate the behavioral measures to static and time-varying FC we used CCA (Figure 1).

CCA finds correlations between multidimensional data wherein potential relationships may

be present (Hotelling, 1936). This is a more principled approach compared to conducting all

potential correlations and correcting for multiple comparisons. Specifically, this analysis finds

maximal correlations between two sets of variables, X (n × d1) and Y (n × d2), where d1 and

d2 are the number of variables used in X and Y respectively, and n is the number of obser-

vations for each variable. It produces two matrices, A and B, such that the variables U = AX

and V = BY are maximally related. CCA values were obtained from the MATLAB canoncorr

function. It is worth noting that like the PCA, this function can produce more than one mode,

with each mode ranked by the covariance that can be explained between X and Y.

We conducted two separate CCAs. First, we designated the factors of the behavioral data

as Y, and the edgewise static FC strength as X (n = 96,141). In a second CCA, Y remained

the same, but we varied X. Specifically, we designated X as the fractional occupancy of each

HMM state (n = 12) and temporally defined metastate (n = 3), as well as the mean switching

rate across states (n = 1) and metastates (n = 1) separately. As a final preprocessing step, the

dimensionality of the static FC data was reduced using PCA as described in Smith et al. (2015),

retaining the top 13 components. No dimensionality reduction was required for the HMM

data as the number of variables was low. However, we performed an analysis of the HMM

data by using PCA and reported the results in the Supporting Information (Figure S4) where it

can be seen that the results are highly similar to the case in which PCA is not employed.

Statistical significance of the CCA analyses was estimated as follows. We calculated 10,000

permutations of the rows of X relative to Y, respecting the within-participant structure of the
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Figure 1. Methodology Overview. Canonical correlation analysis (CCA) was performed on two
different datasets, which were matched for measures of behavior but differed with regard to the
resting-state functional connectivity (rsFC) data included. The first CCA (A) included measures of
static FC (i.e., the node-to-node connectivity strength), while the second CCA (B) included measures
of time-varying FC. Measures of time-varying FC were derived by fitting a hidden Markov model to
the BOLD time series.

data, and recalculated the CCA mode for each permutation in order to build a distribution of

canonical variate pair correlation values (i.e., <U,V>). By comparing the outcome from the

CCA of the true data to the shuffled data, we found that each mode of covariation discoveredMode of covariation:
A statistical relationship between two
weighted datasets that represents the
bidirectional association between
each set.

with the true data was highly significant (p < 1/10,000). In addition, a cross-validation ap-

proach was adopted in order to assess the robustness of the discovered mode(s) (as described

in Smith et al., 2015). Across 1,000 runs, we ran CCA on a randomly selected set of 80% of

the data, respecting the within-participant nature of the data, and stored the resultant U and V.

We then estimated the mode on the heldout 20% of data and determined the significance of

the estimated mode employing the same permutation significance testing procedure as before.

These estimated modes were found to be highly significant, with the correlation between the

derived canonical weight vectors in the test dataset being very robust (replicating the results

from Smith et al., 2015).

Post hoc correlations of the values of X (Y-respective) with the columns of the significant

mode U (V-respective) were used to quantify the contributions (positively or negatively) of each
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behavioral measure with the CCA mode. In other words, we quantified the extent to which

the Y variables were loaded/weighted on the CCA mode. There is no clear cutoff at which one

finds a significant correlation value and thus correlation values are reported in isolation.

Validation of CCA Analysis

We validated the identified CCA modes by comparing outcomes across a range of behavioral

factors (behavior) and FC principal components (static FC, time-varying FC). The number of

behavioral factors ranged from 1 to 9, while the number of static FC principal components

ranged from 1 to 20 and the number of time-varying FC principal components ranged from

1 to 17 (see Supporting Information). For the static case, we ran CCA on each combination

and stored the resulting post hoc correlations for each behavioral measure (i.e., with respect to

FC), and computed the Pearson correlation between these values across all 180 combinations

(Supporting Information Figures S3 and S4). For combinations that included two or more be-

havioral factors, we found that the discovered canonical covariate modes were highly similar,

with Pearson correlations tending to be very highly positive (i.e., greater than r = 0.90) as well

as very highly negative (i.e., less than r = −0.90). This bimodal distribution at the extremes of

the correlation range indicates that the discovered modes were highly preserved in structure

(i.e., the same behavioral measures loaded highly). We determined the optimal combination

(i.e., 8 behavioral factors, 13 FC PCs) by selecting either (A) the most significant canonical co-

variate pair (i.e., U × V), or (B) in cases where multiple pairs had the same maximal 1/10,000

permutation significance value, determining if combinations were highly similar after a cer-

tain number of factors or components were included, and then taking the smallest number of

factors and components that produced this outcome, restricted by those that had a significant

permutation value.

