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Marine invertebrate larvae are known to begin metamorphosis in response to
environmentally derived cues. However, little is known about the relation-
ships between the perception of such cues and internal signalling for
metamorphosis. To elucidate the mechanism underlying the initiation of
metamorphosis in the ascidian, Ciona intestinalis type A (Ciona robusta), we
artificially induced ascidian metamorphosis and investigated Ca2+ dynamics
from pre- to post-metamorphosis. Ca2+ transients were observed and con-
sisted of two temporally distinct phases with different durations before tail
regression which is the early event of metamorphosis. In the first phase,
Phase I, the Ca2+ transient in the papillae (adhesive organ of the anterior
trunk) was coupled with the Ca2+ transient in dorsally localized cells and
endoderm cells just after mechanical stimulation. The Ca2+ transients in
Phase I were also observed when applying only short stimulation. In the
second phase, Phase II, the Ca2+ transient in papillae was observed again
and lasted for approximately 5–11 min just after the Ca2+ transient in Phase
I continued for a few minutes. The impaired papillae by Foxg-knockdown
failed to induce the second Ca2+ transient in Phase II and tail regression. In
Phase II, awave-like Ca2+ propagationwas also observed across the entire epi-
dermis. Our results indicate that the papillae sense a mechanical cue and two-
round Ca2+ transients in papillae transmits the internal metamorphic signals
to different tissues, which subsequently induces tail regression. Our study
will help elucidate the internal mechanism of metamorphosis in marine
invertebrate larvae in response to environmental cues.
1. Background
The larvae of marine invertebrates, including crustacea (barnacles), molluscs,
ascidians, echinoderms, and Annelida (polychaetes), eventually settle into the
substratum and begin metamorphosis [1–5]. In order to initiate metamorphosis,
these larvae require specific cues such as simple contact [6], adhesion via an
adhesive organ [7–9], temperature, light, and various chemical cues [10,11].
Therefore, it was thought that a specific organ is responsive to external cues
and transduces them to internal organs for the subsequent metamorphosis
[12–14]. Ca2+ signalling is instrumental in the induction of metamorphosis in
metazoans [15–19]. However, little is known about how external environmental
cues are translated into internal metamorphic signals.
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Ascidian papillae form a transient sensory adhesive organ
that serves to attach the larva to a substrate, thereby ensuring
settlement and the onset of metamorphosis into the filter-
feeding adult [20]. After the papillae-mediated adhesion to
a substrate, ascidian metamorphosis is characterized by tail
regression [7,21].

Papillae seem to permit a larva to assess a substrate’s suit-
ability for settlement and metamorphosis. Papillae-mediated
larval adhesion is essential for tail regression and tail
regression is reportedly abolished in papillae-cut larva [7].
In the larval stage, the ascidian Ciona has three papillae.
Foxg is expressed at the papillae under the ERK pathway
[22]. Each papilla contains four glutamatergic neurons [8],
which are considered sensory neurons [23,24]. Although
papillary sensory neurons have been proposed to have both
chemosensory and mechanosensory functions [25,26], there
is no direct evidence that papillae can perceive external cues.

We have previously reported the Ca2+ dynamics of Ciona
embryo from gastrulation to the tailbud stages [27], but Ca2+

dynamics in later developmental stages have not been
reported before. Here, we present direct evidence of mechan-
ical cues to the papillae playing a role in initiating Ciona
metamorphosis via two-round Ca2+ transients.
2. Material and methods
(a) Samples
Ciona adults were obtained from Maizuru Fisheries Research
Station (Kyoto University), Misaki Marine Biological Station
(University of Tokyo) through the National Bioresource Project
(NBRP), and Onagawa Field Center (Tohoku University), Japan.
Eggs were collected by dissecting gonoducts. Fertilized eggs
were incubated at 18°C until observation. As Ciona larvae acquire
competence of tail regression after 29.5 h post-fertilization (hpf)
[28], we opted to use the stage 29 larvae [29] after 30 hpf.