RESULTS

Factor Analysis

Brain and behavioral data were obtained as described in the Methods. We used factor analysis

to reduce the 31 behavioral measures to 8 factors (Supporting Information Figure S2). The first

factor, referred to as “Processing Reaction Time,” had DSST median and standard deviation

reaction time measures for both match and nonmatch trials loading highly positively. The

second factor was referred to as “Task General” because it contained a mixture of measures

across multiple tasks, with positive loadings from the Spatial WM task percent accuracy (match

trials), the Stroop task percent accuracy, and “Anxious” on the VAS, and negative loadings

on the Stroop task median reaction time and the DSST percent accuracy (both match and

nonmatch trials). The third factor, referred to as “Working Memory Reaction Time,” had the

Spatial WM task median and standard deviation reaction time measures, for both match and

nonmatch trials, loading highly positively. The fourth factor, referred to as ”Working Memory

Precision Reaction Time,” had two Color WM task measures loading highly positively: median

and standard deviation of reaction time. The fifth factor, referred to as “Affect,” had the VAS

measures “Sad” and “Happy” loading highly positively and negatively, respectively. The sixth

factor, referred to as “Processing Accuracy,” had only the DSST percent accuracy on match

trials loading highly positively. The seventh factor, referred to as “Arousal,” had high positive

loadings for both the “Drowsy” and “Jittery” VAS measures. Finally, the eighth factor, referred

to as “Impulsivity,” included high positive loadings of all three BIS measures.

The first (“Processing Reaction Time”), third (“Working Memory Reaction Time”), and fourth

(“Working Memory Precision Reaction Time”) factors all contain measures of both the median
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Figure 2. Canonical Correlation Analysis—Static Functional Connectivity. (A) CCA can discover as many modes of covariation as the lowest
rank of each dataset (i.e., 8 behavioral factors). Statistical significance was found only for the first discovered mode. (B) Additional cross-
validation of the discovered mode revealed that the first mode was statistically robust across the majority of the 1,000 folds. (C) Post hoc
correlations for the discovered mode and the 8 behavioral factors revealed that measures of “Affect” and “Impulsivity,” as well as a “Task
General” factor, dictated the structure of the mode. RT, reaction time.

and standard deviation of reaction time across the DSST, Spatial WM, and Color WM tasks,

respectively, and therefore reflect aspects of within-task stability (median reaction time) and

within-task variability (standard deviation of reaction time). In contrast, the second (“Task

General”) and sixth (“Processing Accuracy”) factors only contain task measures of accuracy

and/or median reaction time, and thus only reflect aspects of within-task stability. Last, the

fifth (“Affect”), seventh (“Arousal”), and eighth (“Impulsivity”) factors all contain measures that

reflect the personality and mood of the participant.

Canonical Correlation Analysis: Static Functional Connectivity

CCA was used to find a mode of population covariation between behavior and static FC. The

CCA included the behavioral data in 8-factor space, as well the static rsFC data in 13-principal

component space, based on the validation we performed (see the “Validation of CCA Analysis”

section of the Methods for details). The CCA revealed a single mode of covariation between

these two datasets (Figure 2). To assess the statistical significance of the discovered modes

of covariation, we followed the permutation and cross-validation procedure as outlined in

Smith and colleagues (2015; also see “Canonical Correlation Analysis” section in Methods

and Figure 2A and Figure 2B in this article).

We used post hoc correlations between the discovered mode and the behavioral factors

to evaluate the contribution of each factor to the mode, with respect to the static FC data.

This mode was defined by highly positive weights for the “Affect” (r = 0.69), “Task General”

(r = 0.54), and “Working Memory Precision Reaction Time” (r = 0.30) factors, and a highly

negative weight for the “Impulsivity” (r =−0.30) factor. All other factors had correlation values

below an absolute value of 0.11. These results indicate that static connectivity might encode

more general behavioral and personality features rather than information that may relate more

to task, or trial-specific, behavior.

Canonical Correlation Analysis: Time-Varying Functional Connectivity

We next assessed whether any relationships existed between time-varying FC and behavior.

Time-varying functional connectivity:
Statistical similarity of recorded time
series between two brain regions
assessed continuously throughout the
recording period, producing multiple
values. To quantify the time-varying FC profile in each participant we fit the resting-state BOLD data
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Figure 3. Metastates Resulting from the Temporal Clustering of Brain Dynamics. Probability, across
all participants, of transitioning from one state to another. Clustering of the 12-state transition prob-
ability matrix revealed a temporal hierarchy wherein groups of states preferentially transitioned
within groupings compared to across groupings. Two groupings contained multiple states (i.e.,
“metastates”), while one state was clustered only with itself.

with a HMM. This model works by finding relevant states and their associated spatial (activity,

connectivity) and temporal (fractional occupancy, switching rate) characteristics (see the “Hid-

den Markov Model” section in the Methods). After fitting the HMM, we identified 12 states

that were representative of brain dynamics across all participants (Figure 3). Previous work has

shown that the transition probabilities between HMM states derived from resting-state data is

structured (Vidaurre et al., 2017). Specifically, there are certain sets of states, or “metastates,”

that are more temporally coherent than others. In other words, if a participant visits a state

within one metastate they are more likely to stay within that metastate compared to transition-

ing to another metastate. Hierarchically clustering the transition probability matrix resulted

in three main clusters. One included two states, another included nine states, and the third

included a single state. These results are similar to those found previously with the Human

Connectome Project dataset (Vidaurre et al., 2017), indicating that even with our compara-

tively small sample size, we could reliably estimate brain dynamics. For completeness, we

included all 12 states in our analysis; however, our results remained unchanged when we

excluded the state that failed to cluster with the other states.

Next, we used the fractional occupancy (i.e., time spent in each state) of each state and

metastate, as well as the mean switching rate between states and metastates (n = 17 in total), as

input into a CCA to determine the relationship between time-varying FC characteristics and the

behavioral factors (n = 8; see Methods for description of selection and validation process). We

found two significant CCA modes by using the same permutation testing and cross-validation

procedure as employed for static FC (Figure 4A).

Network Neuroscience 157



Behavioral significance of time-varying functional connectivity

Figure 4. Canonical correlation analysis: time-varying functional connectivity. (A) CCA performed on measures of time-varying FC revealed
two significant modes of covariation. Results of the cross-validation procedure and post hoc correlations between (B) mode 1 and (C) mode 2
revealed that both modes were highly robust (assessed across 1,000 folds) and were sensitive to different sets of behavioral features. Whereas
mode 1 largely matched the mode discovered with static measures of FC, mode 2 was instead sensitive to task- and trial-specific measures of
behavior. RT, reaction time.

The first mode was defined by positive weights for “Task General” (r = 0.58), “Affect”

(r = 0.51), “Arousal” (r = 0.45), and “Processing Reaction Time” (r = 0.26) factors, showing a

similar pattern to the mode obtained from static FC (Figure 4B). Specifically, “Task General”

and “Affect” loaded highest, while “Impulsivity” (r = −0.10) loaded most negatively (although

its loading was greatly reduced compared to the previously discovered static mode). All other

loadings fell below an absolute value of 0.09.

The second mode exhibited different behavioral weights when compared to the first time-

varying mode. Here, “Task General” (r = 0.28), “Affect” (r = 0.07), and “Arousal” (r = −0.14)

factors had substantially lower weights. Instead, “Processing Reaction Time” (r = 0.45) and

“Working Memory Precision Reaction Time” (r = 0.37) factors loaded most highly on the

positive end, while the “Processing Accuracy” (r = −0.71) factor loaded most negatively

(Figure 4C). All remaining factors had weights below an absolute value of 0.15.

Similar to a previous analysis on the differentiable contributions of static and time-varying

FC (Liégeois et al., 2019), we found that time-varying FC, while showing some similar rela-

tionships to behavior as static FC, could also distinguish relationships with more task-based

measures of behavior. However, by using more specific measures of working memory (i.e.,

match-to-sample vs. free recall, accuracy vs. reaction time), task processing, and cognitive

control, we were additionally able to determine that the second time-varying CCA mode dis-

tinguished unique behaviors associated with task performance. Specifically, the mode was

defined by a separation (i.e., a positive-negative split in post hoc correlations) between re-

action time and accuracy, thus revealing within-task effects that previously had not been
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Figure 5. Hidden Markov Model (HMM) State Activation Map Overlap with Resting-State Networks Voxel overlap proportion for each
HMM-derived state to the 10 resting-state independent component analysis (ICA) maps from Smith et al. (2009). Ordering of states matches
that of Figure 3. Specifically, states 1 and 2 clustered together in one metastate, states 3–11 in another metastate, and state 12 clustered alone.

interrogated. The robustness of these time-varying FC results are largely confirmed when com-

pared to a phase-randomized surrogate analysis (see Supporting Information).