(b) Preparation of reporter constructs and
microinjection and pharmacological treatment

GCaMP6s mRNAwas obtained as previously described [27] (see
electronic supplementary material).

(c) Fixation of swimming larva and artificial papillae
stimulation

The larvae were fixed to a Petri dish coated with poly-D-
lysine (PDL) or poly-L-lysine (PLL), referring to practical tips
for imaging ascidian embryos [30] (see electronic supplementary
material).

(d) Artificial mechanical stimulation of papillae
After establishing the trunk fixation method, we designed a
device that consists of a mechanical stimulator, its manipulator,
and a holder to apply mechanical stimuli artificially to the papil-
lae of Ciona larva. We called this device an ‘artificial papillae
stimulator’ (see electronic supplementary material).

(e) Microscopy
Samples were observed with three different microscopy methods,
namely fluorescence microscopy (FM) with a 3CCD camera,
confocal laser scanning microscopy (CLSM), and light-sheet
microscopy (LSM). For imaging by FM, we followed previous
methods [27] (see electronic supplementary material). For LSM,
we employed dual inverted selective plane illumination
microscopy (diSPIM) with 40 x water immersion lens (NA 0.8,
Nikon) mounted on objective piezos with fibre-coupled digital
micro-mirror scanners (Applied Scientific Instrumentation, USA)
for light-sheet generation. Bidirectional stack images measuring
512 × 512 pixels were acquired by an sCMOS camera (Zyla 4.2,
Andor) at a time interval of 7 s using dispim plugin running on
ImageJ Micromanager. Images from two directions were regis-
tered and fused using MIPAV (NIH) generate fusion plugin.
3. Results
(a) Artificial induction of tail regression by a new

experimental system
At first, we verified that the Ca2+ indicator GCaMP6 s can
sense Ca2+ dynamics even at later developmental stages (elec-
tronic supplementary material, figure S1, stage 36 [29], late
body axis rotation period; see electronic supplementary
material). To observe Ca2+ dynamics in larva up to the tail
regression stage controlling the timing of adhesion, we estab-
lished a new experimental system for applying artificial
mechanical stimulation to the papillae of an individual
swimming larva [31]. The larval trunk is immobilized using
a PDL-coated glass base to avoid vibration caused by swim-
ming (figure 1a). In the absence of stimulation, 94.6% of
immobilized larva retained the tail after 29.5 hpf. At this
time, Ciona larvae can undergo tail regression if they receive
adhesive stimulation (figure 1b,c). By contrast, when the artifi-
cial mechanical stimulus was applied to immobilized larvae
(figure 1d ), tail regression was induced in 83% of 12 larvae
(figure 1e). These results indicate that trunk immobilization
prevented tail regression and that our new experimental
system can induce tail regression by controlling the timing of
mechanical stimulation.

Interestingly, we found that posterior trunk epidermal cells
moved towards the posterior at the onset of tail regression
(electronic supplementary material, figure S2; Video S1;
Video S2; Video S3 from 0:09:41.360), which was the first
observable change in the initiation of Ciona metamorphosis
earlier than the onset of tail regression. Thus, we defined
this backward movement of the posterior trunk epidermis as
the timing of the start of tail regression, and we could align
the time axis for metamorphosis among individuals, thereby
linking each developmental stage.

(b) Two-round Ca2+ transients in papillae were
observed prior to tail regression

To examine Ca2+ dynamics during tail regression, we artifi-
cially induced tail regression after 29.5 hpf using our new
experimental system and observed Ca2+ dynamics from early
adhesion up until the late body axis rotation period (up to
52 hpf). Hence, prior to artificial mechanical stimulation, in
addition to the known Ca2+ transient in epidermal cells
called CTEC [27], spontaneous Ca2+ increases were observed
at the posterior sensory vesicle and nerve cord (figure 2a, red
arrowheads; Video S3, before adhesion), the timing of which
coincided partially with larval swimming behaviour, which
suggests the excitation of motor neurons. After mechanical
stimulation was applied, Ca2+ transients were observed in
specific tissues (figure 2b–g andVideo S3).Observed transients
were composed of two temporally different Ca2+ transients
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bar: 100 µm. (Online version in colour.)
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(figure 2h). In the first phase, Phase I, a relatively short-range
Ca2+ transient was observed immediately after mechanical
stimulation. Subsequently the second phase, called Phase II,
includes the Ca2+ transients observed within 10 min after
Phase I.