To further characterize each state obtained from the HMM, we overlapped their spatial pro-

files with those of canonical rsFC networks (Smith et al., 2009). Qualitatively, we found that

the two-state metastate overlapped with two distinct task-positive networks (i.e., fronto-parietal

and somatomotor networks; Figure 5). The nine-state metastate overlapped with a larger

variety of networks, including the default-mode, executive, and visual networks (Figure 5).

Unthresholded spatial maps of each of the 12 states can be found in the Supporting

Information (Figure S5).

DISCUSSION

Using CCA, we investigated the relationship between complex measures of human behavior

and both static and time-varying rsFC. We found a single CCA mode between the behavioral

measures and static FC. In contrast, we found two CCA modes relating behavior and time-

varying FC. Of these two modes, the first one resembled its static counterpart, while the other

appeared to be distinct in that it was more sensitive to measures of task-specific behavioral
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variability. We thus argue that time-varying FC describes nuanced brain–behavior relationships

distinctly from that which is captured by static FC.

Measures of static FC typically consider average FC over a prolonged period of time (e.g.,

several minutes of an fMRI scan) and have been used extensively to study the functional organ-

ization of the brain during rest and task performance (Cole et al., 2014; Cohen & D’Esposito,

2016). We used nodal bidirectional FC edge strength quantified across the entire scan in a

CCA to relate the brain’s intrinsic static functional organization to behavior. The CCA revealed

a significant relationship between these measures and our behavioral factors. Measures of

affect and impulsivity determined the main positive and negative directions of this mode, re-

spectively. To a lesser extent, the positive direction of this mode was also characterized by a

“Task General” factor. This factor represents accuracy measures derived from tasks sensitive to

working memory (Spatial WM), cognitive control (Stroop), and processing speed (DSST). This

factor also contains a high loading for the median reaction time measure from the Stroop task.

The “Task General” factor is thus most similar to previous analyses that have used data from

the Human Connectome Project in which behavioral measures include median reaction times

either in isolation or multiplexed with task-specific performance values. These results indicate

that static FC likely tracks participant-level personality measures present during the scanning

session (e.g., affective state). Unsurprisingly, static connectivity is also sensitive to measures

of task performance that likely characterize stable behavioral features of the individual (i.e.,

general, multitask performance, including working memory). As such, these results largely

confirm the findings of previous studies on static rsFC’s predictive power in regard to certain

measures of human behavior.

However, it has been shown that FC, including measures from resting-state protocols, is

likely a dynamic process whereby fluctuations in regional connectivity occur rapidly (Lurie

et al., 2019). Given the rate at which they occur, these fluctuations might better encode be-

havioral information reflecting ongoing cognitive demands, as compared to a general char-

acteristic which would remain stable over the span of minutes, hours, or days. Previously,

Casorso et al. (2019) assessed a similar, albeit broader, hypothesis by extracting time-varying

rsFC components and submitting these to a CCA along with behavioral measures collected in

the Human Connectome Project. Two modes of covariation were found between their time-

varying components and behavior; however, no analysis of static FC was made against which

to compare. One mode was largely defined by positive post hoc correlation values for vo-

cabulary comprehension and working memory, and negative values for prosocial behaviors.

The second mode was defined by positive post hoc correlation values for visuospatial orient-

ing and emotional processing, and negative values for inter- and intrapersonal processing and

well-being. Although a critical step forward in the analysis and validation of time-varying FC’s

relevance to human behavior, this study did not address the nature of how time-varying FC

relates to behavior in a unique manner compared to static FC measures. Specifically, the Hu-

man Connectome Project behavioral measures used preclude the ability to measure processes

that likely vary from trial to trial, as task-specific measures of reaction time only reflect the me-

dian, and not trialwise variability. In our experiment, we recorded behavioral measures that

separately tracked processes related to stable (e.g., accuracy) vs. time-varying (e.g., reaction

time) aspects of behavior to better assess our hypothesis. Although reaction time variability

and accuracy measures never loaded highly together on any factor, it should be noted that our

two measures of reaction time (i.e., median and standard deviation) loaded together on the

three factors representing working memory and processing speed reaction times. Even so, the

high loading of reaction time variability measures in these factors represents a novel behavioral

measure compared to previous reports using publicly available datasets.
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Using measures of time-varying FC calculated from fitting an HMM to our rsFC data, we

investigated whether CCA would reveal modes of population covariation sensitive to measures

of behavioral variability. Our analysis resulted in two significant modes. One mode largely

resembled the mode discovered with static measures of FC. The primary difference between

these modes is that this time-varying FC mode carried a highly positive weight for measures

of drowsiness and fatigue, potentially reflecting a sensitivity of time-varying FC to neural and

physiological correlates of arousal (Patanaik et al., 2018).

Whereas one of the time-varying modes reflected a largely similar, but not identical, be-

havioral profile as the static FC mode, the other time-varying mode reflected a more unique

behavioral profile. High positive weights were associated with response time measures for

tasks that assessed working memory and processing speed, while a strong negative weight

was found for the measure of accuracy on the processing speed task. Characterized in part

by measures of trial-by-trial response variability, this mode’s positive end potentially reflects a

greater sensitivity to behavioral dynamics that occur on a more rapid timescale compared to

what static FC is likely sensitive. In addition, the separation of measures of response variability

and overall response accuracy, especially within the same task, reveals that time-varying FC is

likely capable of disentangling unique behavioral components within the same task. Although

our static FC mode did show some sensitivity to a measure that captures response variability,

the distinction between stable and time-varying components of behavior was not present as

is seen in our second time-varying mode. Overall, it is possible that this time-varying mode

captures the relationship between brain dynamics and the measures of trial-by-trial behavioral

variability within complex measures of human behavior.

The manner by which time-varying fluctuations in rsFC relate to independent measures of

human behavior remains unresolved. It is known that the spatial organization of functional

connections changes in response to different tasks compared to rest (Cole et al., 2014; Cohen

& D’Esposito, 2016). Specifically, internetwork connectivity is more predominant during tasks

that require flexible cognition (i.e., working memory) compared to more rudimentary tasks

such as finger tapping. Moreover, a previous report found that measures of global network

integration and within-network connectivity (i.e., participation coefficient and module degree,

respectively), when assessed in a time-varying manner, varied throughout the performance of

tasks and tracked the cognitive complexity of the task demands (Shine et al., 2016). Thus, one

hypothesis as to how resting dynamics relate to behavior is that the dynamic interactions within

and between these networks observed during tasks can be recapitulated during periods of

wakeful rest. However, it should be noted that the dynamic interactions that occur during task

performance are likely more constrained than during rest due to the confined cognitive context

required by task performance. Resting-state dynamics can serve as a “baseline” repertoire

that can potentially index the extent to which FC reconfigures during task and, in turn, track

behavioral performance (Liégeois et al., 2019). It will be crucial for future studies on the

behavioral relevance of time-varying FC to assess this possibility.

It is also important to emphasize the spatiotemporal signature of these time-varying net-

work interactions and what it means for behavioral performance. Methods such as the HMM

investigate brain dynamics with high temporal resolution, thus extending previous methods

showing reconfiguration of connectivity between different task blocks (Cohen, 2018). For ex-

ample, Vidaurre et al. (2018) used an HMM to show how a motor task drives reconfiguration of

large-scale networks on a timepoint-by-timepoint basis showing that task execution happens

at faster timescales that had been previously undetected when interrogated using sliding win-

dow methods (Vidaurre et al., 2018). Regarding the spatial profile of the current HMM states,
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a visual and quantitative assessment of their overlap with canonical rsFC networks (Smith

et al., 2009) suggested that our metastates had distinct spatial profiles. We identified a nine-

state metastate spanning multiple networks including fronto-parietal, executive, default-mode,

and visual networks. Integration of the “task-positive” and “task-negative” networks has been

observed during motor tapping and autobiographical planning, suggesting a more mutually

compatible role than previously believed (Fox et al., 2005), one that can facilitate goal-directed

cognition (Spreng et al., 2010; Braga et al., 2013; Vatansever et al., 2015). On the other hand,

the two-state metastate we identified, characterized by a more constrained spatial profile of

fronto-parietal and somatomotor networks, potentially reflects networks specific to task exe-

cution. The differences in spatial topography of the two-state versus nine-state metastates may

provide insight regarding the different behavioral relationships we found with static versus

time-varying FC. The flexible interaction of activity across each metastate’s respective individ-

ual states might allow for the encoding of information to which static measures are insensitive.

Although static measures are capable of reflecting multinetwork interactions, they are inca-

pable of tapping into the specific temporal patterns through which these network interactions

occur. Further investigation of the spatial patterns of these states is needed.

In conclusion, the current study demonstrates that static and time-varying FC are differ-

entially associated with behavior. We argue that via integration across multiple networks at

different temporal scales, time-varying FC is associated with both trial-by-trial and stable be-

havioral measures, while static FC is associated with participant-level personality measures and

measures of stable task-general performance. These results demonstrate that it is important for

future studies to look at both the static and temporal aspects of FC to more fully delineate the

behavioral contributions of each.
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