Phase I was observed immediately after mechanical stimu-
lation and lasted an average of 1.3 min in papillae (figure 2a–e
and i; electronic supplementary material, table S1). The Ca2+

transient in Phase I showed fluctuation which suggests that
Ca2+ transient consisted of the accumulation of multiple
Ca2+ spikes (figure 2i). During Phase I, the Ca2+ transient
was first observed at both the papillae (figure 2b, orange
arrowhead) and the dorsal subregion in the posterior trunk
(figure 2b, white arrowhead; electronic supplementary
material, Video S3, time point = 0:01:00). Immediately after
the Ca2+ transient in the dorsal subregion, the propagation
to the ventral region was observed to the endodermal
subregion (figure 2c,d, blue arrowheads; Video S3, time
point = 0:01:06). Interestingly, the Ca2+ transient in two areas,
the papillae and the endoderm, is temporally different but fre-
quently observed to be coupled (figure 2b–d and i). The Ca2+
transient in the papillae reached its maximum intensity an
average of 3.6 s earlier than in the endodermal region.

After Phase I, Phase II including the secondCa2+ transient in
papillae without coupling with the endoderm was observed.
The second Ca2+ transient reached a peak at 3.2 ± 1.0 min
after the maximum peak of the first Ca2+ transient (electronic
supplementary material, table S1, c). It took 5.3 ± 0.8 min
from the peak to stable state (electronic supplementary
material, table S1, d). After 8.9 ± 3.3 min lasting of the second
Ca2+ transient, larvae started tail regression (electronic sup-
plementary material, table S1, f). During Phase II, various
tissues, including the epidermis and epidermal sensory neur-
ons, as well as CNS, endoderm, and papillae, exhibited
increased Ca2+ activity (see electronic supplementary material,
Video S3). In particular, wave-like propagations by strong Ca2+

increases were observed at whole epidermal cells (n = 6/6,
figure 2f; see electronic supplementary material, Video S3,
time point 0:03:17–0:06:21) before tail regression. Compared
with before tail regression, the Ca2+ activity of the extraembryo-
nic region located in the larval tunic, including motile test cells
and extracellular ciliated structure, ASNET [32,33], increased.
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As two-round Ca2+ transients (Phase I and Phase II) at the
papillae were observed in all tail-regressed larvae (table 1),
Phase I and Phase II appear to be involved in inducing
Ciona tail regression.

(c) The Ca2+ transient in Phase I responding to the
mechanical stimulation

Phase I starts immediately after adhesion (figure 2h). In addi-
tion, the anatomical investigation has suggested that ascidian
papillae sense mechanical stimulation [8,25,33–36]. These two
results suggest that the papillae sense a mechanical stimulus
and the Ca2+ transient in Phase I is in response to papillary
mechanical stimulation. To understand the detailed profile
of Phases I and II in tail regression, we first determined the
relationship between the mechanical cue and induction of
Phase I. Mechanical stimulation of different durations (2, 5,
and 13 s) were applied to the larval papillae after 26.5 hpf
(figure 3a) and Ca2+ responses were recorded. The Ca2+ tran-
sient in papillae and trunk region was observed in a similar
manner to the Ca2+ transient in Phase I (electronic supplemen-
tary material, table S2) for all stimuli. The Ca2+ transient in



Table 1. The number of samples showing Phase I, Phase II and tail
regression after different lengths of mechanical stimuli. From the left-hand
column, the duration of mechanical stimulation was 0 s, 10 s, and
continuous.

stimulus

0 s 10 s continuous

ctrl Foxg MO

Phase I 0/8 3/3 6/6 4/13

Phase II 0/8 0/3 6/6 0/13

tail regression 0/8 0/3 6/6 3/13
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papillae was followed by the trunk region (figure 3b, blue
arrowheads; electronic supplementary material, table S2)
occurring 1.95 s later, as suggested by cross-correlation analy-
sis (figure 3c; electronic supplementary material figure S4;
Video S4; electronic supplementary material, table S3).
Regardless of the length of mechanical stimulation, the trend
of Ca2+ transients (figure 3c) was similar to the trend of Ca2+

transient during Phase I (figure 2i, electronic supplementary
material, figure S5).

Based on these results, we concluded that papillae sensed
mechanical stimulation and the Ca2+ transient in Phase I is
triggered by the mechanical stimulation of the papillae and
Ca2+ transient in the posterior trunk region coupled with
that of the papillae. Consistent with this conclusion is the
observation that swimming larvae did not show Phase I
without adhering to the substrate (figure 4a) while all indi-
viduals that experienced tail regression experienced Phase I
(figure 2h; electronic supplementary material, figure S3A–E).
(d) The Ca2+ transient in Phase II coupled with tail
regression

Next, we characterized Phase II, where a relatively long-
lasting second Ca2+ transient was observed after Phase I.
Because Phase II was just before tail regression (figure 2h;
electronic supplementary material, Video S3) and larvae
require continuous adhesion for at least 28 min to start tail
regression [28], Phase II was assumed to comprise Ca2+ transi-
ents that arise during the continuous adhesion required to
initiate tail regression. In order to demonstrate the necessity
of the second Ca2+ transient in papillae to start tail regression,
we verified two requirements. The first requirement is that
the second Ca2+ transient happens specifically before tail
regression while the second is that the second Ca2+ transient
never happens in response to brief stimulation because only
continuous adhesion can induce tail regression.

First, we investigated whether the second Ca2+ transient
occurs only before tail regression. We compared Ca2+

dynamics between no stimulation and continuous adhesion
in larvae after 29.5 hpf (figure 4a,c). The second Ca2+ transient
did not occur in the absence of stimulation (figure 4a and
table 1, column of 0 s). By contrast, all larvae that underwent
metamorphosis displayed the second Ca2+ transient (figure 4c
and table 1, column of continuous). Phase II occurred only
when tail regression was observed. We therefore propose
that the second Ca2+ transient of papillae is essential for
tail regression.

Second, to determine if the second Ca2+ transient specifi-
cally occurs when the larva is stimulated for a sufficiently
long duration to induce tail regression, we applied 10 s of
continuous stimulation after 29.5 hpf (figure 4b,c). Following
brief stimulation, the Ca2+ transients in Phase I was observed
but the Ca2+ transient in Phase II and tail regression did not
occur (figure 4b and table 1, column for 10 s stimulus). By
contrast, all larvae subject to longer stimulation meta-
morphosed and showed Ca2+ transient in both Phase I and
Phase II (figure 4c and table 1 (n = 6)). Since the second
Ca2+ transient was observed only when continuous stimu-
lation was applied, continuous stimulation (12 min average
from adhesion to start of tail regression in this study) appears
to induce the second Ca2+ transient. Moreover, only larvae
that showed the second Ca2+ transient began tail regression
(table 1) suggesting that the second Ca2+ transient induces
tail regression. These results suggest that Ca2+ transients in
Phase II are essential for the start of tail regression.

In addition, to clarify how the papillae differentiation is
associated with the induction of Ca2+ transient in Phase I
and Phase II and subsequent tail regression, we examined
the dynamics of Ca2+ transient and tail regression in Foxg-
knockdown larva. It has been reported that Foxg is expressed
in larval papillae where it functions to specify the papillae as
sensory neurons [22]. During embryogenesis, Foxg expression
in neural plate cells is controlled by the mitogen-activated
protein kinase (MAPK)/ERK. In Foxg-knockdown larva,
short Ca2+ transients were observed at the anterior trunk epi-
dermis under continuous stimulation. However, neither the
second Ca2+ transient in Phase II nor tail regression was
observed (figure 4d and table 1). This result suggests that
Foxg-specified sensory neurons are required for the gener-
ation of the second Ca2+ transient and tail regression.

(e) Identification of tissues observed during the first
round of Ca2+ transients

Finally, we identified precise anatomical regions where Ca2+

activity increased during Phase I. In Phase I, the Ca2+ transi-
ent was first observed at both the papillae (figure 2 and
figure 5, orange) and the dorsal subregion in the posterior
trunk (figure 2 and figure 5, white arrowhead), before the
Ca2+ increase in the dorsal subregion propagated to the ven-
tral endodermal region (figure 2 and figure 5, blue).

Comparing these locations with our phalloidin staining
results (figure 5b), the Ca2+ transient in the papillae include
the more posterior part called the preoral lobe (figure 5b,
orange). The dorsal subregion corresponded to cells located
dorsally above the neck region of the central nervous system
and the epidermal region (figure 5b, white arrowheads)
[23,32,33,37]. The Ca2+ transient in the endodermal region
(figure 2) was identified as endoderm surrounding the
anterior tip of the notochord (figure 5b, blue). Because this is
the first report of a Ca2+ transient being observed in the endo-
derm at the beginning of metamorphosis, we focused on the
region expressing the Ca2+ transient in response to the mech-
anical cue. To derive more anatomical information about this
region, we performed in vivo Ca2+ imaging using LSM. Con-
sistent with our phalloidin staining results, a simultaneous
Ca2+ transient was observed in both the papillae and the endo-
dermal cells contacting the anterior part of the notochord
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(figure 5a–d; electronic supplementary material, Video S5).
This region was identified as the future digestive tract, in
agreement with a previous study that identified the same
region as the future digestive tract [38]. These results indicate
that the papillary Ca2+ transient was coupled with that of the
dorsally localized cells in the posterior trunk and the primor-
dial digestive tract in Phase I.

4. Discussion
How larvae perceive environmental cues, such as mechanical
stimuli, chemical ligands, temperature, and light, before trig-
gering metamorphosis had evaded researchers until now.

In this study, we revealed novel insights about the role of
Ca2+ transients in ascidian to link external cues to inner sig-
nals that control metamorphosis through precise timing and
targeting of specific tissues.

We have identified a two-round Ca2+ transient in the
adhesive papillae that respond to mechanical cues to initiate
metamorphosis in Ciona larvae. The observed Ca2+ transients
resulting from mechanical stimulation up until tail regression
(electronic supplementarymaterial, Video S3) are summarized
as follows (figure 6).
Phase I)

(1) Ca2+ transient in papillae in response to mechanical
stimulation (figure 3)

(2) Ca2+ transient in dorsally localized cells after (1)
(figure 5)

(3) Ca2+ transient in dorsal endoderm near the dorsally loca-
lized cells (figure 2c)

(4) Ca2+ propagation from the dorsal endoderm (3) to the
ventral endoderm (figure 2d )

Phase II)

(5) 2nd-round Ca2+ transient in the papillae (figure 2h; elec-
tronic supplementary material, figure S3)

(6) Ca2+ increase in cells across the entire epidermis with
wave-like propagation (figure 2f; electronic supplemen-
tary material, Video S3)

(7) Backward movement of posterior trunk epidermis
(figure 1; electronic supplementary material, figure S2,
Video S1, S2 and S3)

(8) Tail regression
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Phase I was strongly coupled to mechanosensation (figure 3,
figure 4 and table 1) and Phase II was coupled to tail
regression (figure 4c and table 1). We considered that the
two rounds of Ca2+ transients in these phases were essential
for Ciona tail regression during metamorphosis. According
to a previous study, at least 28 min of adhesion is necessary
for tail regression, and individuals more than 29.5 hpf
start tail regression after an average adhesion time of
32 min [28]. By contrast, five out of six larvae start
tail regression less than 28 min after adhesion in our exper-
iments. The average time between adhesion and tail
regression was 12 ± 4.3 min. These different response times
may be due to differences in the substrate or in the strength
of adhesion.

Is there a causal connection between Phase I and Phase II?
We consider there is a temporal threshold of Ca2+ in Phase I
that is prerequisite for activation of Phase II. From our results,
less than 10 s stimulation induced only Phase I whereas an
average of 12 min continuous stimulation induced both
Phase I and Phase II Ca2+ transients. In our experimental
system, Phase II is only observed after Phase I occurs
(table 1). Therefore, we think Phases I and II are tightly
coupled also in the natural condition. However, inhibition
of the specification of the papilla sensory neurons by Foxg
MO decoupled them (figure 4d ). Further studies of papillary
sensory neurons will provide a better understanding of the
mechanisms that will cause Phase II.
(a) Papillary cells activated by mechanical stimulation
Our results suggest that the papillae include mechanically
sensitive sensory cells. There are three types of cells in the
papillae, namely four axial columnar cells (ACC), four lateral
primary sensory neurons (PNS), and 12 central collocytes
(CC). Their nuclei are in posterior papillae processes and
tissues that make up the anterior trunk [8]. The mechanism
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of metamorphosis signalling from papillae to other cells
remains unsolved, but CCs and PNSs have been suggested
to have exocytosis function [8]. This suggests that it may
release signalling ligands via Ca2+-dependent exocytosis.

We assumed that several ACCs, PNS, and CCs react to the
mechanical stimulus. Although ACC and CC are not neurons,
we need to determine whether they sense mechanical stimuli.
Identifying the channels that control Ca2+ influx would help
elucidate the underlying mechanism for mechanosensing by
the papillae.

(b) Transmission of Ca2+ signals among different
tissues during Phase I and Phase II

Our comprehensive Ca2+ imaging revealed the interplay of
Ca2+ signalling in different tissues at the start of
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metamorphosis. One of the surprising results in our study is
the Ca2+ transient in endodermal cells surrounding the noto-
chord in response to mechanical stimulation (figure 3b). Ca2+

transient has not been observed in the endoderm from gas-
trulation to the tailbud stage in previous studies [27]. Since
this endodermal region differentiates into the digestive tract
during metamorphosis, the Ca2+ transient in the endoderm
may be related to the promotion of digestive tract differen-
tiation. It is also interesting that dorsally localized cells in
the posterior trunk responded during Phase I (figure 2 and
figure 5, white arrowhead). The dorsally localized cells are
located beneath the epidermis and close to the central ner-
vous system (CNS). Although these cells are unknown, they
do not appear to be identical to posterior apical trunk epider-
mal neuron (pATEN) nor anterior apical trunk epidermal
neuron (aATEN) because the cells are more posterior
(figure 5b).

During Phase II, wave-like Ca2+ propagations were
observed in cells across the entire epidermis (figure 2f; elec-
tronic supplementary material, Video S3). This shows the
direct evidence of metamorphic signals spread through
epithelial conduction of Ca2+. A similar epithelial-conduction
model of metamorphic signal propagation has been proposed
for the hydrozoan cnidarian Mitrocomella polydiademata [15].
Our method developed in this study can be applied to
other species to test whether the Ca2+ transients that cause
metamorphosis are evolutionarily conserved in other
marine invertebrates.

Considering the backward movement of the epidermis
that occurred following the Ca2+ propagations, these Ca2+

propagations might increase the tension within the entire
epidermis to generate the pulling force required for tail
regression. The tail epidermis has been proposed to generate
a sufficiently strong force to absorb the axial organs into the
trunk region [39] during tail regression. It was also confirmed
that tail regression is inhibited byusing cytochalasin B, indicat-
ing that actin fibres play an important role in tail regression
[40]. Another hypothesis of the tail epidermis contraction to
explain the tail regression during ascidian metamorphosis is
based on apoptosis [21,41,42]. Krasovec et al. [41] reported
that the tail regression depends on a postero-anterior wave of
a caspase-dependent apoptosis coupled with a contraction
event. This apoptosis wave might be triggered by the Phase
II wave-like Ca2+ propagations in the epidermis.
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